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A CONTACT METRIC MANIFOLD SATISFYING
A CERTAIN CURVATURE CONDITION

JoNGg TAEK CHO

ABSTRACT. In the present paper we investigate a contact metric manifold satisfying
(C) (V5R)(-,4)% = 0 for any V-geodesic ~, where V is the Tanaka connection. We
classify the 3-dimensional contact metric manifolds satisfying (C) for any V-geodesic
7. Also, we prove a structure theorem for a contact metric manifold with £ belonging
to the k-nullity distribution and satisfying (C) for any V-geodesic ~.

1. INTRODUCTION

A Riemannian manifold M = (M, g) with Riemannian metric tenor g is called
(E.Cartan [6]) a locally symmetric space if M satisfies VR = 0, where V is the
Levi-Civita connection. In [1] a locally symmetric space M is characterized by the
remarkable property that the Jacobi operator field Ry = R(-, )7 is diagonalizable
by a V-parallel orthonormal frame field along v and their eigenvalues are constant
along 7 for any geodesic v on M.

On the other hand, T.Takahashi ([11]) introduced the notion of Sasakian lo-
cally ¢-symmetric spaces which may be considered as the analogues of locally
Hermitian symmetric spaces. A contact metric locally ¢-symmetric space is de-
fined as a generalization of the notion of the Sasakian locally ¢-symmetric spaces
and investigated by D.E.Blair ([3]).

In [9], we have introduced a class of contact metric manifolds satisfying

(©) (ViR)(9)7 =0

for any unit V-geodesic 'y(?ﬁ"y = 0), where V is a linear connection such that
the structure tensors are parallel. We note that the connection coincides with
the Tanaka connection ([13]) on a strongly pseudo-convex integrable CR-manifold
whose structure is determined by a given contact metric structure, particularly
for 3-dimensional contact metric manifolds and contact metric manifolds with
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the structure vector field € belonging to the k-nullity distribution (see section 1),
and also note that the geodesics of the Levi-Civita connection and the Tanaka
connection do not coincide in general. We easily observe that a contact metric
manifold satisfies the condition (C) for any V-geodesic v if and only if the Jacobi
operator field R+ is diagonalizable by a V-parallel orthonormal frame field along
v and their eigenvalues are constant along v for any V-geodesic v in the manifold.

The present paper is a continuation of the preceding papers [8], [9] in which we
proved that a 3-dimensional contact metric manifold satisfying the condition (C)
for any V-geodesic 7 is locally ¢-symmetric (in the sense of D.E.Blair). In the
present paper, we determine all 3-dimensional contact metric manifolds satisfying
the condition (C) for any V-geodesic y. Namely, we prove

Theorem A. Let M be a 3-dimensional contact metric manifold. If M satisfies
the condition (C) for any V-geodesic v, then M is a Sasakian locally ¢-symmetric
or a contact metric manifold of constant sectional curvature.

It was proved ([5]) that a 3-dimensional Sasakian ¢-symmetric space (simply
connected and complete Sasakian locally ¢-symmetric space) is isometric to the
unit sphere S3 in [E*| SU(2), the universal covering space SL(2,R) of SL(2,R) or
the Heisenberg group I, each with a special left invariant metric (see [15]). Also,
it was proved ([4]) recently that a 3-dimensional contact metric locally symmetric
space 1s of constant sectional curvature 0 or 1. Thus from Theorem A we have

Corollary B. Let M be a simply connected and complete 3-dimensional contact
metric manifold. If M satisfies the condition (C) for any V-geodesic v, then M is

isometric to the unit sphere 5% inE*, SU(2), the universal covering space SL(2,R)
of SL(2,R) or the Heisenberg group H, each with a special left invariant metric,
or the Euclidean space 3.

A contact metric on [, for example, is explicitly expressed as R3(z! 22 3)

with n = %(cos r3dz! +sin 23dz?) and ¢;; = %62']'. Also, in section 3 we prove that

Theorem C. Let M?"*1(n > 2) be a contact metric manifold with ¢ belonging
to the k-nullity distribution. If M satisfies the condition (C) for any V-geodesic
v, then M is a Sasakian locally ¢-symmetric space or M is locally the product
of a flat (n 4+ 1)-dimensional manifold and an n-dimensional manifold of positive
constant sectional curvature equal to 4.

We remark that a contact manifold M?"*1(n > 2) can not admit a contact
metric structure of vanishing curvature (cf. pp. 115 in [2]). All manifolds in the
present paper are assumed to be connected and of class C™.

The author thanks to Professor K.Sekigawa and L.Vanhecke for their advices
and constant encouragements.

2. PRELIMINARIES

A (2n + 1)-dimensional manifold M?"*! is said to be a contact manifold if it
admits a global 1-form 7 such that 5 A (dn)” # 0 everywhere. Given a contact



A CONTACT METRIC MANIFOLD ... 321

form 7, we have a unique vector field &, which is called the characteristic vector
field, satisfying n(£) = 1 and dn(&, X') = 0 for any vector field X. Tt is well-known
that there exists a Riemannian metric g and a (1, 1)-tensor field ¢ such that

(2.1) n(X) =g(X,8), dnp(X,Y)=g(X,¢Y), ¢°X =—-X+n(X),

where X and Y are vector fields on M. From (2.1) it follows that

(2.2) P =0, no¢=0, ¢g(¢X,¢Y)=yg(X,Y)—nX)nY).

A Riemannian manifold M equipped with structure tensors (¢,£,n, ¢) satisfying
(2.1) is said to be a contact metric manifold and is denoted by M = (M, ¢,£&, 1, g).
Given a contact metric manifold M, following D.E.Blair([2]), we define a (1,1)-
tensor field A by h = —%quf), where L denotes Lie differentiation. Then we may
observe that h 1s symmetric and satisfies

(2.3) he=0 and ho = —oh,
Vx&=—¢X — ohX,

where V is Levi-Civita connection. From (2.3) and (2.4) we see that each trajectory
of ¢ is a geodesic. We denote by R Riemannian curvature tensor defined by

R(X,Y)Z =Vx(VyZ) = Vy(VxZ) - Vixy)Z

for all vector fields X,Y, 7. Along a trajectory of &, the Jacobi operator Ry =
R(-,£)¢ is a symmetric (1, 1)-tensor field. We have

(2.5) (trace R¢) = g(QE,€) = 2n — (trace h?),
(2.6) Veh =6 — 6Re — b,

(cf.[2] or [3]) where @ is Ricci (1, 1)-tensor on M.

A contact metric manifold for which ¢ is Killing is called a K-contact metric
manifold. It 1s easy to see that a contact metric manifold is K-contact if and only
if h = 0. For a contact metric manifold M one may define naturally an almost
complex structure on M x R. If this almost complex structure is integrable, M is
said to be Sasakian. A Sasakian manifold is characterized by a condition

(2.7) (Vxo)Y = g(X,Y)¢ —n(Y)X

for all vector fields X and Y on the manifold.
Let M be a contact metric manifold. It i1s well-known that M 1s Sasakian if
and only 1f

(2.8) R(X,Y)E = n(Y)X = n(X)Y
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for all vector fields X and YV ([2]).
Let T be a (1, 2)-tensor field on M defined by

(29) TxY = —56(Txd)Y + Ln(Y J6X +6hX) —n(X)0Y —g(pX +9hX, V)E.

Particularly, for a Sasakian manifold, from (2.7) and (2.9) we see that
(2.10) TxY = g(X,0Y )¢+ n(Y)oX — n(X)eY,

where X and Y are vector fields on M. Using the tensor field 7', we define a linear
connection V on M by

(2.11) VxY =VxY +TxY

(cf. [7] or [8]). Then the linear connection V has the torsion given by TxV —Ty X.
Using (2.1), (2.2) and (2.3), we have

(2.12) Vé=0, VE=0, Vnp=0, Vg=0.

We remark that the above connection V coincides with the Tanaka connec-
tion (defined in [12]) on a strongly pseudo-convex integrable CR-manifold whose
structure is determined by a contact metric manifold which satisfies (Vx¢)Y =
g(X + hX, V) — n(Y)(X + hX) for any vector fields X and Y (see Proposition
2.1 in [15]). The tangent space T, M of M at each point p € M is decomposed
as Ty,M =9, & {¢}, (direct sum), where we denote ®, = {v € T, M|n(v) = 0}.
Then ® : p — D, defines a distribution orthogonal to {. Let v be a V-geodesic
parametrized with the arc-length parameter s, where a V-geodesic means a geo-
desic with respect to V. From (2.9) and (2.11) we see that a V-geodesic does not
coincide with a V-geodesic in general. We denote ¥ = 'y*(j—s) and by 7. the differ-
ential of v : I — M. Define the Jacobi operator R+ by Ry = R(-,%)7 along y. Ry
is a symmetric (1, 1)-tensor field along y. Moreover, from (2.12) we observe that
n(%) is constant along v, and thus a V-geodesic whose tangent initially belongs
to ® remains in ®. We call such a V-geodesic which is tangent to © a horizontal
V-geodesic.

Now, recall the definition of a Sasakian locally ¢-symmetric space ([11]).

Definition 2.1. A Sasakian manifold M = (M,$,&,n,9) is said to be locally
¢-symmetric if $*(Vy R)(X,Y)Z = 0 for all vector fields V, X, Y, Z € D.

As a generalization of the above Sasakian one, a contact metric locally ¢-
symmetric space is defined by D.E.Blair([3]) by the same condition. In [7] we
characterized a Sasakian locally ¢-symmetric space by following

Theorem 2.2. A Sasakian manifold M is locally ¢-symmetric if and only if M
satisfies the condition (C) for any horizontal V-geodesic.

Concerning Theorem 2.2 we prove



A CONTACT METRIC MANIFOLD ... 323

Theorem 2.3. A Sasakian manifold M is locally ¢-symmetric if and only if M
satisfies the condition (C) for any V-geodesic 7.

Proof. From (2.8) and (2.12) we see that
(VeR)(Y, X)é =0

for all vector fields X and Y on M. Then, taking account of Theorem 2.2, it
suffices to prove g((VeR)(Y,V)V,X) = 0 for all vector fields VX,V € ©. It
follows from (2.10) and (2.11) that

(2.13)
J(VeR)(Y, V)V, X) =(VeR)(Y, V)V, X) = g(6R(Y, V)V, X) + g(R(6Y,V)V), X)
+ g(R(X, V)V, Y) + g(R(X, V)9V, Y)

for all vector fields V, X,V € ©. From (2.8) and the second Bianchi identity, we
have

(2.14)
(VeR)(Y, V)V, X) =g(¢Y,V)g(V, X) = g(¢Y, X)g(V, V) + g(R(V, X)oY, V)
+ 9(6V, X)g(V,Y) — g(R(V, X)oV,Y).

Thus, from (2.13) and (2.14), we have

(2.15)
((?ER)(Y’ V)V’ X) :g(¢>Y’ V)g(v, X) - g(d)Y, X)g(v, V) + Qg(R(V, X)¢Ya V)
+9(oV, X)g(V,Y) = 29(R(V, X)oV,Y)
+9(R(Y, V)V, X) — g(¢R(Y, V)V, X)

for all vector fields V, XY € ©. From the definition of the curvature tensor,
taking account of (2.4) and (2.7), we obtain

(2.16)

R(Y, X)67 — 6R(Y, X)Z = g(6Y, 2)X — g(X, 2)6Y — g(6X, 2)Y + g(¥, 2)6X,

where X, Y and Z are vector fields on M. By using (2.16), from (2.15) we see
that g((VeR)(Y, V)V, X) = 0 for all vector fields V, X|Y € ©. d

S. Tanno ([13]) defined the k-nullity distribution of Riemannian manifold (M, g),
for a real number k, by

N(k):p— Npy(k)={z e T, M|R(z,y)z = k(g(y, z)x — g(z, 2)y)
for any =,y T, M},

and he proved
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Proposition 2.4. Let M = (M,¢,£,1,9) be a contact metric manifold. If &
belong to the k-nullity distribution, then k < 1. If k < 1, then M admits three
mutually orthogonal and integral distributions D(0), D(A) and D(—2X), defined by
the eigenspaces of h, where A = /1 — k.

In [8], we proved

Theorem 2.5. Let M be a contact metric manifold with ¢ belonging to the k-
nullity distribution. Then M is locally ¢-symmetric (in the sense of D.E.Blair) if
and only if M satisfies the condition (C) for any horizontal V-geodesic.

Since a contact metric manifold M with € belonging to the 1-nullity distribution
is a Sasakian manifold, the above Theorem 2.5 is a extension of Theorem 2.2. For
a contact metric manifold with ¢ belonging to the 0-nullity distrbution, D.E. Blair
([2]) proved

Theorem 2.6. Let M be a contact metric manifold with £ belonging to the 0-
nullity distribution. Then M is locally the product of a flat (n + 1)-dimensional
manifold and an n-dimensional manifold of positive constant sectional curvature
equal to 4.

3. 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

In this section we prove Theorem A. Recently, it was proved in [14] that a
3-dimensional contact metric manifold always satisfies

(3.1) (Vxo)Y = g(X +hX,Y)E —n(Y)(X + hX)

for all vector fields X, Y.

Lemma 3.1. A 3-dimensional contact metric manifold is Sasakian if and only if

h=0.

Proof. Assume that M3 is a contact metric manifold. Then from (2.7) and (3.1)
we get ¢(h X, Y)E—n(Y)hX = 0. Taking account of (2.3), we have g(hX,Y) = 0 for

all vector fields X,Y on M and hence, we have h = 0. The converse is obvious.
Now we prove Theorem A.

Proof of Theorem A. Let M3 = (M3 ¢,£,1,9) be a 3-dimensional contact
metric manifold satisfying the condition (C) for any V-geodesic 7. It is well-
known that the curvature tensor R of a 3-dimensional Riemannian manifold is
expressed by

(3.2)  R(Y,X)Z =p(X,2)Y — p(Y, 2)X + ¢(X, 2)QY — g(Y, 2)QX
- ST, 2)Y — g(¥, 2)X)

for all vector fields X, Y, Z, where p(Y, X) = ¢(QY, X) and 7 is the scalar curvature
of the manifold.
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From (3.2) and the assumption we have

(3.3)
0 :(?xR)(ya l‘)l‘
= (Vep)(e, )y = (Vep)y, 2)e + (2, 2)(VaQ)y — 9y, 2)(Vo Q)
— %(xr){g(x, z)y — g(y, r)z},

for any «,y € T, M and any p € M. For any unit v orthogonal to &, let {v, ¢v,£}
be an adapted orthonormal basis of T,M(p € M). Then from (3.3) we get

g(VeR)(v,z)z,v) = 0, (Ve R)(¢v,z)x,¢v) = 0 and g((V.R)(&, z)z,€) = 0,

and summing up these three equalities, we have

(3.4) (Vep)(x,2)=0.

Also, from (3.3) we get (V, R)(¢v,v)v =0, (V,R)(¢,v)v = 0 and thus we have

(3.5) (Vup)(dv,6v) = (Vup)(€, )
and
(3.6) (Vop)(gv,€) = 0.

Taking account of (3.1), we see that

(3.7) Typy = n(y)(¢x + ohx) — n(x)dy — g(pz + dhz, y)¢

for #,y € T,M and p € M. From (2.11) and (3.7) we have the formulas (3.8),(3.9)
and (3.10) which are equivalent to (3.4),(3.5) and (3.6), respectively:

(3.8) (Vep)(x, @) = 2{n(x)p(¢he, v) — g(¢ha, z)p(¢, x)},

(3.9)  (Vup)(&€) = (Vup)(9v, 9v) = 2{(2+ g(hv, v))p(§, 6v) + p(¢hv, €)1},

(3.10) (Vup)(9v,8) = p(ov, dv) + p(dv, ohv) — {1 + g(hv,v)}p(£, &)

for any unit z € T, M and unit vector v orthogonal to &.

Let W be the subset of M on which the number of distinct eigenvalues of
h is constant. Then W is an open and dense subset of M. We fix any point
q in W. Then from (2.3) there exists a C'™ function A such that he; = Aey,
hes = —Xes, hé = 0 where {e1,e2 = deq,e3 = £} is a local orthonormal frame
field on a neighborhood N,(C W) containing ¢q. We denote T';;r = ¢(V. e, ex),
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pl']' = p(ei,ej), vip]'k = (velp)(ej,ek) and VhRZ»]»k, = g((VhR)(ei,ej)ek,el) fOI'
h,i,j, k,01=1,2,3. Then from (2.4) we get

(3.11) Tiza=—(14+A), Tz =1-2A
and
(3.12) I'i31 =132 =0.

Also, from (2.6) and taking account of (2.5) and (3.2), we have

(3.13) EA = p1o
and
(3.14) 4Al312 = p22 — p11.

Moreover, from (3.8) we get

(315) V1p11 = 0, Vszz =0
and
(316) V3p33 =0.

Substituting « = %(61 +ez)and v = %(61 —e3), respectively in (3.8) and taking

account of (3.15), we have

2V1p12 + 2Vap1a + Vipas + Vaprr = —4A(ps1 + p32)

and
—2Vip12 4+ 2Vap12 + Vipaa — Vapir = 4A(ps1 — p32).

By summing these two equalities, we have
(3.17) Vipaa + 2Vapia = —4Apas
and substracting (3.17) from the preceding one, we have

(318) Vzpn + 2V1p12 = —4Ap13.
1
V2
taking account of (3.16), we have

Also, substituting = —=(e; + e3) and # = %(61 — eg3), respectively in (3.8) and

2Vip1s + 2Vsps1 + Vipss + Vapir = 2Apas
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and
—2Vip13+ 2V3ps1 + Vipss — Vapi1r = 2Apas.

Summing these two equalities we have

(3.19) Vipas + 2Vapiz = 2Apas
and substracting (3.19) from the preceding one, we have
(3.20) Vsp11 +2Vips1 = 0.

A similar calculation for z = %(62 +e3) and x = %(62 — e3) gives

(3.21) Vapasz + 2Vapaz = 2Api3
and
(322) Vspzz + QVngz =0.

On the one hand, from the second Bianchi identity, we have
(3.23) 2Vapi12 + 2V3p13 — Vipas — Vipsz = 0.
(3.24) 2Vipa1 + 2V3paz — Vapi1 — Vapsz = 0.

From (3.17), (3.19) and (3.23) (resp.(3.18), (3.21) and (3.24)), we have (3.25)
(resp.(3.26)):

(3.25) Vip2z + Vipss = —Apos,
(3.26) Vapi1 + Vapss = —Apis.

On the other hand, from (3.5) we have

(3.27) Vipss — Vipas = 4(A + 1)pas
and
(328) VQp33 — vzpll = 4(A — 1)p13.

Thus, from (3.25)-(3.28) we have

1 1
(3.29) Vipss = 5(3/\ +4)pa3, Vapss = 5(3/\ —4)p13
and

1 1
(330) V1p22 = —5(5A + 4)p23, vzpll = —5(5A — 4)p13.

Also, from (3.17),(3.18) and (3.30), we have

1 1
(331) V1p12 = _Z(3A + 4)p13 and Vszl = _Z(3A - 4)p23.
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Lemma 3.2. p;; =0 on N,(C W), where i #j,4,j=1,2,3.

Proof. . Differentiating (2.5) in the direction & and taking account of (3.16) we
have éA = 0. Thus from (3.13) we have p12 = 0 on N,.

Now we prove p13 = 0 and pa3 = 0 on N,. Differentiating (2.5) in the directions
e1 and ey and taking account of (3.11), (3.12) and (3.29) we have

(3.32) pas = 8(e1A)
and

(3.33) p13 = 8(ezA),
respectively.

Also, differentiating p12 = 0 in the direction &, we have

(3.34) Vspia = Us12(p11 — p22).

Substituting # = £ in (3.3), we get Vspiz = 0, and from (3.7) we get Vapra =
V3p12 + p22 — p11. Thus we see that

(3.35) Vapiz = p11 — pa2.

At first, if there exists a point in N,(C W) such that p11 = pao, then p1zs = p23 =0
at that point. In fact, differentiating p15 = 0 in the direction e; and es, then from
the assumption and (3.11) we have Vip12 = —(1 4+ A)p13 and Vapar = (1 — A)pas,
respectively. Thus taking account of (3.31) we have p13 = paz = 0 at the point
in N,. Next, suppose there exists a point m such that p11(m) # pa2(m). Then
we see that p11 # p22 on a sufficiently small neighborhood U(m) of m. From
(3.34) and (3.35) we get I's;o = 1 on U(m). Thus (3.14) becomes 4X = paz — p11
on U(m). Differentiating this equation in the directions e; and e; and taking
account of (3.11), (3.12), (3.32) and (3.33) we have Vipz2 = —%(4/\ + 3)p23 and
Vaopi1 = —%(4A — 3)p13. Thus taking account of (3.30) we have

(336) (/\ + 1)p23 =0
and

on U(m). Differentiating (3.36)(resp.(3.37)) in the direction e (resp.ez) and taking
account of (3.32) and (3.33), we have

1
(3.38) §p§3 + (A4 1)(erp23) =0
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and

§7ts+ (= Dieapra) = 0
on U(m). If there exists a point n in U(m) such that py3(n) # 0, then from (3.37)
we get A(n) = 1, and from (3.39) we get p13(n) = 0, a contradiction. Also, if there
exist a point n in U(m) such that pas(n) # 0, then from (3.36) we get A(n) = —1,
and from (3.38) we get pasz(n) = 0, a contradiction. Thus we have p13 = pag = 0
on U(m). At last, we conclude that pi13 = p23 = 0 also on N,. |

(3.39)

From Lemma 3.2, we see that A is locally constant on N,(C W). Since p13 =
pa23 = 0, from (3.29)-(3.31), we get
(3.40) Vipia =0, Vipaa =0, Vipsz =0,
Vapiz =0, Vaprr =0, Vapzz =0.

Also, taking account of (3.12), we have

(3.41) Vipis=0 and Vapsz =0.

The equations (3.19)-(3.22), together with (3.40) and (3.41), yield
(3.42) Vapi1 =0, Vapiz =0, Vapaa =0, Vzpaz =0.

From (3.15), (3.16), (3.40) and (3,42), we see that the scalar curvature 7 is con-
stant. Returning to the condition (C), from (3.3), by using polarization, we have
(3.43)
0 =S [(Vap)(z, 0)y + 0(Qz)g(dx + ¢ha, w)y — n(x)g(6Qz, w)y
— g(¢x + dhx, Qz)n(w)y — (2)9(Qéx + Qohx, w)y + n(x)g(Qez, w)y
9(ox + ohx, 2)n(Qu)y — (Vep)(y, 2)w — n(Qu)g(dx + ¢hx, y)z
N(x)g(6Qw, y)z + g(dx + dha, Qun(y)z + n(w)g(Qeéx + Qohw, y)z
—n(x)g(Qéw, y)z — g(¢x + dhx, wn(Qy)z + g(z, ){(VuQ)y
+ 1(Qu) (9w + ¢hw) — n(w)eQy — g(¢w + dhw, Qy)¢
— n(¥)(Qéw + Qohw) + n(w)Qoy + g(dw + ¢hw, y)QE} — g(y, v){(V.Q)w
N(Qw)(¢z + ¢hz) —n(2)6Qw — g(¢2 + ¢hz, Qu)¢
— n(w)(Q4z + Qohz) + n(2)Qdw + g(z + dhz, w)QE}]

for any z,y,z,w € Ty M, where S; . ,, denotes the cyclic sum for tangent vectors
z,z,w. First, substitute y = ey, ¥ = €1, 2 = €3, w = ez into (3.43). Then taking
account of (3.40) and (3.41) we have

(3.44) Vipas + Vapia — Vaps:
- ApZZ + (3A - 1)p33 - (QA — 1)p11 =0.
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Next, substitute y = e, # = €1, 2 = ea, w = e3 into (3.43). Then taking account

of (3.41) and (3.42) we have

(3.45) Vipas + Vapsr — Vapio
— (/\ — 1)p11 — (/\ + 1)p22 - 2Ap33 =0.

Finally, substitute y = e3, ¥ = €1, z = €2, w = ez into (3.43). Then taking account

of (3.40) we have

(3.46) Vaps1 + Viapia — Vipas
+ (A= Dpsz + paz — Ap11 = 0.

From (3.44), (3.45) and (3.46), we have

(347) QVngl = (2/\ — 1)p11 + /\p22 — (3/\ — 1)p33,
2V3p12 = (BA = D)p11 + (A — D)pas — (4X — 2)pas,
2V 1 pas = (3A - 2)p11 + (QA + 1)p22 — (5A — 1)p33.

Now suppose there exists a point m € N, such that p11(m) # paa(m). Then we
see that T'sy2(m) = 1 in the proof of Lemma 3.2, and from (3.10) and (3.14) we
obtain

(3.48) Vapsr = (A= 1)(p11 — pss),
Vapi2 = p11 — p22,
Vipas = (A4 1)(paz — p33)

at m. Thus from (3.47) and (3.48) we have

(3.49) P11+ Apaa — (A+ 1)pas =0,
3A=1)p11 + (A + 1)pan — 2(2X — 1)p33 = 0,
(3A =2)p11 — pa2 = 3(A = 1)psz = 0

at m. Since paa(m) — p11(m) = 4A(m) from (3.14), the above (3.49) gives

(A + D(p11 — pss) = =427,
2(2A = 1)(p11 — p3s) = —4A(A + 1),
3(A = 1)(p11 — p3s) = 4A

which yields A(m) = 0. Since X is locally constant on N,, we see that A = 0. Now,
we consider ||A]|?. Then |[|h]|? = 2X% is a function on M, and by the continuity
argument we observe that A = 0 on M. Thus by Lemma 3.1 we see that M is
Sasakian, and by Theorem 3.1 we see that M is locally ¢-symmetric.
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Or suppose p11 = paz on N,. Then from (3.10) and (3.14) we have

(3.50) Vaps1 = (A= 1)(p11 — ps3),
Vspi2 =0,
Vipas = (A4 1)(p22 — pas).

From (3.47) and (3.50), we see that
(A4 1)(p11 — p3s) = 0,

2(22 = )(p11 — p3s) = 0,
3(A=1)(p11 — p3s) =0

which yields p11 = psz on N,. In this case, taking account of Lemma 3.2, we see
that M is a Einstein manifold and hence, of constant sectional curvature. At last,
we have our conclusion. O

4. A CONTACT METRIC MANIFOLD WITH &
BELONGING TO THE k-NULLITY DISTRIBUTION

In the present section we prove Theorem C. The following Lemma is known (cf.

p. 446-447 in [13] or p. 251 in [10]).

Lemma 4.1. Let M = (M?"*! ¢ € n,g) be a contact metric manifold with &
belonging to the k-nullity distribution. Then

(4.1) (Vxo)Y = g(X +hX,V)E — (Y )(X + hX).

Proof of Theorem C. Let M?*"*1(n > 2) be a contact metric manifold with &
belonging to the k-nullity distribution, i.e.,

(4.2) R(X,Y)E = k(n(Y)X —n(X)Y),
where k is a real number. From (4.2) we see that
(VeR)(Y, X)E =0

for all vector fields X and ¥ on M. Thus, by virtue of Theorem 2.5, it only remains
to examine g((V¢R)(Y, V)V, X) = 0 for all vector fields V, X, Y € ©. From (2.9)
and (4.1) we get

(4.3) TxY =n(Y)(¢X + ¢hX) — n(X)oY — g(6.X + 0hX,Y)E.
Then it follows from (2.11) and (4.3), together with (2.1) and (2.2), that

(4.4)

g(VeR)(Y, V)V, X) =(VeR)(Y, V)V, X) = g(oR(Y, V)V, X) + g(R(¢Y, V)V, X)

+ 9(R(X, V)V, Y) + g(R(X, V)9V, Y)
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for all vector fields V. X|Y € ©. On the other hand, from (4.2) and the second
Bianchi identity we obtain

(4.5)
g(VeR)(Y, V)V, X) =k{g

~—~

oY, V)g(V, X) + g(¢hY, V)g(V, X)
9(oY, X)g(V, V) — g(6hY, X)g(V,V)}
g(hV, V)g(Y, X) + g(8V, X)g(V,Y)
g(shV, X)g(V,Y)}

g(R(V, )+ g(R(V, X)ghY, V)
g(R(V, )= g(R(V, X)ohV,Y),

where X,Y € ©. From the definition of the curvature tensor, taking account of
(2.4) and (4.1), we obtain

g(V,
XY,
v

v
X))oV, Y

AAA/_\/_\
\_/\_/\_/\-/

(4.6)
=g(oY + ¢hY, Z2)g(X + hX, W) — g(X + hX, Z)g(¢Y + ¢hY, W)
—g(¢X + oh X, Dg(Y + RY, W)+ g(Y + hY, Z)g(¢ X + ¢hX, W),

where X, Y, Z, W € D. Since g((V¢R)(Y, V)V, X) = 0, from (4.4), (4.5) and (4.6),

we have

4.7
( )(k = D{g(eY, V)g(X, V) — g(8Y, X)g(V, V) + g(oV, X)g(V, Y )}
+ (k4 3){g(¢hY, V)g(X, V) — g(¢hY, X)g(V, V') — g(¢hV, V)g(X,Y)
+ g(ehV, X)g(V,Y)}
= g(oY, V)g(hX, V) — g(6Y, X)g(hV, V) + g(6V, X)g(hV,Y)
= 3{g(ehY, V)g(hX, V) — g(¢hY, X)g(hV, V) — g(¢hV,V)g(hX,Y)
+ 9(ohV, X)g(hV,Y)} + g(R(V, X)ohV,Y) — g(R(V, X)$hY, V),
for all vector fields V, X, Y € ©. Since h is symmetric operator and 2n 4+ 1 > 5,

we assume that AY = AY and AV = AV, where Y and V are unit and mutually
orthogonal. Then from (4.7) we obtain

(4.8) (k= 1)g(Y,6X) + (k + 3)Ag(V, 6 X)
=Xg(Y,X) — 3)\%g(Y, 6 X)
+ Ag(pR(V, X)Y, V) = Ag(R(V, X)oY, V).

Also, from (4.6) we have

(4.9) g(GR(V, X)Y, V) = g(¢R(V, X)oY, V) = (1 = A*)g(Y, 6.X).
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The equations (4.8) and (4.9), together with A = +/1 —k (by Proposition 2.4),

yield
Vi—-k—-(1-4%k) =0,

which yields k = 0 or k& = 1. Thus we see that M is Sasakian (when £ = 1)
or M is a contact metric manifold whose structure vector £ belongs to the 0-
nullity distribution. Therefore by virtue of Theorems 2.3 and 2.6, we have our
conclusion. d
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