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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 57 { 73HIGHER ORDER CONTACT OF REAL CURVESIN A REAL HYPERQUADRICY. VillarroelAbstract. Let � be an hermitianquadratic form, of maximal rank and index(n; 1), de�ned over a complex (n + 1) vectorial space V . Consider the realhyperquadric de�ned in the complex projective space PnV byQ = f[& ] 2 PnV; �(&) = 0g;let G be the subgroup of the special linear group which leavesQ invariant andD the (2n�2) distribution de�ned by the Cauchy Riemann structure inducedover Q. We study the real regular curves of constant type in Q, transversalto D, �nding a complete system of analytic invariants for two curves to belocally equivalent under transformations of G.The real hypersurfaces of real codimension one are the boundaries of domainsin a complex manifold. Among the non-degenerate real hypersurfaces in Cn+1the simplest and most important are the real hyperquadrics. S. Chern and J.Moser show how the geometry of a general non-degenerate real hypersurface canbe considered as a generalization of a real hyperquadric [4].Here we consider an hermitian quadratic form �, of maximal rank, and index(n; 1), de�ned over a complex (n+1)-vectorial space V , and Q the real hyperqua-dric de�ned in the complex projective space PnV by the equationQ = f[�] 2 PnV; �(�) = 0g:The concept of Frenet frames for holomorphic curves in complex projectivespaces played an important role in the classical theory of the equidistributionof these curves. In [5] it is investigated under what conditions on a Hermitianmanifold every holomorphic curve in the manifold has a Frenet frame.The purpose of the present article is to study, the real curves of constant typein the hyperquadric Q, �nding a complete system of analytic invariants for two1991 Mathematics Subject Classi�cation : Primary 53C15, Secondary 53B25.Key words and phrases: geometric structures on manifolds, local submanifolds, contact the-ory, actions of groups.Supported by C.D.C.H. Universidad Central de Venezuela.Received December 1, 1995.



58 Y. VILLARROELcurves to be locally equivalent under transformations of the subgroup G, of thespecial linear group which leave the hyperquadric Q invariant. Moreover we �ndthe Frenet frames for these curves.This problem is an special case of the equivalence of submanifolds in homoge-neous spaces, which has been extensively studied by E. Cartan [2,3], G. Jensen[11], M. Green [7], P. Gri�ths [8] and A. Rodrigues [14], among others. Usingcontact theory and the action of the group on each contact manifold of order k, atransversal section to the orbits of maximal dimension, can be naturally obtained.1. The real projective hyperquadricLet � be an hermitian quadratic form of maximal rank, and index (n; 1), de�nedover a complex (n + 1)-vector space V , and fho; � � � ; hng a base of V such thatthe expression of � is given as(1:1) �(�) = �(�0; � � � ; �n) = (�0)2 + � � �+ (�n�1)2 � (�n)2;we can obtain this basis, reducing � to its normal form. Consider in V the basisf� de�ned byf0 = i(hn � ho); f� = h�; fn = hn + h0; 1 � � � n� 1:The form �, in this basis, goes into(1:10) �(�) = ���� + i(�n�0 � �n�0); � 2 V;and the matrix of its representation is(1:2) 0@ 0 0 i0 In�1 0�i 0 01A :If <;> denotes the bilinear form asociated to the quadratic form �, then wehave(1:3) < �; � >= t(�)A(�); �; � 2 V;where (�) is the matrix n� 1 of the components of � in the basis f�:Let G � SL(n + 1; C) be the subgroup which leaves � invariant. We representg 2 G in the basis f� by the matrix (g�
 ), 0 � �; 
 � n, and its column vector byg
 , theng 2 G, (� � g)(�) = �(�) , t�tgAg� = t�A� , (< g
 ; g� >) = A;then g 2 G satis�es the relations, for 0 � 
 � n; 1 � �; � � n� 1;(1:4) < g0; g
 >= ��
n; < g�; g� >= ���� ; < gn; g
 >= i�
0 ; det g = 1:The Lie algebra G of G is given by



HIGHER ORDER CONTACT OF REAL CURVES 59(1:6)G = 8>>>>>><>>>>>>: ` 2 TeG : ` = 0BBBBBB@ `00 `01 : : : `0n�1 `0n`10 �i`01... (`�� ) ...`n�10 �i`0n�1`n0 i`1O : : : i`0n�1 �`00 1CCCCCCA ; `�� + `�� = 0;tr` = 0;`0n; `n0 2 < 9>>>>>>=>>>>>>; ;and dim G = n2 + 2n.The canonical form ! over G with components !�
 respect to the usual basisI�
 2 G(n+ 1; C), satis�es the relation,(1:7) !x(v) = nX0 !�
x(v)I�
 v 2 TxG; d!�� + !�
 ^ !
� = 0:Let Q be the (2n�1)-dimensional real hyperquadric [5], de�ned in the complexprojective space PnV by the equationQ = f[�] 2 PnV; �(�) = 0g:The group G acts on PnV by g:[�] = [g:�], and the quadric Q is invariantby the action of G on PnV . Moreover, G acts transitively on Q, indeed: givenp0 = [(1; � � � ; 0)] and [�] = [(�0; � � � ; �n)] 2 Q, we haveif �0 6= theng0:p0 = [�] ; with g0 = 0BBBBBBB@ 1 0 : : : 0 0�1�0 1 : : : 0 0... ... : : : ... ...�n�1�0 0 : : : 1 0s i �1�0 : : : i �n�1�0 11CCCCCCCA ; where s 2 C;Ims = 12P j ���0 j2 ;if �0 = 0; then g1:p0 = [�]; with g1 = 0@0 0 10 �In�1 01 0 01A :The isotropy group G0 at p0, is G0 = fg 2 G : g�0 = 0; 1 � � � ng and its Liealgebra G0 are given byG0 = 8><>:` 2 G : ` = 0B@`00 : : : `0n0 (`�� ) ...0 0 �`001CA9>=>; :The map  0 : g 2 G 7�! g:p0 2 Q, de�nes an isomorphism: G=Go ' Q.



60 Y. VILLARROELIn the following we will agree that small Greek indices � run from 1 to n � 1,the indices �k run from k to n� 1, unless otherwise speci�ed, and we will use thesummation convention.2. Action of G on higher order contact elements of QLet CsqQ be the manifold of contact element of order s, and dimension 1 atq 2 Q, and CsQ the manifold of all contact elements CsqQ, with q 2 Q . For k � swe consider the canonical projection �sk : CsQ! CkQ given by Csq� 7! Ckq �, with� � Q an 1-dimensional submanifold [6, 12, 15, 16].Denote by is, the canonical immersion is : � �! CsQ, de�ned by q 2 � 7! Csq�;and i1;s : Cs+1Q! C1(CsQ) de�ned as Cs+1q � 7! C1Csq�Cs�:The action G� Q! Q induces an action G� CsQ! CsQ given by g:Csq� =Csg:qg:�: The forms !�0 which vanish on TeG0, allow us to de�ne a basis f~!�0 g ofT �p0Q as follows. Given ~v 2 Tp0Q, let(2:1) ~!�0 (~v) = !�0 e(ve); where v 2 G; and Te 0e(v) = ~v:The forms ~!�0 are well de�ned: indeed,u; v 2 GTe 0e(ue) = Te 0e(ve) , Te 0e(ue � ve) = oue � ve 2 TeG0 ' G0; then !�0 e(ue � ve) = oand ~!�0 (~u) = ~!�0 (~v);the dimension of T �p0Q is 2n� 1, then f~!�0 g de�ne a basis of T �p0Q, and the actionof the Lie algebra G0 on T �p0Q is given, in coordinates, as follows.Proposition 2.1. The Lie algebra G0 acts on T �p0Q as follows:(`; ~!) 2 G0 � T �p0Q 7! `:~!; `:~!(~v) = �d!je(`e; ve); with v 2 G; Te 0(ve) = ~v;and its expression in coordinates is(2:2) `:!�0 = `
�!
0 + (�`00 + `��)!�0 � i`0�!n0`:!n0 = � 2Re`0n!n0 : 1 � �; 
 � n � 1;
 6= �Proof. Let us express(2:3) `:!�0 = (a�0 + ib�0 )!�0 + c!n0 ; a�0 ; b�0 2 <;and consider a basis of vectors in TeG dual of the basis !�0 . Applying (2.3) to suchbasis, and using (1.7) we obtain the result. �We observe in (2.2) that the subspace Dp0 � Tp0Q de�ned by ~!n0 = 0 is invariantby G0, since G0 transforms !n0 in a multiple of itself, and G0 is connected.The transitivity of the action of G on Q, allow us to de�ne a (2n�2)-dimensionaldistribution over Q, as followsD : p 2 Q 7�! (lg)�(Dp0 ); where g 2 G and lg(p0) = g:p0 = p:To study the real curves in Q, it is natural to consider two cases: the curvestangent to the distribution D at all its points, and the curves transversal to D



HIGHER ORDER CONTACT OF REAL CURVES 61at all points. In this paper we consider the �rst case. We will use the followingtheorem about Lie groups.Theorem 2.1. Let G be a Lie group that acts on a smooth manifoldM and Gits Lie algebra. Let �(M ) denote the smooth (C1) vector �elds on M , and let Fbe the map:F : G �! �(M ); ` 7�! F`; withF`(x) = ddt jt=o(exp (t`):x) ;then we have:a) The integral curve y(x) of the �eld F`, at the point x 2 M , is contained inthe orbit G(x) of x.b) The action of G on M is transitive if and only if for any x 2M , and for anyv 2 TxM , there exists ` 2 G such that F`(x) = v. �2.1. Action of G on 1-order contact elements of QIn this paragraph we study the action of the group G on 1-order contact elementsof Q, which project on directions transversal to the distribution D.Let H1 be the �ber of the contact elements of order 1 transversal to D, whichproject onto p0, i. e., H1 = fX1 2 C1p0Q : ~!n0 jX1 6= 0g;where ~wn0 jX1 denotes the restriction of ~!n0 to the 1-dimensional subspace de�nedby the contact element X1. Consider on H1 the coordinates de�ned as in [13],(2:4) ~!�0 = ��0 ~!n0 ��0 2 C; 1 � � � n� 1;and express X1 in coordinates as X1 = (�10; � � � ; �n�10 ): Denote by ~C1Q all thecontact elements of order 1, transversal to D.Proposition 2.2. Let F 0 : G0 ! �(H1); F`(X) = ddt jt=o(exp (t`):X) ; thengiven X = (�10; � � � ; �n�10 ) we haveF 0̀(X) = n�1X
=2 `
1�
0 + (�`00 + `11 + 2Re`00)�10 � i`01! @�10 jX + � � �+0@X
 6=� `
��
0 + (�`00 + `�� + 2Re`00)��0 � i`0�1A �n�10 @@��0 jX + � � �(2.5) + n�2X
=1 `
n�1�
0 + (�`00 + `n�1n�1 + 2Re`00)� i`0n�1! @�1n�1 jX :Proof. Given ` 2 G0, let r(t) = exp t`:X, which is expressed in coordinates asr(t) = (�10(t); � � � ; �n�10 (t)); where !�0 jr(t) = ��0 (t)!n0 jr(t);



62 Y. VILLARROELderiving with respect to t and evaluating at t = 0, we have(`:!�0 )(X) = ddt jt=0��0 (t)!n0 (X) + ��0 (t)(`:!n0 )(X);now applying (2.2) we obtain the result. �Proposition 2.3. The group G acts transitively on ~C1Q.Proof. Since the action of G on Q is transitive, it is su�cient to prove that theaction of G0 on ~C1p0Q, the contact elements of order 1 transversal to D whichproject onto p0, is transitive.Now given X 2 ~C1p0Q, by Proposition 2.2 we can choose `1; � � � ; `n�1 2 G0, suchthat F 0̀1(X), � � � , F 0̀n�1(X) generate TXH1, then by theorem 2.1. we have thatG0 acts transitively on H1. �Proposition 2.4. Let X10 2 C1;1p0 Q be given by X10 = (0; � � � ; 0), theni) the Lie algebra G1 of the isotropy group G1 � G0 of X10 is given asG1 = f` 2 G0 : `01 = � � � = `0n�1 = 0g; i:e:;G1 = 8<:` = 0@`00 0 `0n0 (`�� ) 00 0 �`001A ; `�� + `�� = 0; tr` = 09=; ;ii) dimG1 = dimG0 � 2n+ 2Proof. By Proposition 2.2., we haveF 0̀(X10 ) = 0 , `01 = � � � = `0� = � � � = `0n�1 = 0: �Let O1 = G:X10 be the orbit of the action of G on C1;1Q which contains X10 .Then, the map  1 : G!O1; given by  1(g) = g:X10induces a di�eomorphism O1 ' G=G1. The forms !�0 ; !n0 ; !0�, vanishing onG1, de�ne 4n � 3 linearly independent real forms which can be projected ontoTX10O1, using a similar argument as in (2.1), and the projected forms, denoted by~!�0 ; ~!0�; ~!n0 ; de�ne a basis of T �X10O1.Given ` 2 G1 proceeding as in (2.2), we can prove that(2:6) `:~!0� = �X
 6=� `
�~!0� + (`0� � `��)~!0�;



HIGHER ORDER CONTACT OF REAL CURVES 632.2 Action of G on the 2-order contact elementsLet H2 be the �ber of the contact elements of order 2 which project onto X10 .Denote by i : C2Q ! C1(C1Q) the canonical immersion and �10 : C1Q ! Q,and �1;10 : C1(C1Q)! C1Q; the canonical projections. Theni(H2) = fX2 2 C2p0Q : ~!�0 jX2 = 0; 2 � � � n� 1g;indeed, given X2p 2 C2pQ the image i(X2p ) is identi�ed with an 1-dimensionalsubspace in T�1;10 (X2p )C1Q. Then (�10)�i(X2p ) is identi�ed with a subspace in TpQ.The following can easily be veri�ed, using coordinatesif X1;1 2 C1(C1Q); exists X2 2 C2Q; i(X2) = X1;1 , T (�10)(X1;1) = �1;10 (X1;1):�Similarly as in (2.4), consider coordinates in H2 de�ned asX2 = (�01; � � � ; �0n�1); where ~!0�jX2 = �0� ~!n0 jX2:Let ~C2Q be the contact elements of order 2, transversal to D, which project onto~C1Q.Proposition 2.5. There are two types of orbits, ~O2, Ô2 by the action of G on~C2Q, de�ned as~O2 = G: ~X20 ; with �20( ~X20 ) = X10 , �01( ~X20 ) = 1, �0�(X20 ) = 0,Ô2 = G:X̂20 ; with �20(X̂20 ) = X10 , �0�(X̂20 ) = 0, 1 � � � n� 1.Proof. Since G0 acts transitively on ~C1Q it is su�cient to prove that there aretwo types of orbits by the action of G1 on H2.Let F 1 : G1 ! �(H2) be de�ned asF 1̀(X2) = ddt jt=o(exp (t`):X2) ;using coordinates we have F 1̀(X2) =PB0� @@�0� jX2 :Now, given X2 = (�01; � � � ; �0n�1), and ` 2 G1, let r(t) = exp t`:X2 be expressedin coordinates as r(t) = (�01(t); � � � ; �0n�1(t)); where !0�jr(t) = �0�(t)!n0 jr(t);deriving the last expression with respect to t at 0, and using (2.6) we have,F 1̀(X2) = (�X� 6=1 `�1�0� + (�`00 + `11 � 2Re`00)�01; � � � ;(2.7) � X� 6=n�1 `�n�1�0� + (�`00 + `n�1n�1 � 2Re`00)�0n�1):Nowi) if �0� 6= 0, for same �, then we can �nd 2n� 2 �elds `1; � � � ; `2n�2 2 G1 suchthat fF 1̀j (X2)g generate TX2H2, and by Theorem 2.1 we conclude that G2 actstransitively on the contact elements of order 2 with �0� 6= 0, for some �. These



64 Y. VILLARROELelements can be represented as ~O2 = G: ~X20 ; with �20( ~X20 ) = X10 , �01( ~X20 ) = 1,�0�( ~X20 ) = 0.ii) If �0� = 0, for all � we have the element X̂20 ; de�ned by �20(X̂20 ) = X10 and�0�(X̂20 ) = 0. Using (2.7) we have F 1̀(X̂2) = 0, for ` 2 G1, then G2 = G1 andÔ2 = G1 is an orbit of the action of G1 on H2. �Proposition 2.6. The Lie algebra of the element ~X20 is given by~G2 =8>><>>: ` = 0BB@iA00 0 0 `000 iA00 0 00 0 (`�2�2 ) 00 0 0 iA001CCA ; 2 � �2; �2 � n� 1`�2�2 + `�2�2 = 0tr` = 0 ; A00 2 < 9>>=>>; ;in the case n > 2;~G2 =8<:` = 0@0 0 `0n0 0 00 0 01A9=; ; in the case n=2:Proof. Using (2.7) we haveF 1̀( ~X20 ) = 0,�`00 + `11 �Re`00 = `12 = � � � = `1n�1 = 0;now `11 + `11 = 0 and �`00 + `11 �Re`00 = 0 implies Re`00 = 0 and `11 = `00.If n = 2, the condition tr`00 = 0 implies `00 = 0. �For n > 2, using a similar argument as in (2.1), the forms!�0 ; !0�; Re!00; !11 � iIm!00 ; !1�2; !n0 ,can be projected onto T ~X20 ~O2 and de�ne a basis of T �~X20 ~O2.2.3 Action of G on the 3-order contact elementsLet H3 = fX3 2 C3Q : �32(X3) = ~X20g. We identify H3 with its image byi : C3Q! C1(C2Q), and we have that X3 2 H3 if and only if!01jX3 = !n0 jX3 6= 0; !�0 jX3 = !0�2 jX3 = 0:We consider coordinates in H3 de�ned as(!00 � !11)jX3 = (a11 + ib11)!n0 jX3; !1�2 jX3 = �1�2!n0 jX3:Proposition 2.7. There are no �xed points by the action of G on the contactelements of order 3, which are projected on the contact elements transversal to D.Proof. Given ` 2 G2 similarly to (2.3), we can show that(2:8) `:(!00 � !11) = `0n!n0 ; `:!1�2 =X `
�2!1
 + (`11 � `��)!1�:Let F3 : G2 ! X (H3) be de�ned as in Theorem 2.1, then using (2.8), we have forX3 = (a11 + ib11; �12; � � � ; �1n�1)



HIGHER ORDER CONTACT OF REAL CURVES 65F 3̀(X3) =`0n @@a11 jX3 +0@(`11 � `22)�12 +X
 6=2 `
2�1
1A @@�12 jX3 + � � �+0@ X
 6=n�1 `
n�1�1
 + (`11 � `n�1n�1)�1n�11A @@�1n�1 jX3 :(2.9)Now, given ` 2 G2 with `0n 6= 0, we have that F 3̀(X3) 6= 0, for all X3 2 H3. Thenthere are no contact elements of order 3 such that G2 = G3. Moreover if ` 2 G3then `03 = 0 and dimG3 < G2, for all X3 2 H3. �The following Proposition gives, a real di�erential invariant of order 3 [9, 7, 10],de�ned by a transversal section to the orbits of maximal dimension on ~C3Q.Proposition 2.8. If n = 2 we have a real invariant �3 of order three de�ned by(!00 � !11)jX3 = 2i�3!20jX3:Proof. If n = 2 then F 3̀( ~X3) = `02 @@a11 jX3. Then the orbits of the action ofG2 on H3 are on the coordinate axis a11. A transversal section to these orbits isgiven byI3 = fX3 2 H3 : a11 = 0g; i:e: (!00 � !11)jX3 = 2i�3!20jX3; �3 2 <: �We will denote E00 ; E��; E�2�2 ; J0n; J�� the �elds de�ned by the matrixE00 = 0BBBB@ 3i i �3i 0 i1CCCCA; E�2�2 = 0BB@ �2 �2+10 �i i 01CCA;E�� = 0BB@ � � 0ii0 1CCA; J�� = 0BB@ � � 01�10 1CCA; J0n = 0@ n100 1A :Proposition 2.9. Let ~H3 = fX3 2 H3 : �1�2 6= 0; for some �2g, and n > 2.If X3o 2 ~H3, then the orbit ~O3 = G:X30 is given by~O3 = fX3 2 ~H3 : b11(X3) = b11(X30 ); X j�1�2(X3)j2 = �2; �2 =X j�1�2(X30 )j2g:



66 Y. VILLARROELProof. By (2.7), F 3J0n (X3) = @@a11 jX3 , and given ` 2 G3, F 3̀ vanishing in thecoordinate @@b11 . Then, to study the distribution D3 on H3, generated by the �eldsfF 3̀(X3); ` 2 G3g, it is enough to consider the components in the coordinates@@�1� jX3 , 2 � � � n� 1. Now for X3 = (a11 + ib11; �12; � � � ; �1n);F 3E00 (X3) = (0; i4�12 ; �13; � � � ; i�1�; i�1�+1; � � � ; i�1� ; � � � ; i�1n�1);F 3E�� (X3) = (0; 0 ; 0; � � � ; i�1�; �i�1�+1; � � � ; 0; � � � ; 0);F 3J�� (X3) = (0; 0 ; 0; � � � ;��1�; 0; � � � ; �1�; � � � ; 0);F 3E�� (X3) = (0; 0 ; 0; � � � ; i�1�; 0 ; � � � ; i�1�; � � � ; 0):If we consider the identi�cation of the tangent to the �ber with <2n�2 andCn�1 ' <2n�2 given by ��� = a��+ib�� ! (a�� ; b��), we have that the vectors de�nedby F 3E00 , F 3E�2�2 , F 3J�� and F 3E�� , are perpendicular to the vector with componentsgiven by X3, moreover, for a1� 6= 0 (respect. b1� 6= 0), it is possible to �nd a(2n� 5) � (2n � 5)-square matrix A, inside the matrix B, de�ned by F 3E00 , F 3E�2�2 ,F 3J�� and F 3E�� , i.e.,B = 0BBBBBBBB@ 0 b12 �b13 0 : : : 0 0 0 �a12 a13 0 : : : 0 00 �a13 a12 0 : : : 0 0 0 �b13 b12 0 : : : 0 00 �b13 �b12 0 : : : 0 0 0 a13 a12 0 : : : 0 0: : : : : : : : : : : : : : : : :: : : : : : : : : : : : : : : : :0 �an�1 0 0 : : : a12 0 0 �b1n�1 0 0 : : : b12 00 �bn�1 0 0 : : : �b12 0 0 a1n�1 0 0 : : : a12 0 1CCCCCCCCAwith the determinant of A 6= 0. Indeed, for a1� 6= 0 (respectively b1� 6= 0) wecan �nd a matrix A with det (A) = a1�((a1�)2 + c); c � 0. Then, the integralsubmanifold of the distribution, generated by the �elds which de�ne B throughX30 , is given byO3 = fX3 2 H3 : n�1X2 j�1�(X3)j2 = �2; b11 = b11(X30 ); �2 = n�1X2 j�1�(X30 )j2: �A transversal section to the orbits of the action of G3 on H30 is given byI30 = � X3 2 H3 : Re�12(X30 ) > 0; Im�12(X3) = 0�1�3(X3) = 0; a11(X3) = 0 � :We will consider coordinates �3 and �3 in I30 given by(2:10) (!00 � !11)jX3 = i�3!njX3 �3 2 <;!12jX3 = �3!n0 jX3; �3 2 <; �3 > 0:The section I3 de�nes two real invariants (see [7]) of C3Q, and they correspondwith the point where the orbit of X3 meets I3.



HIGHER ORDER CONTACT OF REAL CURVES 67Using (2.7), we have that the Lie algebra ~G3, corresponding to the elementX3�3;�3 2 I3, is de�ned as~G3 = ( ` =  iA00Id3�3 0 00 (`�3�3 ) 00 0 iA00! ; `�3�3 + `�3�3 = 0tr` = 0; A00 2 < ) ;where Id3�3 denotes the 3� 3 identity matrix. We have that dim G3=dim G2 � 1.An important observation is that the isotropy algebra ofX3�3 ;�3 does not dependon �3 and �3. Then a curve � � Q, transversal to D, with C3� � ~C3Q, is acurve of constant type [7].In the case n = 3, from the relation tr` = 0 we have that G3 = 0.2.4 Action of G on 4-order contact elementsSimilarly to paragraph 2.3, we consider an element X30 = X3�3;�3 , and O3 =G:X30 . The map  3 : G �! O3; 7�! g:X30 ; allows us to project the forms(2:11) !�10 ; !n0 ; !0�1 ; !00 � !11; !1�2; !0n; !00 � !22; !2�3;on TX30O3. Moreover, the real forms(2:12) d�3; d�3;given by the functions �3 and �3, de�ne a basis of T �X30 I3. If ~C3Q denotes thecontact elements of order 3 transversal to D, which project onto ~O2, then we haveTX30 ~C3Q = TX30 ~O3 � TX30 I3;and we can de�ne a basis of T �X30 ~C3Q extending the forms (2.11), (2.12), as follows(2:13) !�� jTX30 I3 = 0; d�3jTX30 ~O3 = 0; d�3jTX30 ~O3 = 0:Let H4 = fX4 2 C4Q : �42(X4) = X30g, de�ned by!�10 jX4 = 0 ; (!00 � !11)jX4 = i�3 !n0 jX4 ;!01jX4 = !n0 jX4 ; !12jX4 = �3 !n0 jX4 ;!0�1 jX4 = 0 ; !1�2 jX4 = 0 :We introduce coordinates in H4 as follows!0njX4 = a0n!n0 jX4 ; (!00 � !22)jX4 = ib22!n0 jX4 ;!2�3 jX4 = �2�3!n0 jX4 ;d�3jX4 = �13!n0 jX4 ; d�3jX4 = �13!n0 jX4 :If G3 denotes the Lie algebra of the isotropy group of X30 , then similarly to(2.8), we can prove



68 Y. VILLARROEL`:(!00 � !22) = 0 ; `:!0n = 0 ;`:!2�3 = �Pn�1
 6=�3 `
�3!2
 � (`22 � `�3�3)!2�3 ;`:d�3 = 0 ; `:d�3 = 0 :To prove `:d�3 = `:d�3 = 0; we use the fact that the isotropy algebra G3 isindependent of �3; and �3:Proceeding as in Proposition 2.8, we can prove that a transversal section to theorbits of the action of G on H4, is given byI4 = �X4 2 H4 : Re�23(X4) > 0; Im�23(X4) = 0; �2�4 = 0;	so we consider coordinates in I4 de�ned as(!00 � !22)jX4 = i�4!n0 jX4 ; !0njX4 = �4!n0 jX4 ;!23jX4 = �4!n0 jX4 ;d�13 jX4 = �23!n0 jX4 ; d�13jX4 = �23!n0 jX4:The invariants �4; �4; �4 correspond to the coordinates a11; b22; Re�23.The Lie algebra of the isotropy group of order 4 is given by:~G4 = G3, if �2�3(X4) = 0; for all �3,~G4 = 8<: ` = 0@iA00Id4�4 0 00 (`�3�3 ) 00 0 iA001A ; `�3�3 + `�3�3 = 0tr` = 0; A00 2 < 9=; ;if �2�3(X4) 6= 0 for some �3, and X40 = X4�3�3�4�4�4�13 �13 .Also we observe here that the isotropy algebra of X40 does not depend on theinvariants �3; �3; �4; �4; �4; �13 ; �13.In the case n = 4, using the relation tr` = 0, we have that G4 = 0.2.5 Action of G on the k-order contact elementsSimilarly to paragraph 2.4, and using induction we can construct for k � 5, atransversal section Ik to the orbits of maximal dimension, as follows(2:14) (!00 � !k�2k�2)jXk = i�k!n0 jXk ; !k�2k�1jXk = �k!n0 jXk ;d�k�1jXk = �1k�1!n0 jXk ; d�k�1jXk = �1k�1!n0 jXk ;� � � � � � � � � � � �d�k�54 jXk = �k�44 !n0 jXk ; d�k�54 jXk = �k�44 !n0 jXk ;d�k�54 jXk = �k�44 !n0 jXk ;d�k�43 jXk = �k�33 !n0 jXk ; d�k�43 jXk = �k�33 !n0 jXk :The Lie algebra, of the isotropy group of a k-order contact element is given by



HIGHER ORDER CONTACT OF REAL CURVES 69Ĝk = ~Gk�1, if ��k�2�k�1 = 0; for all �k�2, �k�1,~Gk = 8<: ` = 0@iA00Idk�k 0 00 (`�k�1�k�1 ) 00 0 iA001A ; `�k�1�k�1 + `�k�1�k�1 = 0;tr` = 0; A00 2 < 9=; ; if Xk 2 Ik:3. Equivalence of regular curves in QIn this paragraph we give the structure equations for a regular curve in Q, andnecessary and su�cient conditions for the equivalence of two regular curves.Let � be a curve in Q transversal to the distributionD at all its points, viewed asa connected 1-dimensional submanifold. Given p 2 �, denote by Ckp� the contactelement of order k of � at p, and G0Ckp� the isotropy group by the induced actionof G on CkQ. We say that p is a regular point if:For n = 2, dimG0C3p� = 0,For n � 3, dimG0Cnp� = 0,If p is regular and k is the smallest order of contact with G0Ckp� = 0, we say thatp is a regular point of order k.Now if p is a regular point of order k then all the points in a neighborhood ofp are regulars of order k. We can see this, using the following results about LieGroups [1].Proposition 3.1. Let G be a Lie group acting on a smooth manifold M . Forp 2 M , let Gp be the isotropy group of p and d(p) the dimension of Gp. Then,given p0 2M , there exists a neighborhood V of p0 in M , such that d(p) � d(p0)for all p 2 V .We will say that a curve � � Q is regular if all its points are regular.Let Ik be the transversal section de�ned in (2.14) and A = G:Ik. Then we havethe following,Theorem 3.1. Let � � Q be a curve, and p 2 �. Then � is regular of order kin p if and only if Ckp� 2 A.Proof. By de�nition of Ik we have: if Xk0 2 CkQ, and Xk0 =2 A then dimG0Xk <dimG0Xk0 , for all Xk 2 A. In consequence, if Ckp� =2 A then dimG0Ckp� > 0 and p isno regular. The reciprocal is immediate by the de�nition of A. �Theorem 3.2. Let h : Ik � G ! A be de�ned as h(X; g) = g:X. Then h hasmaximal rank.Proof. The manifold Ik is transversal to the orbits of the action of G on A.Then, if X 2 Ik we have,TXA = TXIk � TXOX ; where OX = G:X;



70 Y. VILLARROELnow given g 2 GTlg(TXA) = T lg(TXIk)� T lg(TXOX ) = Tg:XgIk � Tg:XOX ;moreover Tg:XIk \ Tg:XOX = T lg(TXIk \ TXOX) = 0;then dim(T lg(TXA)) = dimA and h has maximal rank. �Corollary 3.1. GivenX 2 A there exists X0 2 Ik, g0 2 G and neighborhoodsU � A; U � Ik, B � G of X, X0 and g0 respectively such thathjU�B : U � B �! U is a di�eomorphism;then there exist smooth sections � : U ! U � Ik; � : U ! B � G, such that(3:1) (hjU�B)�1 = (�; �):Remarks.1. If � : J 2 < ! Q is a regular curve of order k, then Ck� � A, and givenX = Ckp� the section � allows us to de�ne an immersion ~� = � �Ck�, of the curve� in G. Then we can transport the invariants forms !�� de�ned on G to the curve�, as follows ~!�� = ~��!�� :2. GivenX 2 Ik the forms !�� , which vanish on Gk, were projected onto TXkOkusing the map �k : g 2 G 7�! g:Xk 2 Ok.For v 2 TXkOXk we have de�ned ~!�� (v) = !�� (V ), where V 2 TeG andT j(V ) = v. The forms ~!�� can be extended similarly to (2.13), to the spaceTXk (G:Ik).3. Let � 2 Q be a regular curve of order k, and p 2 � a regular point oforder k then for q 2 � there are g 2 G, Xk 2 Ik, such that Ckq � = g:Xk. Theleft invariants forms ~!�� which vanish on Gk, with the exception of !00�!002i , werede�ned on �0(0) 2 TpQ as~!�� (�0(t)) = ~!�� ( ddt jt=0Ck�1�(t)):We can transport the form Im!�� to the curve �, using the section ~�. Then wede�ne(3:2) ��Im!00(�0(t)) = i�n(t)~��!n0 (�0(t)); �n(t) 2 <:It is clear, by the de�nition of Ik that



HIGHER ORDER CONTACT OF REAL CURVES 71for n = 2(3:3) ~!20(�0(0)) 6= 0 ; ~!01(�0(0)) = ~!20(�0(0)) ;~!10(�0(0)) = 0 ; ~!02(�0(0)) = �4~!20(�0(0)) ;Re~!00(�0(0)) = 0 ; Im!00(�0(0)) = �3(�0(0)) ;for n > 2(3:4) ~!n0 (�0(0)) 6= 0 ; ~!01(�0(0)) = ~!n0 (�0(0)) ;~!0�2(�0(0)) = 0 ; Re~!00(�0(0)) = 0 ;~!�j�j (�0(0)) = 0 ; ~!0n(�0(0)) = �4~!20(�0(0)) ;(~!00 � ~!�j�2�j�2)(�0(0)) = i��j!n0 (�0(0)); ~!�j�1�j�2(�0(0)) = ��j�2!n0 (�0(0)) :Where ��j ; ��j ; ��j ; 3 � j � n � 1, are the invariants of the orbits de�ned inthe section 2.5. 3.1 The structure equationsLet e� : G! Cn+1; given by e�(g0; � � � ; gn) = g�;where g = (g�� ) = (g0; � � � ; gn), then we have de� =P!�� e�:If � : J ! Q is a regular curve transversal to D, we say that � is parametrizedby arc length if !no (�0(t)) = 1, for t 2 J . A parametrization of � by arc length isgiven by s(t) = Z tt0 !n0 (�0(t))dt:Given a regular curve parametrized by arc length , from (3.3) we have,for n=2; de0 = i�3dse0 + dse2de1 = dse0 �2i�3dse1de2 = �4de0 � idse1 +i�3dse2:For n � 3 the structure equations are given by the matrix,0BBBBBBBBBBBB@i�nds dsi�3ds �3ds��3ds i�4ds : �4ds��4ds : :: : :: : �n�1dsds : i�nds��nds i�ds i�nds1CCCCCCCCCCCCA :where ��; ��; ��; are invariants of the orbits and�n = Im~!00~!n0 ; �� = �n � ��; � = nX�=3 �� � n�n:



72 Y. VILLARROELRemark. The form ds coincides with the Levi form for Cauchy-Riemann struc-tures, [5]. In Dp0 we have a complex structure de�ned by the operatorI : v 2 Dp0 7! iv 2 Dp0 ;and the Levi form de�ned by (�(v; v))2 = 12d!n0 (v; Iv): Using (1.7) we have,d!n0 = �2X!
0 (v)!
0 (v); then (�(v; v))2 =X!
0 (v)!
0 (v):The following Theorem about Lie groups, and the structure equations de�nedabove, allow us to prove the following Theorem of equivalence of curves.Theorem 3.3. Let G be a n-dimensional Lie group and !1; � � � ; !n a basis ofright invariants forms of G. Let S1; S2 2 G be two m-dimensional connectedsubmanifolds, with n < m. Then, there exists an element g 2 G such thatRg(S1) = S2 if and only if there exists a di�eomorphism  : S1 ! S2, whichpreserves the forms !j ,  �(!j js1) = !j jS2:Proof. [7].Theorem 3.4. Let �1;�2 � Q be two regular curves of order k, transversesto D, parametrized by length arc. Let p1 2 �1, p2 2 �2. Then there exists anelement g 2 G such that locally, lg(�1) = �2, g:p1 = p2 if and only if there existsa local di�eomorphism : �1 ! �2; such that �1� �  = �2�; �1� �  = �2�;�1� �  = �2�; �1� �  = �2�;where � j�; �j�; �j�; �j�; j = 1; 2; are the invariants asociated to �j.Proof. Let ~�1; ~�2 be the local sections of �1;�2 respectively in G, de�nedby the local di�eomorphism given in (3.1). These sections de�ne two connectedsubmanifolds ~�1; ~�2 2 G, and �1;�2 are locally equivalent if and only if ~�1; ~�2 arelocally equivalent, by the following commutative diagram,J1 
1�! �1 � Q ik�! CkQ �1�! G??ylg ??ylgJ2 
2�! �2 � Q ik�! CkQ �2�! G :Using Theorem 3.3, we have that ~�1 = �1 � ik � 
1, and ~�2 = �2 � ik � 
2, areequivalents if and only if there exists a local di�eomorphism  which preservesthe forms !�. Since the curves are parametrized by arc length, we have usingthe structure equations that the forms are preserved if and only if the invariants� j�; �j�; �j�; �j�; j = 1; 2; are preserved. �
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