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HIGHER ORDER CONTACT OF REAL CURVES
IN A REAL HYPERQUADRIC

Y. VILLARROEL

ABSTRACT. Let @ be an hermitian quadratic form, of maximal rank and index
(n,1), defined over a complex (n + 1) vectorial space V. Consider the real
hyperquadric defined in the complex projective space P*V by

Q@ =A[] e P"V, &(c) =0},

let G be the subgroup of the special linear group which leaves @ invariant and
D the (2n—2) distribution defined by the Cauchy Riemann structure induced
over ). We study the real regular curves of constant type in Q, transversal
to D, finding a complete system of analytic invariants for two curves to be
locally equivalent under transformations of G.

The real hypersurfaces of real codimension one are the boundaries of domains
in a complex manifold. Among the non-degenerate real hypersurfaces in C?*!
the simplest and most important are the real hyperquadrics. S. Chern and J.
Moser show how the geometry of a general non-degenerate real hypersurface can
be considered as a generalization of a real hyperquadric [4].

Here we consider an hermitian quadratic form ®, of maximal rank, and index
(n, 1), defined over a complex (n + 1)-vectorial space V', and @ the real hyperqua-
dric defined in the complex projective space PV by the equation

Q=A{[cJePV, @) =0}

The concept of Frenet frames for holomorphic curves in complex projective
spaces played an important role in the classical theory of the equidistribution
of these curves. In [5] it is investigated under what conditions on a Hermitian
manifold every holomorphic curve in the manifold has a Frenet frame.

The purpose of the present article is to study, the real curves of constant type
in the hyperquadric @, finding a complete system of analytic invariants for two
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curves to be locally equivalent under transformations of the subgroup G, of the
special linear group which leave the hyperquadric ¢ invariant. Moreover we find
the Frenet frames for these curves.

This problem is an special case of the equivalence of submanifolds in homoge-
neous spaces, which has been extensively studied by E. Cartan [2,3], G. Jensen
[11], M. Green [7], P. Griffiths [8] and A. Rodrigues [14], among others. Using
contact theory and the action of the group on each contact manifold of order &, a
transversal section to the orbits of maximal dimension, can be naturally obtained.

1. THE REAL PROJECTIVE HYPERQUADRIC

Let @ be an hermitian quadratic form of maximal rank, and index (n, 1), defined

over a complex (n + 1)-vector space V, and {h,, -+, hy} a base of V such that
the expression of ® is given as
(1.1) Q) =07, (M) = () AT = ()

we can obtain this basis, reducing ® to its normal form. Consider in V the basis

fa defined by
fOIi(hn_ho)a Jo=ha, fo=hn+hy, 1<a<n-—L1

The form @, in this basis, goes into

(L.1) () = (¢ +i(¢"C" = (7¢"), (e,
and the matrix of its representation is

0 0 ?
(1.2) 0 I,-1 O

—1 0 0

If <, > denotes the bilinear form asociated to the quadratic form ®, then we
have

(1.3) < (v >=HP)A«Q), C,vev,

where (v) is the matrix n x 1 of the components of v in the basis f,.

Let G C SL(n 4+ 1,C) be the subgroup which leaves ® invariant. We represent
g € G in the basis f, by the matrix (gﬁ), 0 < a,y < n, and its column vector by
g, then

gEGE (Pog)(() =) & ('FAg ="CAC & (< gy,9a >) = A,
then g € (G satisfies the relations, for 0<y<n, 1<a,8<n—1,
(14) < go,gy >==08), <gp,ga>= =05, < gn,gy >=16;, det g=1.
The Lie algebra G of GG is given by
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R S _—
0} i | =
G={ ten.G: (=] : (e3) ol we=0,
6t —ily .
L 77 S 7/ S b lg €

and dim G = n® + 2n.

(a4

5 respect to the usual basis

The canonical form w over G with components w
I3 € G(n+ 1,0), satisfies the relation,

(1.7) wg(v) = Zwﬁx(v)fﬁ veT,G, dwg —|—w;Y /\wg =0.
0

Let @ be the (2n — 1)-dimensional real hyperquadric [5], defined in the complex
projective space P™V by the equation

Q=A{[cJePV, @) =0}

The group G acts on P?V by g¢.[¢] = [¢.¢], and the quadric @ is invariant
by the action of G on P?V. Moreover, (G acts transitively on @, indeed: given

Po = [(L e ,0)] and [C] = [(CO, t ,Cn)] S Q, we have

1 0 0 0
¢
if ¢° # then o 1 00 where s € C,
, withgo= | Do S ,
go-po = [(] ngl 0 1 0 Ims = %Z|g_”|2
s it i 1
0 0 1
if ¢"=0, then g1.po=[C], with g1 =0 —l,_1 0
1 0 0

The isotropy group G° at pg, is G° = {g € G: ¢ = 0,1 < a < n} and its Lie
algebra G° are given by

@Qo 0
0 _ Ly o .
G =qlegt=10 (3 3
0 0 -

The map ¥° : g € G —— g.po € @, defines an isomorphism: G/G° ~ Q.
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In the following we will agree that small Greek indices o run from 1 to n — 1,
the indices aj run from k to n — 1, unless otherwise specified, and we will use the
summation convention.

2. ACTION OF (G ON HIGHER ORDER CONTACT ELEMENTS OF ()

Let €7¢) be the manifold of contact element of order s, and dimension 1 at
q € Q, and C*() the manifold of all contact elements C;Q, with ¢ € Q . For k < s
we consider the canonical projection 7} : C*Q) — C*Q given by Cil— C’ff, with
I' C @ an 1-dimensional submanifold [6, 12, 15, 16].

Denote by ¢*, the canonical immersion ¢* : I' — C*@Q), defined by ¢ € T' — CUT,
and L% 1 C*T1Q — CH(C*Q) defined as C'qs‘HF — C’é;FCSF.

The action G x  — @) induces an action G x C*Q — C*Q given by g.CyI"' =
Cy.49.T. The forms wg which vanish on T.GP, allow us to define a basis {&§} of
T, @ as follows. Given v € Tp,,(Q), let

(2.1) O§(7) = w§ (ve), where veEG, and T.¥l(v) = 4.
The forms w§ are well defined: indeed,
wveg o Totflue =)= o B (e = v) = 0
Tepg(ue) = Terpg(ve) ue —ve € TG~ G» and 0§ (@) = 05 (9),

the dimension of T @ is 2n — 1, then {&§} define a basis of T5,Q, and the action

of the Lie algebra G" on 17,Q is given, In coordinates, as follows.

then

Proposition 2.1. The Lie algebra G° acts on 15, @Q as follows:
(00)eG X Ty Q— &, (&(F)=—dwl|c(l,v.), withveG, T (ve) =7,
and its expression in coordinates is

lwy = Oui + (—0Q+)wg —  ifdwg 1<a,y<n—1,

(2:2) lwy = — 2Rellwl T# o

Proof. Let us express

(2.3) Lwf = (ag + ibg)wg + cwi, ag, bg € R,

and consider a basis of vectors in T, G dual of the basis w{. Applying (2.3) to such
basis, and using (1.7) we obtain the result. O

We observe in (2.2) that the subspace D,, C T,0(Q) defined by &f = 01is invariant
by G, since G° transforms w? in a multiple of itself, and G is connected.

The transitivity of the action of G on @, allow us to define a (2n—2)-dimensional
distribution over @}, as follows

D:peQv+— ({;).(Dy,), where ge G and l;(po)=g.p0o=p.

To study the real curves in @, it is natural to consider two cases: the curves
tangent to the distribution D at all its points, and the curves transversal to D
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at all points. In this paper we consider the first case. We will use the following
theorem about Lie groups.

Theorem 2.1. Let G be a Lie group that acts on a smooth manifold M and G
its Lie algebra. Let x(M) denote the smooth (C* ) vector fields on M, and let F
be the map:

F:G— x(M), {— Fy, withFy(z) = %hzo(exp (t0).x)

then we have:

a) The integral curve y(x) of the field Fy, at the point ® € M, is contained in
the orbit G(z) of .

b) The action of GG on M is transitive if and only if for any x € M, and for any
v € Ty M, there exists { € G such that Fy(x) = v. a

2.1. ACTION OF (G ON 1-ORDER CONTACT ELEMENTS OF ()

In this paragraph we study the action of the group GG on 1-order contact elements
of ), which project on directions transversal to the distribution D.

Let ‘H' be the fiber of the contact elements of order 1 transversal to D, which
project onto pg, 1. e.,
H' = {xX'eCLQ:  GpX £0}
where W | X! denotes the restriction of &% to the 1-dimensional subspace defined
by the contact element X!. Consider on H! the coordinates defined as in [13],
(2.4) Oy =Agwy Ag€el, 1<a<n—1,

and express X! in coordinates as X! = (A}, - ,/\g_l). Denote by C1Q all the
contact elements of order 1, transversal to D.

Proposition 2.2. Let F° : G° — y(H!), F/(X) = %h:o(exp (t0).X) , then
given X = (A},---,A271) we have

n—1
—\ d
F)(X) = (Z O]+ (=03 + £ 4 2Reld)NS — wg) A—6|X + -
=2

0

(2.5) [ DDA+ (0 + £+ 2Re)NG — D, Ag—lma
0

YE

|X‘|‘"'

n—2
—\ 0
(S oy - ) o
y=1 "

Proof. Given £ € GY, let r(t) = exp t£.X, which is expressed in coordinates as
r(t) = (Ag(t), - AT (), where  wilr(t) = A5 (twg (1),
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deriving with respect to ¢ and evaluating at ¢ = 0, we have

(Lws)(X) = %It:oAS(t)wg(X) + A5 ()(Lwg ) (X),

now applying (2.2) we obtain the result. d

Proposition 2.3. The group G acts transitively on C*Q.

Proof. Since the action of G on () is transitive, it is sufficient to prove that the
action of G° on C’;DQ, the contact elements of order 1 transversal to D which
project onto pg, is transitive.

Now given X € C~'10Q, by Proposition 2.2 we can choose ¢4, - ,l,_1 € G°, such
that FZO1 (X), -+, Fy _ (X) generate TxH', then by theorem 2.1. we have that
GY acts transitively on H!. a

Proposition 2.4. Let X! € C’Z}élQ be given by X} = (0,---,0), then
i) the Lie algebra G of the isotropy group G* C GY of X} is given as

Gl={teg" N =...=00_, =0}, ie,
60 0 o
Gl=3Xe=[0 (65 0 |; 3+=0 trl=0y,

0 0 =0

i) dimG! = dimG® — 2n + 2

Proof. By Proposition 2.2., we have

FZO(X(%)IO f=4 E?::f%:zfg_lzo O

Let O! = G.X} be the orbit of the action of G on C11@Q which contains X¢.
Then, the map

Yl G — O givenby l(g)=g.X;

induces a diffeomorphism O ~ G/G!. The forms w§,wf,w?, vanishing on
G', define 4n — 3 linearly independent real forms which can be projected onto
TX1 o', using a similar argument as in (2.1), and the projected forms, denoted by

Wo ,w wo, define a basis of T* o',

Given £ € G! proceeding as in (2.2), we can prove that

(2.6) — >0+ (L - £2)3,
yEa
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2.2 ACTION OF (G ON THE 2-ORDER CONTACT ELEMENTS

Let H? be the fiber of the contact elements of order 2 which project onto X(.
Denote by i : C?Q — C*(C'Q) the canonical immersion and 7} : C'Q — @,
and Té’l : CHC1Q) — C'Q, the canonical projections. Then

(M) ={X*e€C]Q: wiX? =0, 2<a<n-—1},

indeed, given X2 € C’ZQ the image i(X?) is identified with an 1-dimensional
subspace in 7. 1(X2)C' Q Then (7}). (Xg) is identified with a subspace in 7,,Q).

The following can easﬂy be verified, using coordinates

if XV e cHCrQ), exists X2 € C2Q,i(X?) = XM o T(rb)y(X P = ob (XY,
O

Similarly as in (2.4), consider coordinates in H? defined as
= (A}, A2 ), where WO X% = Awr| X2,

Let C2(Q) be the contact elements of order 2, transversal to D, which project onto

clQ.

Proposition 2.5. There are two types of orbits, (’52, 02 by the action of G on

C?Q, defined as

0= G X3 withm(R) = X3 M) =1, (D) =0,
0% = G.X2, with 72(X2) = X}, A(X2) =0, 1<a<n-1.

Proof. Since G° acts transitively on C~'1Q 1t 1s sufficient to prove that there are
two types of orbits by the action of G on HZ.

Let F'': Gl — y(H?) be defined as
d
FHX?) = Ehzo(exp (t0).X?%) |

using coordinates we have F}(X?) =Y B2 -2 AT |xz.
Now, given X? = (XY, A0 _ 1) and £ € g1 let r(t) = exp t£.X? be expressed
in coordinates as r(t) = (AJ(t), -, AY_, (1)), where W2|r(t) = A%(O)wi|r(t),

deriving the last expression with respect to ¢ at 0, and using (2.6) we have,

(2.7) FHX?) = (=) 820 + (—0 + (1 — 2Rel)A], - - -,
a#l
DL A%+ (0 + T — 2Rel))N ).
aZEn—1
Now

i) if A2 # 0, for same «, then we can find 2n — 2 fields ¢, -, f2,_2 € G such
that {lej (X?)} generate Tx2H?, and by Theorem 2.1 we conclude that G? acts

transitively on the contact elements of order 2 with A% # 0, for some . These
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elements can be represented as 0% = G.X¢, with m3(X3) = X}, A(X3) = 1,
\(X2) = 0

i) If A2 =0, for all @ we have the elgment X2, defined by m3(X2) = X} and
A0(X2) = 0. Using (2.7) we have F}/(X?) = 0, for £ € G', then G* = G' and
O% = G is an orbit of the action of G1 on H2. d

Proposition 2.6. The Lie algebra of the element X2 is given by

iA) 0 0 £ 2< g, <n—1
5 0 iAD 0 0
2 _ (= 0 o .
g 0 0 (Eﬁj) 0 bl £a2 +£ﬁ2 —_ 0 b
0 0 0 iAj m_o . Ade®
in the case n > 2;
R 0 0 £
GZ={t=10 0 0 , In the case n=2.
0 0 0

Proof. Using (2.7) we have
FMXDH =0 34+ 0 —Rell =t =...=¢, | =0,
now £} 4+ ¢F = 0 and —£3 4 ¢} — Refd = 0 implies Refd = 0 and £} = 3.
If n = 2, the condition  ¢rf3 = 0 implies £5 = 0. |
For n > 2, using a similar argument as in (2.1), the forms

0 1
w§, wd Rewo,wl tImwy,wy,,,

can be projected onto T's» O? and define a basis of T)”‘EQ(’}Z.
0 0

n
“o

2.3 ACTION OF (G ON THE 3-ORDER CONTACT ELEMENTS

Let H?® = {X? € C3Q : 73(X?) = X?}. We identify H> with its image by
i:C%Q — CHC?Q), and we have that X3 € H? if and only if

WX? =Wl | X?#0, wi|X®=w) |X?=0.
We consider coordinates in H> defined as
(wo —wIX? = (a1 +ib))wp | XP, wi [X° = AL wp ] X°.

Proposition 2.7.  There are no fixed points by the action of G on the contact
elements of order 3, which are projected on the contact elements transversal to D.

Proof. Given ¢ € G? similarly to (23) we can show that
(2.8) Clw) —wi) = Gwh, Lwh, => 00wl + (0] — (3w

QoY

Let F3 :G? — X (H3) be defined as in Theorem 2.1, then using (2.8), we have for
XB:(G%—FZI)LA; Al )

y Mn—1
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FP(X3) :15284;|X3 + (=X +> A %p{i” +

v#2
0
(2.9) S DDA P S (4 e fny DY DY |x3
y#En—1 n-l1

Now, given £ € G? with €9 # 0, we have that F?(X?) # 0, for all X? € H>. Then
there are no contact elements of order 3 such that G> = G3. Moreover if £ € G2

then Eg =0 and dimG3 < G2, for all X3 € H3. O

The following Proposition gives, a real differential invariant of order 3 ~[9, 7, 10],
defined by a transversal section to the orbits of maximal dimension on C3Q).

Proposition 2.8. Ifn = 2 we have a real invariant 73 of order three defined by

(w§ —wl)|X? = 2imw?| X3

Proof. If n = 2 then F3}(X?) = Ega%p(?’. Then the orbits of the action of

G? on H3 are on the coordinate axis a%. A transversal section to these orbits is
given by

P={X3cH al =0}, ie (w)—wi)|X®=2imwi|X3 mecR O

We will denote By, ES, EY2 JO 5 the fields defined by the matrix

ag)

3
g as+1
i . 0
' —i
E(()) = —3i ’ Eg; = i )
0 . 0
1
a B a B n
. 0 1 0 1
o _ ? o _ 0 _
0 0

Proposition 2.9. Let H?={X?ecH?: AL , #0, forsomeas}, andn > 2.
If X3 € H?, then the orbit O® = G.X3 is given by

0% = {X? € H® - b{(X®) = bi(XD); DAL (XP)P =07, p* =D LD
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Proof. By (2.7), F3,(X?) = %b(a, and given ¢ € G®, F? vanishing in the
coordinate -2;. Then, to study the distribution D3 on M3, generated by the fields

T
{F?(X?), €€ G?}, it is enough to consider the components in the coordinates
S5 |x3, 2 <o <n—1. Now for X? = (a} +ibi, A}, -+, AL),

tljwtqﬁw
3]

=

RS

A/Q/-\/-\
w

e S e S
(l

o~ TN S S

X3y =(0, #4X | AL, oo Al i/\a_l_l, cee i/\};, cee i/\rll_l),
Oa 0 ’ Oa aiA})u _iA})H—la T Oa Ty O)a
Oa 0 ) Oa a_Aéa Oa Ty A})u T O)a
X3) =0, 0 , 0, -\, 0 L, AL, o).

[=)=)

=
U

™R

If we consider the identification of the tangent to the fiber with %27~2 and
Cn =1 ~ R®?7~2 given by A = ag+iby — (ag, bg), we have that the vectors defined
by Fgg, Fg;’g’ F;’g and Fgg, are perpendicular to the vector with components
given by X3 moreover, for al, # 0 (respect. b # 0), it is possible to find a
(2n — b) x (2n — 5)-square matrix A, inside the matrix B, defined by Fgg, Fg%,

@2

F;’g and FJ%;” le.,

0 b3 - 0 ... 0 0 0 —ai a4 0 0 0

0 —a} al 0 ... 0 0 0 —b B 0 0 0

0 b —bl 0 ... 0 0 0 ai al 0 0 0
B= . . . .

0 —a»t 0 0 ... @ 0 0 —=b., 0 0 ... b5 0

0 —bpnt 0 0 ... =b} 0 0 at_, 0 0 ... @& 0

with the determinant of A # 0. Indeed, for al # 0 (respectively bl # 0) we
can find a matrix A with det (A) = al((al)?+¢), ¢ > 0. Then, the integral
submanifold of the distribution, generated by the fields which define B through
X3, is given by
n—1 n—1
O ={XPen®: Y PUXHP=p7 bp=bi(XE), P =) PP O
2 2

A transversal section to the orbits of the action of G® on M3 is given by

= { 3 eps. ReA(XE) >0, ImAy(X?) =0 }

AL (X)) =0, al(X3)=0
We will consider coordinates ps and 73 in I given by

(W) —wh)|X? = dmwn|X3 3 € N,

2.10 .
( ) w%|X3 = p3W8|X3, p3 € %a p3 > 0

The section I? defines two real invariants (see [7]) of C*@, and they correspond
with the point where the orbit of X2 meets I3.
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Using (2.7), we have that the Lie algebra G3, corresponding to the element
X3 €13 is defined as

T3,P3
1A%Td, 0 0 —
. 0 X3 asg Bs _
gsz{g:( 0 (032) 0); jﬁauazo_o% }
. trd = 0, c
0 0 A9 v 0

where Idsys denotes the 3 x 3 identity matrix. We have that dim G3=dim G* — 1.

3
T3,P3

on 73 and ps. Then a curve I' C @, transversal to D, with C®T C é’BQ, s a
curve of constant type [7].
In the case n = 3, from the relation trf = 0 we have that G = 0.

An important observation is that the isotropy algebra of X does not depend

2.4 AcCTION OF G ON 4-ORDER CONTACT ELEMENTS

Similarly to paragraph 2.3, we consider an element X7 = Xfaypa, and O3 =

G.X3. The map ¢°:G — 03, +— ¢g. X3 allows us to project the forms

@y om0 0 1.1 ,0 0 2 2
(2.11) WOt Wh,We W — W1, Wo,, Wy, Wy — Wa, Wi,
on Txs O3. Moreover, the real forms

(212) dT3, dpg,

given by the functions 73 and ps3, define a basis of T)*(;,,IB. If C3Q denotes the

contact elements of order 3 transversal to D, which project onto @2, then we have
TxsC?Q = Txs0% & Txs IP,

and we can define a basis of T)*(g, C3Q) extending the forms (2.11), (2.12), as follows

(2.13) w§|Txs > =0, dr3|Txs 0% = 0, dps|TxsO® = 0.

Let H* = {X* € C'Q: 73(X*) = X3}, defined by

wit| Xt = 0o (wg —wh)|Xt = drs wp|Xt
AXT = wplxt | AIXT =y wnlxt
wh |X* = 0o wh | Xt =0

We introduce coordinates in H* as follows

WX = QwplXT, Wh—wdIXP = ibduplxt
WEIXT = A wplxt
dnlXt = neplxt . dplXt = pleplxt

If G3 denotes the Lie algebra of the isotropy group of Xg, then similarly to
(2.8), we can prove
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L(w) —w3) = 0 , LW =0
Lwy, = =, (W — (B — ),
£.drs = 0 , Edp3 = 0

To prove L.drs = f.dps = 0, we use the fact that the isotropy algebra G2 is
independent of ps, and 3.

Proceeding as in Proposition 2.8, we can prove that a transversal section to the
orbits of the action of G on H?*, is given by
P ={X*eH*: ReA3(X*) >0, ImA3(X*) =0, AZ,=0,}

so we consider coordinates in I* defined as

@-wdIX' = imeX L WX = gl
(.d3|X4 = p4w8|X4 ’
drXT = RGRIX L dpbXt = pheplXt.

. . . 1 19 9
The invariants fi4, 74, ps correspond to the coordinates aq, b3, ReAs.

The Lie algebra of the isotropy group of order 4 is given by:
GH=G3  ifAL (XY =0, forall as,

iAldss O 0 .
Gr=1{ 1= 0 () 0 ) G tle =0

— 0

bl

e 12 4
if A7, (X*) # 0 for some a3, and X§ = X73p374p4u473p3

Also we observe here that the isotropy algebra of X¢ does not depend on the
invariants 73, p3, T4, pa, Ha, T3, p5-
In the case n = 4, using the relation trf = 0, we have that G* = 0.

2.5 AcTION OF G ON THE k-ORDER CONTACT ELEMENTS

Similarly to paragraph 2.4, and using induction we can construct for & > 5, a
transversal section I* to the orbits of maximal dimension, as follows

(wg—wk 2)|Xk = inwl|XF wk 1|Xk =  ppwi|XF ,
drp_1| X* = Tkl 1w8|Xk , dpk 1|Xk = p,lc_lmek ,
s (o TP RN o PO SR P
dus°|lXF = k wplxt
xS g b = gl

The Lie algebra, of the isotropy group of a k-order contact element is given by
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Gh =gt if A2 =0, for all ag_o, ap_q,
iAldgy, 0 0 s
Gh=1{ (= 0 @y 0 )y fan Hlasa =000 e vk e

3. EQUIVALENCE OF REGULAR CURVES IN Q

In this paragraph we give the structure equations for a regular curve in ¢, and
necessary and sufficient conditions for the equivalence of two regular curves.

Let T be a curve in @) transversal to the distribution D at all its points, viewed as
a connected 1-dimensional submanifold. Given p € I', denote by C*T' the contact

P
element of order k& of I' at p, and GOCI,;F the isotropy group by the induced action

of G on C*Q. We say that p is a regular point if:
For n = 2, dimGocg,F =0,
Forn >3, dimG%.I' =0,

If p is regular and & is the smallest order of contact with GockF =0, we say that
P

p 1s a regular point of order k.

Now if p is a regular point of order % then all the points in a neighborhood of
p are regulars of order k. We can see this, using the following results about Lie
Groups [1].

Proposition 3.1. Let G be a Lie group acting on a smooth manifold M. For
p € M, let G, be the isotropy group of p and d(p) the dimension of GG,. Then,
given pg € M, there exists a neighborhood V' of py in M, such that d(p) < d(po)
forallpeV.

We will say that a curve I' C @ 1s regular if all its points are regular.

Let I* be the transversal section defined in (2.14) and A = G.I*. Then we have
the following,

Theorem 3.1. Let I' C Q) be a curve, and p € I'. Then T is regular of order k
in p if and only ifC'Z’fF €A

Proof. By definition of I* we have: if X§ € C*Q, and X} ¢ A then dimGS, <
dimGg(g, for all X* € A. In consequence, if C’Z’fF ¢ A then dimGOCkF >0 and pis
no regular. The reciprocal is immediate by the definition of A. ’ a
Theorem 3.2.  Let h : I*¥ x G — A be defined as h(X,g) = g.X. Then h has

maximal rank.

Proof. The manifold 7% is transversal to the orbits of the action of G on A.
Then, if X € I* we have,

Tx A= Txfk @ TxOx, where Ox = G. X,
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now given g € GG

Tl (Tx A) = Tl (Tx I*) & Tl,(Tx Ox) = Ty xgI* & T, x Ox,

moreover

T,xI"NT, xOx = Tl,(TxI* NTxOx) = 0,
then dim(7T'l;(Tx A)) = dimA and A has maximal rank. a

Corollary 3.1. Given X € A there exists Xy € I*, go € G and neighborhoods
UCA UcCI¥, BCGofX, Xy and gy respectively such that

hluxs : U x B— U is a diffeomorphism,

then there exist smooth sections n:U — U C I*, ¢:U — B C G, such that

(3.1 (hluxs)™" = (n,0).

Remarks.

1. IfI': J € R — Q is a regular curve of order k, then C*T' C A, and given
X = C*T the section ¢ allows us to define an immersion & = o o C*T', of the curve
['in G. Then we can transport the invariants forms wg defined on G to the curve
I, as follows

(Zzg = &*wg.
2. Given X € I* the forms w3, which vanish on G*, were projected onto Ty O*
using the map ¢* : g € G — ¢. X* € OF.
For v € Tx»Ox» we have defined @j(v) = wg(V), where V € T.G and
Ty (V) = v. The forms wg can be extended similarly to (2.13), to the space
Txr (G.I%).

3. Let I' € @ be a regular curve of order &, and p € ' a regular point of

order k then for ¢ € I' there are ¢ € G, X* € I*, such that C’é“F = g.X*. The
e

left invariants forms &% which vanish on G*, with the exception of %,

defined on IV(0) € T,Q as

were

SH(0) = 55 (le=aC*T(0).

We can transport the form I'mw§ to the curve ') using the section ¢. Then we

define
(3.2) U*Imwg(F'(t)) =it (1) wy (' (t)), 7 (t) € R.

It is clear, by the definition of I* that
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forn =2
@3(r'0) # 0, @(I'(0) = G5I(0)
(3.3) @(r'(0)) = 0,  @I'0) = pawg(r'(0)
Rewg(I'(0)) = 0 , Imwg(I'(0)) = 7(I"(0))
for n > 2
wg(r'(0)) # 0 , &{(I(0) = apIo)
(3.4) O, (I"(0)) = 0, Reay(I"(0)) = 0 :
@ (I'(0)) = 0, &p(I'(0)) = pa@g(r'(0))

B
(@8 — @0 )(I'(0)) = i, WB(T(0), @27 75(1"(0) = pa,_,w] (I'(0))

Where po;, pla;, Ta;, 3 < J < n—1, are the invariants of the orbits defined in
the section 2.5.

3.1 THE STRUCTURE EQUATIONS
Let
€a :G_>Cn+1a given by eoz(gOa"' agn) = Ga,

where g = (gg) =(go, ", gn), then we have dey = nge@.

IfT:J — @ is a regular curve transversal to D, we say that [' i1s parametrized
by arc length if w2 (T'(t)) = 1, for t € J. A parametrization of T' by arc length is
given by

s(t) = /t wi (TV(¢))dt.

Given a regular curve parametrized by arc length | from (3.3) we have,

deg = 1i7adseg +  dses
for n=2, de;y = dseg —2itadse;
des = jpadey — idsey Hitsdses.

For n > 3 the structure equations are given by the matrix,

iT,ds ds piads
t63ds  psds
—psds idads
—pads
pn—1ds
16, ds
—pnds ieds
ds iT,ds

where Ty, fto, Po, are invariants of the orbits and

Im&)
Th =

n
Tn O = Th — Ta, €= E T — NTn.
0 a=3
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Remark. The form ds coincides with the Levi form for Cauchy-Riemann struc-
tures, [5]. In D,, we have a complex structure defined by the operator

I:v €Dy, —1iv e Dy,

and the Levi form defined by  (a(v,v))? = %dw(}(v, Iv). Using (1.7) we have,

dwl = =2 Zﬂ(v)w&(v), then (a(v,v))* = Zﬂ(v)“’g (v).

The following Theorem about Lie groups, and the structure equations defined
above, allow us to prove the following Theorem of equivalence of curves.

" a basis of

Theorem 3.3. Let G be a n-dimensional Lie group and w', -, w
right invariants forms of G. Let 51,52 € G be two m-dimensional connected
submanifolds, with n < m. Then, there exists an element ¢ € G such that
R,(S1) = So if and only if there exists a diffeomorphism ¢ : S1 — S3, which
preserves the formsw?, ¢*(w?]s1) = w?|Ss.

Proof. [7].

Theorem 3.4. Let T',T? C @ be two regular curves of order k, transverses
to D, parametrized by length arc. Let py € T'', po € T'?. Then there exists an
element g € G such that locally, [,(I'') = I'?, g.p1 = p» if and only if there exists
a local diffeomorphism

Il
Qv

7

Ty — Ty, such that y

P

QR -
QR
=N

ot o = pig,
o oY =v

joll V)

T
Pao>

where 77 pl, ol vl § = 1,2, are the invariants asociated to 17,

Proof. Let 6',57 be the local sections of I'!, T'? respectively in G, defined
by the local diffeomorphism given in (3.1). These sections define two connected
submanifolds T'*, T2 € G, and T, T2 are locally equivalent if and only if ', T'2 are
locally equivalent, by the following commutative diagram,

1

2 ricg oo 2L ¢

b I

222 o2 ocrg G

Using Theorem 3.3, we have that T* = 6l 0¥ 04!, and T2 = 620 i¥ 042, are
equivalents if and only if there exists a local diffeomorphism  which preserves
the forms w®. Since the curves are parametrized by arc length, we have using
the structure equations that the forms are preserved if and only if the invariants
o, pl vl j=1,2, are preserved. (I



HIGHER ORDER CONTACT OF REAL CURVES 73

REFERENCES

[1] Bredon, G.E., Introduction to Compact Transformations groups, Academic. Press, New
York (1972).
[2] Cartan, E., Sur la géoméirie pseudo-conforme des hypersurfaces de deuz variables com-
plexzes, I.II, Ouvres 11, 2, 1231-1304; ibid II1,2, 1217-1238.
[3] Cartan, E., Théoric des groupes finis el la géométrie différenticlle trattées par la Methode
du repére mobile, Gauthier-Villars, Paris, (1937).
[4] Chern, S. S., Moser, J. K., Real hypersurfaces 1n compler manifolds, Acta mathematica
133, (1975), 219-271.
[5] Chern, S. S., Cowen, J. M., Frenet frames along holomorphic curves, Topics in Differential
Geometry, 1972-1973, pp. 191-203. Dekker, New York, 1974.
[6] Ehresmann, C., Les prolongements d’un space fibré diferéntiable, C.R. Acad. Sci. Paris, 240
(1955), 1755-1757.
[7] Green,M. L., The mowving frame, Differential invariants and rigity theorems for curves in
homogeneous spaces, Duke Math. Journal, Vol 45, No.4(1978), 735-779.
[8] Griffiths, P., On Cartan’s method of Lie groups and moving frames as applied to existence
and uniqueness questions in differential geometry, Duke Math. J. 41(1974), 775-814.
[9] Hermann, R., Equivalence invariants for submanifolds of Homogeneous Spaces, Math. An-
nalen 158, 284-289 (1965).
[10] Hermann, R., Ezistence in the large of parallelism homomorphisms, Trans. Am. Math. Soc.
108, 170-183 (1963).
[11] Jensen, G. R., Higher Order Contact of Submanifolds of Homogeneous Spaces, Lectures
notes in Math. Vol. 610, Springer-Verlag, New York (1977).
[12] Jensen, G.R., Deformation of submanifolds of homogeneous spaces, J. of Diff. Geometry,
16(1981), 213-246.
[13] Kolaf, I., Canonical forms on the prolongations of principle fibre bundles, Rev. Roum.
Math. Pures et Appl., Bucarest, Tome XVI, No.7, (1971), 1091-1106.
[14] Rodrigues, A. M., Contact and equivalence of submanifolds of homogeneous spaces, Aspects
of Math. and its Applications. Elsevier Science Publishers B.V. (1986).
[15] Villarroel, Y., Equivalencia de curvas, Acta Cientifica Venezolana. Vol. 37, No. 6, p. 625-631,
(1987).
[16] Villarroel, Y., Teoria de comtacto y Referencial mdwil, Public. Universidad Central de
Venezuela. Dpto. de Matematica. 1991.

Y. VILLARROEL

DEPARTAMENTO DE MATEMATICA. FACULTAD DE CIENCIAS
UNIVERSIDAD CENTRAL DE VENEZUELA

Caracas, VENEZUELA



		webmaster@dml.cz
	2012-05-10T11:33:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




