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KUMMER TYPE SYSTEM OF CONGRUENCES
AND
BASES OF STICKELBERGER SUBIDEALS

TAKASHI AGOH AND KENICHI MORI

ABSTRACT. A new Kummer type system of congruences is introduced and
some bases of subideals of the Stickelberger ideal in a certain group ring are
discussed. Further, we consider special Stickelberger subideals and evaluate
the group indices of them in a subring of the group ring.

1. INTRODUCTION

Let [ > 5 be an odd prime, Z the ring of integers, Z; = Z/IZ the ring of residue
classes modulo [, @@ the field of rational numbers and Q(¢) the cyclotomic field
over Q defined by a primitive I-th root of unity ¢ = e2™¥/!. Also let B, be the
m-th Bernoulli number defined by

x > Bn

ev —1
m=

and ¢y (2) the Mirimanoff polynomial, i.e.,

-1
or(z) = ka_lx” (keZ).
v=1

The following system of congruences was first introduced by Kummer (1857) in
connection with the first case of Fermat’s last theorem :

¢1-1(t) =0 (mod 1),

(K) 1—3

Bam@i—am(t) =0 (mod {) (1 <m< T)
Many kinds of equivalent systems to (K) are known (see, e.g., Agoh [2, 3]

and Granville [7]). In his paper [11] Skula devised a very interesting system of
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congruences (S) equivalent to (K) by means of the Stickelberger ideal in a certain
group ring (see Section 2). Here, we emphasize that at present it is unknown
whether the system (K) has a non-trivial solution.

Recently, Agoh and Skula [4] considered the following special system (K(NV))
of congruences and they investigated equivalent systems and specific connections
with Stickelberger subideals :

pi-1(t) = 0 (mod 1),
(K(N)) By @rmom(t) 20 (mod 1) (1< m < Z_T?))’

where N is a fixed positive integer with 2 < N <[ —1 and

1—N*
BN = ——Bi (k2 1).
The system (K(N)) for the special case where N = 2 was first observed by Ben-
neton [5] in 1974 and it was recently investigated by Skula [15] from the viewpoint
of Stickelberger subideals.

We present here the further generalized system of congruences

¢1-1(t) =0 (mod 1),
(K(M, N))

o~

B;%’N)Spl_Zm(t) =0 (HlOd l) (1 <m< T)’

where M and N are fixed positive integers with 2 < M, N <[—1 and

pon _ (L= MR)(1 = V)
o k

Obviously, we see that all the solutions of (K) (resp. (K(N))) satisfy (K(NV))
(resp. (K(M, N))). In particular, if M and N both are primitive roots mod [, then
the above three systems (K), (K(NV)) and (K(M, N)) are mutually equivalent, that
18, these systems have the solutions in common.

By (k>1).

Main purpose of this paper is to study some systems equivalent to (K(NV)) and
(K(M, N)) and to search bases of Stickelberger subideals relating to these systems
in certain group rings.

In Section 2, we define the subideals Jn({) and JTar v ({) of the Stickelberger
ideal 3(!) in the group ring Z;[G] of a cyclic group G over Z; and obtain bases of
these subideals. Further, the Skula type systems of congruences concerned with
(K(N)) and (K(M, N)) will be derived. In Section 3 we concentrate on identities
in Z;[G]. Section 4 is appropriated to a search other bases of Jn({) and JTar n (1)
applying the identities given in Section 3. In Section 5, we observe the special
Stickelberger subideals By and By x, and evaluate the group indices of them in
a certain subring of the group ring Z[G] of G over Z in terms of the first factor A~
of the class number of @({). In Section 6, we deal with the Fueter type system
of congruences equivalent to (K(M, N)). In the last section, we shall incidentally
mention a relationship between the above Jx (/) and the ideal By mod [ observed

by Skula [16].
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2. SKULA TYPE SYSTEM
Throughout this paper we use the following notations:

r: a primitive root mod I,

r; © the least positive residue of r! mod ! for an integer 1,

ind @ : the index of @ € Z, [} z, relating to the primitive root r mod [,
G={l,ss - ,51_2} : a cyclic group of order | — 1 with a generator s,

=2
R=7Z|G]= {Z a;s' :a; € Z} : the group ring of GG over Z,

i=0

-2
R = 7Z4G] = {Z aisi Ta; € Zl} : the group ring of GG over Z;.
i=0
The Stickelberger ideal J of R is defined by

-2
J= {Oz € R:3peR, er_isi = la} (see, e.g., [13],1.1).
i=0

The canonical mapping ¢ from Z onto Z; can be naturally extended to the
mapping from R onto R; in the following way: for an element o = Zi;g a;s' € R

we let Y(a) = Zi;g ¥(a;)s® € R;. Then the Stickelberger ideal of R; is defined by
3(0) = {¥(a) s 0 €3},
Further we define the following special elements in R; (cf., [13], Section 3):

-2
o, :Zr_imsi (1<m<I-1).

i=0
In particular, set

-2

1-2
’y:alzg r_;s’, 6:@1_125 st
i=0

i=0

One may observe and treat ideals of the rings R and E; regarding as modules
over Z and 7Z;, respectively.
In his papers [12, 13] Skula investigated some bases of J({) and proved

Proposition 2.1 ([12, Proposition 3.3], [13, Proposition 5.4]). Lel
C={am : Biom Z0 (mod ), 3<m<I1—-2, modd}.

Then the system C'U{y,8} forms a basis of 3() as a Z;-module. Thus

rank 3(1) = —— —di(l),
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where 4i(l) is the irreqularity index of I, i.c.,

ii(l) :ﬁ{kisz =0 (mod!), 1<k < I_T3

Also he introduced the following polynomial :
Definition 2.2 ([11], 1.3). For a = Zi;g a;s' € R (or Ry), define
-1

foz(t) = a—indvﬁtv’
1

v

where U is an integer (or a class of Z;) such that vo =1 (mod ) (1 <9 <1 —1)
(or 9v = 1 in Z;) and ap, (k € Z) is replaced by a; (0 < ¢ <1 —=2)ifk =i
(mod [ —1).

Here, note that if o = Zi;g a;s' € Ry, then a; may be replaced by any element

of the residue class of Z; belonging in «q;.
As basic relations between the Skula and Mirimanoff polynomials, we may state

(ct., [14], 2.1)

Using the above polynomial f.(¢) (o € R;) Skula considered the system of
congruences

(9) Fat) =0 (mod 1) (a € 3(1))

and showed

Proposition 2.3 ([13], Proposition 6.1). Let T be an integer with ™ # 1 (mod [).
Then 7 is a solution of the system (K) if and only if T is a solution of the system

(S)-
For integers M and N with 2 < M, N <1 —1, we set

C’X:{am . %) Z0 (mod!), 3<m< (-2, modd} (where X = M, N),

l-m

CM,N:{am :Bl(iwn’lN)géO (mod {), 3<m< -2, modd}.

It is clear that Cyy v € Cx C C and Cy N Cy = Cpr . If the order of X mod

[ i1s not equal to 2, then C'x is not the empty set, because BgX) Z0 (mod /). In
the following we assume that Cx (for X = M, N) and Cr n are not empty.
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We denote by Jn({) and Jar n({) the subideals of J(!) generated by the systems
Cy U {6} and Cyr y U {8}, respectively. Thus,

-2
= { Z Zc&m)sjam +¢b cg»m), c€E Zl} C 3

am€CN j=0

-2
= { Z Zc&m)sjam +¢b cg»m), c€E Zl} C 3

A €ECpg,n §=0

Similarly to Proposition 2.1, we can state

Proposition 2.4. Let 2 < M,N <[—1. Then

(i)  the system Cn U {8} forms a basis of In (1),

(i1)  the system Cyr ny U {8} forms a basis of Tar n(1).

Thus
- -1 . - -1 .
rank Iy (1) = 5~ itn (1), rank Jp N() = 5~ it v (1),
where
l—
iin (! —ﬁ{k B(N)_O(modl) 1<k<T3
and

it v (1 —ﬁ{k B(MN)_O(modl) 1<k<—}

It is clear that Jar n() = Tar (D) N In (), 4i(1) < din(l) < itpr,v(l) and the
numbers of non-trivial congruences in the systems (K(N)) and (K(M, N)) are at
most rank In(!) and rank Jpr n (1), respectively.

In the following discussion we assume that Jar(!), In(l) # Tar,n({), in other
words, Cyy € Cn and Cny € Chy.

Analogously to the system (S), we now consider the following two systems of
congruences:

(S(N)) fa@) =0 (mod ) (a€In(l))
and
(S(M, NY) Jor(t) =0 (mod ) (o' € Tae v (D).

For these systems one can obviously assert

Proposition 2.5. (i) The system (K(N)) is equivalent to the system (S(N)).

(ii) The system (K(M, N)) is equivalent to the system (S(M,N)).
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3. IDENTITIES IN F;

This section deals with some polynomial identities and we transport them into
the group ring R; in order to discover other bases of the subideals Ty (!) and

T, v (1) of 3(1).
For m > 0 and & > 1, designate by

Sm(k)=1" 42" + ...+ k™
S (k3 N)Y =S (kN) — N™LS, (k),
S (k; M, N) =Sy (kM N) — NS, (kM
The following identity was described in the paper [4] of Agoh and Skula:

Y= M™HS (EN) + (MN)Y™ LS, (k).

Proposition 3.1 ([4], Proposition 3.2). Let m, k be inlegers with m <1 —3
and k > 1. Then

%(km’-z-%l_mig (25wt {50}

-1
= Z Sl_z_m(vk’ ; N)Umtv .
v=1

Referring to this proposition one can deduce

Proposition 3.2. With the same notation as in Proposition 3.1
1—M)(1-N
A=A =N g vy=2m )

2
+lim< )(kMN)’ =i BN 1))

-1
= ZSI_Q_m(vk ; M, N)Umtv .

v=1

Proof. For brevity we let

—_

Wi (2) = —{B(x) - B(Nl‘)} :
Wy (M),

5]

Warn(2) = Wi (2) —
Apm(t,x) = {B(x)e }som+1( ") = em1(t) B(x),
where B(x) is the generating function of Bernoulli numbers defined in the Intro-

duction. Then Ay (¢, 2) can be expressed as

-1 vk

Apm(tw)y =2 {D o™y (of, [2],(3.3)).

v=1 j=0
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Here we have
Arpnm(t,2) — Apprm (8, N2) — Apn o (8, M) + A m(t, M N 2z)
= {B(a:)ex — B(Nx)eNx — B(Mx)eMx + B(MNx)eMNx} gpm+1(tekMNx)
—{B(x) = B(Nz) = B(Mz) + BIMNz)}omy1(t)
= 2{(1 = M)(1 = N) + War,n (&) Yomr1 (te"N) — 2War n (2) o1 (1),
hence

{(1 = M)(L = N) + War,n (2) Yom (1) — Wiy N(l‘)som+1(t)
-1 vkMN vkM vkN

_Z{Z el — NZe]Nx MZe]Mx—i—MNZe]MNx}vmt”

Since for n > 0

T
= B (el [1], Lemma)
and "
[dd?gomﬂ(t@kMNx)] _ = (kMN)"0miny1(t),

we get the identity as required using Leibniz’s theorem for the above functional
equality. O

For integers m, k with 0 < m <{—3 and 1 < k <!—1, we prepare the following
special elements of R; :

-2

o(m, k) = Z bi(m, k)s',

i=0
-2
k) = Z bEN)(m, k)s
oM, N) Z b(M N) (m, k)s

where for each i = 0,1,...,1— 2
bi(m, k) = T_i(m+1)Sl—2—m(r—ik)a
ng)(m, k’) = T_i(m+1)Sl—2—m(7”—ik ) N)a
bEM’N)(m, k’) = T_i(m+1)Sl—2—m(r—ik ; Ma N)
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Then we have

-1
Fomp(t) =Y Sico_m(vk)v™t" (mod 1) (cf., [14],2.3),

v=1
-1

So 0 (m ) (t ZSI a—m(vk; N)v™t" (mod !),
v=1
-1

fo-(M N)(m k) ZS[ 2 m(vk M N) mv (HlOd l)

v=1

Based on the fact that the mapping n from R; into Z[t] defined by n(«) =
fa(t) conserves addition and scalar multiplication, Skula derived the following
proposition (in a slightly different form) using the polynomial identity

—2—m
k’—l—%,(t)+H%mkl—%m@,_l(tpr Z (l_li_ m)k’—l—m—i {Bigi—i(t)}
-1
=(1=1=m)Y_ Si_a_m(vk)v™t" (Agoh[2],(3.4)).

v=1

Proposition 3.3 ([14], Proposition 2.4). Lel m, k be integers with 0 < m <
=3 and 1<k <l—1. Then

1 -2—m

1 l—2—m 1
kl—l—m _kl—Z—m(s kl—l—m—]_ Biovr_ .
I—1—-m 7+2 T Z j—1 j{yaly}

ji=2
=o(m, k).

By Propositions 2.1 and 3.3 one recognizes that o(m, k) is an element of J(/).
Similarly to the above proposition, we may deduce the following proposition
from the polynomial identities given in Propositions 3.1 and 3.2.

Proposition 3.4. With the same notation as in Proposition 3.3

-2—m

L e [

ji=2 -

= U(N)(m,k),

) (kMN)' =275

-2—m

+ Z ( P )(kMN)’ 1—m— J{B<MN>a, ]}

= U(M’N)(m,k).
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By Proposition 2.4 we know that the systems Cn U {6} and Cyy y U {6} form
bases of In(I) and Jar n (1), respectively. Therefore, we may state from Proposition
34

Proposition 3.5. Let m,k be as in Proposition 3.3. Then U(N)(m, k) and
oM N)(m k) are the elements in the ideals In(l) and Tne, v (1) of Ry, respectively.

4. OTHER BASES OF Jn({) AND Jps v ({)

In this section we would like to search some other bases of the subideals Ty (!)
and Jyr n({) regarding as Z;-modules. For this purpose we utilize the identities (i)
and (i) in Proposition 3.4 adopting the same ideas as mentioned in Skula’s paper
([14], Sections 3 and 4).

(I) Bases of In(!). Let m, k be integers with 0 < m <{—3, 1 <k <!—1and

T:{jeven:B](»N);,‘éO(modl), 2§j§l—3}.

Denoting by

1-N
™ (m, k) = =

kN)l—2—m’

[—2—m .
ENY-1-m=0 if 2< i< —-92— djeT

0 otherwise,

we get from Proposition 3.4-(i)

a(lN)(m, k)6 + Z ag»N)(m, k)B](»N)ozl_j = U(N)(m, k).
JET
2<j<i-2—-m
Let v = (I —1)/2 —iin(I). For asubset L of {(m,k) € Z*:0<m<I1-3, 1<
k <!—1} with L = v, define the square matrix of order v as follows:

_ | (N)
D(L) = [ai (m’k)](m,k)eL,je{uuT'

Then we obtain from Propositions 2.4 and 3.5

Theorem 4.1. The system {U(N)(m,k) s(my k) € L} forms a basis of In(l) if
and only if the matriz D(L) is non-singular over Z;.

Corollary 4.2. Let K be any subsel of {1,2,---,1— 1} with K = v. Then the
following statements are equivalent :

(i) the system {O'(N)(O, k) ke K} forms a basis of In(1),

(ii) the system {O'(N)(l, k) ke K} forms a basis of In(1),

1) the matriz =37k et 15 non-singular over Z;.

e h . kl 3 ] E 7]6{ } l Z
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Proof. For the system {O'(N)(O, k): ke K} we calculate the determinant of the
corresponding matrix D(L) with m = 0. Letting K = {k1,---, k, } one has

j—1

=N (g NY=2 | (’—2)(k1N)l—1—j o

det D(L) = det ﬂ(k;’]\f)l_z (Jl—_Zl)(klN)l—l—J (

1<i<y, jeT)
= G . det[ kl_S_j]kEK,jE{l}UTa

where
GIMH (=2 Nl—l—ij27—é0 (mod 1)
2 LI '
JeET keK
Therefore, we know from Theorem 4.1 that (i) and (iii) are equivalent. The rest

follows easily by the similar argument to the above. O

Applying Corollary 4.2 we can find some bases of Ty (!) as follows :

Corollary 4.3. Let K/ = {ro,r1,---,rs}, where r is a primitive root mod | and
g =v—1. Then the systems {c™)(0,k) : k € K'} and {c™)(1,k) : k € K'} form
bases of Tn(1).

o]

Proof. Consider the square matrix Y = [rZ of order v = g+1.

0<i<g,j€{1}uT
Then we obtain

det YV = det [rf_B_j] mod [),

0<i<yg,je{1}uT 70 (

which leads to the conclusion by virtue of Corollary 4.2. O

Corollary 4.4. Let k, 1 <k <[l—1, be fired and put
_ . ™)
U_{m odd: B;_ ., #0 (mod ), 1§m§l—4}.
Then the system {eN)(1 = 3,k)}y U {c™ (m, k) : m € U} forms a basis of In(l).

Proof. Clearly, we see o™)(1 =3 k) = ((1 = N)/2)kN6. Let g be as in Corollary
4.3 and put in order the elements of 7" and U as follows :

T={j():1<v<g), where2<j(1)<j(2) < <jg) <l—3
U={m(u): 1 <u<yg}, wherel <m(l)<m(2)< --<m(g) <l—-4.
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For an integer 6,1 < 6 < g, we have m(0) = [—2—j(g—0+1). The corresponding
matrix D(L) with a fixed k, 1 < k <1 —1, becomes

LNEN |0 --- 0

where ¢, = (1 = N)/2)(kN)'=2=™) (y =1,2,...,9) and
N
B = [ buv]lgu,vgga byy = ag(v))(m(u)’k)
Here we have det D(L) = ((1 — N)/2)kN -det B. If v > ¢ — u+ 1, then j(v) >

Jlg—u+1)=1—2—m(u) and by, = 0. Also, if v = ¢ — u + 1, then j(v)
Jlg—u+1)=1-2—m(u) and so

N
buv = ™ (m(u), F)
={=2—=—m(u)kN £ 0 (mod I),
which implies det B # 0 (mod {) and hence D(L) is non-singular. According to

Theorem 4.1 the system indicated in the statement forms a basis of the Z;-module
JIn(l). This completes the proof. O

(II) Bases of Jnr n(l). We shall develop here the same arguments as done in
(I). Let m, k be integers with 0 <m <! -3, 1 <k <!—1 and put

S:{jeven:B](»M’N)géO (mod 1), 2§j§l—3}.

We now define

aM V) (i, py = LZAAZN) M)Q(l =) (k-

[—2—m .
EMNY-1=7= if2<j<l—2—m,j€S,
M) (1 k) = <j_1 )( ) if2<)< m, j

0 otherwise.

From Proposition 3.4-(ii) we obtain the identity

a(lM’N)(m, k)s + Z aE»M’N)(m, k)B](»M’N)al_j = U(M’N)(m, k).
j€S
2<j<i=2—-m
Let g = (I = 1)/2 — dipr,n(I) and J be any subset of {(m, k) € Z* : 0 < m <
[—3, 1 <k <Il-1} with §J = pu. Also, define the square matrix of order p as
follows:

/) “j (m, k) (m,k)ed, je{1}us
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Then we get from Propositions 2.4 and 3.5

Theorem 4.5. The system {U(M’N)(m, k) : (m,k) € J} forms a basis of Tpr n(1)
if and only if the matriz C(J) is non-singular over Z.

Corollary 4.6. Let H be any subset of {1,2,--- 1 — 1} with $H = u. Then the
following statements are equivalent :
(i) the system {O'(M’N)(O, k): ke H} forms a basis of Tarn (1),
(ii) the system {U(M’N?(l, k): ke H} forms a basis of Tarn (1),
(iii) the matriz [ kl_B_]]keH,je{l}US is non-singular over Z;.

Corollary 4.7. Let H' = {ro,r1,---,ry}, where r is a primitive root mod | and
q=p—1. Then the systems {c™MN)(0, k) : k € H'} and {cN) (1, k) k € H'}
form bases of Tnr n(1).

The proofs of the above corollaries can be performed by similar methods to
those of Corollaries 4.2 and 4.3.

Corollary 4.8. Let k, 1 <k <I[—1, be fired and

(M,N)
-2—m

W:{modd:B 7‘é0(modl),1§m§l—4}.

Then the system {cPN (1 =3 k)Y U {eN)(m k) : m € W} forms a basis of
Taew(0).

Proof. We obviously see O'(M’N)(l =3,k)=({(1=M)(1=N)/2)kMNé. Let ¢ be

an integer defined above and put in order the elements of S and W as follows :

S={i(0):1<v<q), where 2<j(1) < i(2) << i(g) <13,
W={m(u): 1 <u<q}, where 1<m(l)<m(2) < ---<m(q) <l—4.

Here, we have m(e) =1 —2— j(¢ — e+ 1) for an integer £, 1 < ¢ < ¢q. The matrix
C(J) for a fixed k is equivalent to

gﬂ;ﬂszN 0.0

dy E

where d, = (1 = M)(1 = N)/2)(kMN)'=2=7®) (y = 1,2, ....¢q) and

bl bl

M,N
E=lewhcup<g €uw = C‘;(v) )(m(u), k).
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Hence, it follows that det C'(J) = (1= M)(1 = N)/2)kMN -det E. If v > ¢g—u+1,
then j(v) > jl¢g —u+1) =1 —2—m(u) and ey, = 0. If v = ¢ — u + 1, then
JWw)=jl¢—u+1)=1—2—m(u) and so we have

M,N
Cuv = ag_z_gl(u)(m(u), k)
={=2=—m(u)kMN #0 (mod /).
Consequently, we may say that det £ # 0 (mod ) and so C'(J) is non-singular.

By Theorem 4.5, it can be concluded that the system indicated in the statement
forms a basis of the Zy-module Jr n({). This completes the proof. O

5. SPECIAL IDEALS By AND By n

In this section we will consider special subideals By and By y of the Stick-
elberger ideal J in the group ring R and evaluate the group index [By : Bar n].
In addition, by making use of the result ([4], Theorem 5.8) by Agoh and Skula
relating to the first factor A~ of the class number of Q({) we deduce a formula for

[RI : SBMyN] , where R isa special subring of R defined below.
Let R be the subring of K defined by

-2
, Z. -3
R = {OZ = E_O a;s' € R aj +ajq-1)2 = ar + app-1)/2, 0 < j, k < T}

The following theorem follows from Iwasawa’s class number formula ([8]):

Theorem 5.1.
R 23] =n.

We should supplement here that in his profound papers [9, 10] Sinnott extended
the above formula to more wider class of cyclotomic fields by means of Stickelberger
ideals.

We now put for an integer &

-2 -2

=y %(r_mc —r_ivk)s' = Z [rk;_i] st

1=0 =0

By choosing an appropriate integer n such that N = r, let

g

i=0

where [2] is the greatest integer < x.
Then, we extract from the paper [4] of Agoh and Skula the following
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Proposition 5.2 ([4], Proposition 5.2). For an inleger j

-2
) Nr_;.; )
5]6 — Z [%] SZ
1=0
and

sip+ st T3 = (N —1)6.

Definition 5.3 ([4], Definition 5.3). Denote by By the ideal of R generated by
the elements B and 6, thus

-2
%N:{ijsjﬁ—i—bé:bj,bEZ}g’J
j=0

Let X be an integer with 2 < X <[ —1, f = fx be the order of X mod [ and
put

[
(X% + 1) ! if f1s even,

w(X) = _
(X! 1) if fis odd.

Theorem 5.4 ([4], Theorem 5.8). Let 2 < N <[— 1. Then the system

[sip:0<i< 2 u)

forms a basis of By as a Z-module and

/ N
[R : aBN] - “(l b= [ Ba] =
Referring to Proposition 5.2 and Theorem 5.4 we will describe analogous results
for a special ideal Br n of R defined below (Definition 5.6).
For integers M, N with 2 < M, N <[ —2, choosing integers m,n with M = r,,
and N = r, we set
N
] 7= Nym — My,

M
[

-5 ([ o [ - [ ¢

K3

Then, we may describe

Proposition 5.5. For an inleger j

oo (e v )
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and
. L 1—1
SF+sT T8 = —(M—1)(N - 1)é

Proof. The expression of s/ # is obvious. Since for a positive integer a prime to

R [a(l—r—m)] a1 [P

{ { {
we have
-2
L 1=1 MNvr_;.; Mr_ ...
i+ g — —i+j+0-1)/2( —itj+(1—-1)/2
T Z;q l ] N[ ‘_T__—]
M [Nr—iﬂ;r(l—l)/z]) r
— MNr_iyi Mr oo
o225 -]
i=0
-M ((N ~1)- [—Nrfﬂ' ] ) } .
=—(M—-1)(N-1)§—s7,
which implies the result. O

We now define a special ideal B s,y of R depending on M and IV as follows:

Definition 5.6. Denote by By y the ideal of R generated by the elements 5" and
6, thus

-2
By = { Y Vs + Vb0 eZbCT
j=0

By Proposition 5.5 we know that the elements of {Sjﬁ’ 0<i<(- 3)/2}U{6}
are generators of the Z-module B s . Here, we can prove
Theorem 5.7. The system
- . 1-=3
{#o:0<i<="}uie)
forms a basis of B,y and

[%N . %MVN] = W(M)
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Proof. We have

= (] e )
(=] [P
_ [NMr_] MZ[Nr_] i

0

|
N

[N
I
[CR-)

(]

N@.
I
[CR-)

o
I

where @ is the least non-negative residue of an integer ¢ modulo /. In particular,
putting M = r,, with an appropriate integer m

-2 -2
-] v
=0

i=0

= Smﬁ - Mﬁ € %Na
which implies that B 5 is a subideal of By. According to Proposition 5.2 we

present the transition matrix A from the elements 88 (0<j<(I—3)/2) and é
which form a basis of By to the elements s*°3" (0 < j < (I —3)/2) and § :

A= [auv]ogu,vs(l—l)/2 )

where
-M if u=v, 0<u,v<(1=3)/2,
1 if u=v—m, 0<u<(=-3)/2—mandu=v=(-1)/2,
Uy = -1 if u=v+(-1/2-m, ({-1)/2—-m<u<(-3)/2,
N-1 if (I-=1)/2-m<u<(-3)/2 v=(-1)2
0 otherwise.
Thus,
=1_
[ —M 1 0
: .
1 0
A= -1 N -1
-1 M| N-1
| O 0 1]
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Let g be the order of M mod ! and set e = (I — 1)/g. We especially choose
the primitive root » mod [ such that M = r, and calculate det A according to the
following procedures :

(i) If ¢ is even, we first multiply the last row of A by —(N —1) and add it to the
rows with indices (I —1)/2—e,--- (I —3)/2. Next, we divide all the columns of A
except for the last column into g/2 blocks and perform column operations. Then
we exchange the index v (0 < v < ({ = 3)/2) of the column for the index x + ye
(0<e<e—1,0<y<g/2—1)and perform the following column operations for
each z :

(a) multiply the column with index « + ye by M and add it to the column
with index x4 (y—1)e, beginning at the column with index z+(g/2—1)e,

(b) multiply the column with index « by — (1 + Mg/z)_l,

(¢) multiply the column with index z by M9/27Y and add it to the column
with index z + ye (1 <y < g/2-1),

(d) interchange the columns with indices # +ye and z + (y+ 1)e (0 <y <
q/2—2).

Then it is seen that det A = (—1)(=1)/2 (1+ Mg/z)e.

(ii) If ¢ is odd (and so e is even), we multiply the last row of the matrix A by
—(N —1) and add it to the rows with indices ({ —1)/2—e¢, - (I —3)/2. Next, we
divide all the columns of A except for the last column into ¢ blocks and perform
column operations. Then we exchange the index v (0 < v < (I — 3)/2) of the
column for the index v +y - (¢/2) (0<z<e/2—1,0<y<yg—1)and perform
the following column operations for each = :

(a) multiply the column with index # + y - (¢/)2 by M and add it to the
column with index « + (y — 2) - (¢/2), beginning at the column with index
et (g— 1) (e/2)

(b) interchange the columns with indices # and x 4 ¢/2 and multiply the
column with index @ +¢/2 by —1,

(¢) multiply the column with index x 4+ ¢/2 by M(=1/2 and add it to the
column with index =z,

(d) multiply the column Wlth index z by (M9 — 1)

(e) multiply the column with index # by —MloetD)/2 and add it to the column
with index « + ¢/2,

(f) multiply the column with index & by M+TD/2=¥/2 and add it to the
column with index z + y-(e/2) (2 <y <g—1and y even),

(g) multiply the column with index x + ¢/2 by M=1/2==1/2 and add it
to the column with index z +y - (¢/2) (3 <y < ¢ —2 and y odd),

(h) interchange the columns with indices # + y - (e/2) and = + (y + 2) - (¢/2)
(0<y<g-3).

Then we see det A = (—1)("=1/2(1 — Mg)e/z.

Summarizing (i) and (ii) we may state that

det A = (—=1){=Y/20(M),

1

which completes the proof of the theorem. O
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Combining Theorems 5.4 and 5.7 we can finally derive the following formulas:

Theorem 5.8.
w(M)w(N)

w(M)w(N)
l :

(& By = T oand[3:Baa] = S

6. FUETER TYPE SYSTEM

It is well-known that if 7 £ 1 (mod [) is a solution of the system (K), then 7 is
also a solution of the following system of congruences considered by Fueter [6] in

1922 :
-1
kvl 1
(F) [7“] 4 =0 (mod ) (1<k<I-—1).
v
v=1
The Fueter type system corresponding to (K(V)) was observed by Agoh and
Skula and they proved
Proposition 6.1 ([4], Proposition 3.5). Let 7 be an integer # 1 (mod ).
Then 7 is a solution of (K(N)) if and only if 7 is a solution of the sysyem

-1

(F(N)) Z([k]lv“]_zv[kl—“])%tvzo (mod 1) (1<k<1—1).

v=1

Further, the equivalent system to (F(N)) was given by means of the Skula
polynomial.

Theorem 6.2 ([4], Theorem 5.10). The system (F(N)) is equivalent to the sys-
tem

fa@®) =0 (mod ) (a € By).

Referring to these results we will study the Fueter type system of congruences
equivalent to (K(M, N)).

First, we shall prove
Proposition 6.3. The system (K(M, N)) is equivalent to the system

-1
M Nvk Muvk Nvk vk 1

F(M, N - N - M MN [—| ) =t*
wannn 3 ([ o [ - [ e [7])

v=1

=0 (mod!) (1<k<I-1).

Proof. Recall the polynomial identity given in Proposition 3.2 and take m=-—1.
For a positive integer a prime to !, we have S;_1(a) = a—[a/!] (mod [) by Fermat’s
little theorem, and so

Si—1(a; M, N) = Sj_1(aMN) — N'S;_1(aM) — M'S;_1(aN) 4+ (MN)'Si_1(a)

_ [az\fzv] N [#] iy [#] ~MN [%] (mod 1)
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Therefore,

W%_Ntﬂ-l 2 (l i )(kMNl - Z{Bl“ w_i_l(t)}

K3

(- 2202w e

v=1

Here we see det[(kMN)j]lgkgl—l,ogjgl—z Z 0 (mod !), so the result follows. O

Note that 7 = 1 (mod {) is a solution of the both systems (K(M,N)) and
(F(M, N)). In fact, one has ¢;(1) = S;_1({—1) =0 (mod {) fori =2,3,--- ,[—1
and B(M N) = = (M'"! = 1)@(N) =0 (mod {) by the von Staudt-Clausen theorem
and Fermat’s little theorem, where ¢;(N) = (N'=* — 1)/l is the Fermat quotient of
[ with base N, [t N. So we can confirm the statement by observing the congruence
in the above proof.

Finally, we would like to translate Proposition 6.3 by using the Skula polynomial
depending on the ideal By v of K.

Theorem 6.4. The system (F(M, N)) is equivalent to the system

fat) =0 (mod ) (o € Bun).

Proof. Let k£ and p be integers satisfying r, = £k, 1 <k <1 -1, 0<p <1 -2
Putting o« = s” 3" we get {from Proposition 5.5

-2
_ MNT_H_p MT_H_p NT_H_p i
o= ZEIO ([ 7 ] N [ 7 M ] s

Since for a positive integer a prime to [

[arincliv+p] _ [#] — [#] —a %] (I1<v<l-1),

1t follows that

I— -
Zi <|:MNr1ndv+p:| _N |:Mrindv+p - M |:Nrindv+p:|) ltv
l l

vﬂ@““’“]-w[“ﬂ)—f V(24 - [4]) 2
oS ([ ) e
- l: ([M]lvvk] - [szk] - M [vak] + MN [#D L

v

Ne
HH
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On the other hand, noticing that [a({ — 1)/{] = a — 1 —[a/l] for a > 0, { { a, we

have
(][] ) e
S e
[ 72
=D - DY R = - ) - ) (mod ),

Consequently, we can say that the system (K(M, N)) is equivalent to the system
mentioned in Theorem 6.4.

7. ADDENDUM

Let By be the ideal of R given in Definition 5.3 and By ({) be the ideal of R;
defined by

-2 -2
By (l) = {Zaisi € Ri:3b; € a; such that 3 b;s' € SBN}.
i=0 i=0

Most recently, Skula ([16], Section 4) investigated basic properties of B (/) and
inclusion relation of these ideals for various integers N (see also [15], Section 4).
In a personal communication of him to one of the authors of this paper the exact
relationship between the ideal Jx (/) treated in Section 2 and the above By ({) has
been shown.

Proposition 7.1. Let N be an integer with 2 < N < [—1 and v (= «1) be the
element of Ry defined in Section 2. Then

In(l) =By(l) if q(N)

=0 (mod /),
In()®yRi =Bn() if q(N)Z

0
0 (mod ).

Proof. We shall follow to the proof communicated by Skula. Let vy be the [-
adic value and h(k) (k > 1) be the integer defined as follows : for an integer
m, 1 <m < {—2if By, # 0 (mod ), then put h(l — 1 —m) = 0. Also,
if Bi_m = 0 (mod (), then we provide that h(l — 1 — m) is the largest positive
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integer ¢ such that Bie-1(_1_m)31 =0 (mod {°). Using these notations we define
(cf., [16], Section 4)

n(NT —1)-1 if m=1,
p(m) =< h(l—1—m)+ (N —1) if f|m—1and m # 1,
h(l —1—m) if frm—1

for a fixed integer N, where f is the order of N mod {. Then the system
{om :p(m) =0, 1 <m <1—2, modd} U{6}

forms a basis of the Z;module By (l) (cf., [15, Theorem 4.7-(c)] for the case
N = 2). We also see that the system

{am:Bl(iVn)l;,‘éO (mod ), 3<m< -2, modd}U{é}
={apm pu(m)=0,3<m <=2 modd}uU {6}

forms a basis of the Z;module Ty(!). Here, we have u(l) = 0 & @(N) Z 0
(mod {) < a1 € By ({), which implies the result. O
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