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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 319 { 333A CONTACT METRIC MANIFOLD SATISFYINGA CERTAIN CURVATURE CONDITIONJong Taek ChoAbstract. In the present paper we investigate a contact metric manifold satisfying(C) (�r _
R)(�; _
) _
 = 0 for any �r-geodesic 
, where �r is the Tanaka connection. Weclassify the 3-dimensional contactmetricmanifolds satisfying (C) for any �r-geodesic
. Also, we prove a structure theorem for a contactmetric manifoldwith � belongingto the k-nullity distribution and satisfying (C) for any �r-geodesic 
.1. IntroductionA Riemannian manifoldM = (M; g) with Riemannian metric tenor g is called(E.Cartan [6]) a locally symmetric space if M satis�es rR = 0, where r is theLevi-Civita connection. In [1] a locally symmetric space M is characterized by theremarkable property that the Jacobi operator �eld R _
 = R(�; _
) _
 is diagonalizableby a r-parallel orthonormal frame �eld along 
 and their eigenvalues are constantalong 
 for any geodesic 
 on M .On the other hand, T.Takahashi ([11]) introduced the notion of Sasakian lo-cally �-symmetric spaces which may be considered as the analogues of locallyHermitian symmetric spaces. A contact metric locally �-symmetric space is de-�ned as a generalization of the notion of the Sasakian locally �-symmetric spacesand investigated by D.E.Blair ([3]).In [9], we have introduced a class of contact metric manifolds satisfying(C) ( �r _
R)(�; _
) _
 = 0for any unit �r-geodesic 
( �r _
 _
 = 0), where �r is a linear connection such thatthe structure tensors are parallel. We note that the connection coincides withthe Tanaka connection ([13]) on a strongly pseudo-convex integrable CR-manifoldwhose structure is determined by a given contact metric structure, particularlyfor 3-dimensional contact metric manifolds and contact metric manifolds with1991 Mathematics Subject Classi�cation : 53C15, 53C35.Key words and phrases: contact metric manifolds, Tanaka connection, Jacobi operator.This work was partially supported by TGRC-KOSEF.Received August 21, 1995.



320 JONG TAEK CHOthe structure vector �eld � belonging to the k-nullity distribution (see section 1),and also note that the geodesics of the Levi-Civita connection and the Tanakaconnection do not coincide in general. We easily observe that a contact metricmanifold satis�es the condition (C) for any �r-geodesic 
 if and only if the Jacobioperator �eld R _
 is diagonalizable by a �r-parallel orthonormal frame �eld along
 and their eigenvalues are constant along 
 for any �r-geodesic 
 in the manifold.The present paper is a continuation of the preceding papers [8], [9] in which weproved that a 3-dimensional contact metric manifold satisfying the condition (C)for any �r-geodesic 
 is locally �-symmetric (in the sense of D.E.Blair). In thepresent paper, we determine all 3-dimensional contact metric manifolds satisfyingthe condition (C) for any �r-geodesic 
. Namely, we proveTheorem A. Let M be a 3-dimensional contact metric manifold. If M satis�esthe condition (C) for any �r-geodesic 
, then M is a Sasakian locally �-symmetricor a contact metric manifold of constant sectional curvature.It was proved ([5]) that a 3-dimensional Sasakian �-symmetric space (simplyconnected and complete Sasakian locally �-symmetric space) is isometric to theunit sphere S3 in E4 , SU (2), the universal covering space ^SL(2;R) of SL(2;R) orthe Heisenberg group H, each with a special left invariant metric (see [15]). Also,it was proved ([4]) recently that a 3-dimensional contact metric locally symmetricspace is of constant sectional curvature 0 or 1. Thus from Theorem A we haveCorollary B. Let M be a simply connected and complete 3-dimensional contactmetric manifold. If M satis�es the condition (C) for any �r-geodesic 
, then M isisometric to the unit sphere S3 in E4 , SU (2), the universal covering space ^SL(2;R)of SL(2;R) or the Heisenberg group H, each with a special left invariant metric,or the Euclidean space E3 .A contact metric on E3 , for example, is explicitly expressed as R3(x1; x2; x3)with � = 12(cos x3dx1+sinx3dx2) and gij = 14�ij. Also, in section 3 we prove thatTheorem C. Let M2n+1(n � 2) be a contact metric manifold with � belongingto the k-nullity distribution. If M satis�es the condition (C) for any �r-geodesic
, then M is a Sasakian locally �-symmetric space or M is locally the productof a 
at (n + 1)-dimensional manifold and an n-dimensional manifold of positiveconstant sectional curvature equal to 4.We remark that a contact manifold M2n+1(n � 2) can not admit a contactmetric structure of vanishing curvature (cf. pp. 115 in [2]). All manifolds in thepresent paper are assumed to be connected and of class C1.The author thanks to Professor K.Sekigawa and L.Vanhecke for their advicesand constant encouragements. 2. PreliminariesA (2n + 1)-dimensional manifold M2n+1 is said to be a contact manifold if itadmits a global 1-form � such that � ^ (d�)n 6= 0 everywhere. Given a contact



A CONTACT METRIC MANIFOLD : : : 321form �, we have a unique vector �eld �, which is called the characteristic vector�eld, satisfying �(�) = 1 and d�(�;X) = 0 for any vector �eld X. It is well-knownthat there exists a Riemannian metric g and a (1; 1)-tensor �eld � such that(2.1) �(X) = g(X; �); d�(X;Y ) = g(X;�Y ); �2X = �X + �(X)�;where X and Y are vector �elds on M . From (2.1) it follows that(2.2) �� = 0; � � � = 0; g(�X; �Y ) = g(X;Y )� �(X)�(Y ):A Riemannian manifold M equipped with structure tensors (�; �; �; g) satisfying(2.1) is said to be a contact metric manifold and is denoted by M = (M;�; �; �; g).Given a contact metric manifold M , following D.E.Blair([2]), we de�ne a (1; 1)-tensor �eld h by h = �12L��, where L denotes Lie di�erentiation. Then we mayobserve that h is symmetric and satis�esh� = 0 and h� = ��h;(2.3) rX� = ��X � �hX;(2.4)where r is Levi-Civita connection. From (2.3) and (2.4) we see that each trajectoryof � is a geodesic. We denote by R Riemannian curvature tensor de�ned byR(X;Y )Z = rX(rYZ) �rY (rXZ) �r[X;Y ]Zfor all vector �elds X;Y; Z. Along a trajectory of �, the Jacobi operator R� =R(�; �)� is a symmetric (1; 1)-tensor �eld. We have(trace R�) = g(Q�; �) = 2n� (trace h2);(2.5) r�h = �� �R� � �h2;(2.6)(cf.[2] or [3]) where Q is Ricci (1; 1)-tensor on M .A contact metric manifold for which � is Killing is called a K-contact metricmanifold. It is easy to see that a contact metric manifold is K-contact if and onlyif h = 0. For a contact metric manifold M one may de�ne naturally an almostcomplex structure on M �R. If this almost complex structure is integrable, M issaid to be Sasakian. A Sasakian manifold is characterized by a condition(2.7) (rX�)Y = g(X;Y )� � �(Y )Xfor all vector �elds X and Y on the manifold.Let M be a contact metric manifold. It is well-known that M is Sasakian ifand only if(2.8) R(X;Y )� = �(Y )X � �(X)Y



322 JONG TAEK CHOfor all vector �elds X and Y ([2]).Let T be a (1; 2)-tensor �eld on M de�ned by(2.9) TXY = �12�(rX�)Y + 12�(Y )(�X +�hX)� �(X)�Y � g(�X +�hX; Y )�:Particularly, for a Sasakian manifold, from (2.7) and (2.9) we see that(2.10) TXY = g(X;�Y )� + �(Y )�X � �(X)�Y;where X and Y are vector �elds on M . Using the tensor �eld T , we de�ne a linearconnection �r on M by(2.11) �rXY = rXY + TXY(cf. [7] or [8]). Then the linear connection �r has the torsion given by TXY �TYX.Using (2.1), (2.2) and (2.3), we have(2.12) �r� = 0; �r� = 0; �r� = 0; �rg = 0:We remark that the above connection �r coincides with the Tanaka connec-tion (de�ned in [12]) on a strongly pseudo-convex integrable CR-manifold whosestructure is determined by a contact metric manifold which satis�es (rX�)Y =g(X + hX; Y )� � �(Y )(X + hX) for any vector �elds X and Y (see Proposition2.1 in [15]). The tangent space TpM of M at each point p 2 M is decomposedas TpM = Dp � f�gp (direct sum), where we denote Dp = fv 2 TpM j�(v) = 0g.Then D : p ! Dp de�nes a distribution orthogonal to �. Let 
 be a �r-geodesicparametrized with the arc-length parameter s, where a �r-geodesic means a geo-desic with respect to �r. From (2.9) and (2.11) we see that a �r-geodesic does notcoincide with a r-geodesic in general. We denote _
 = 
�( dds) and by 
� the di�er-ential of 
 : I !M . De�ne the Jacobi operator R _
 by R _
 = R(�; _
) _
 along 
. R _
is a symmetric (1; 1)-tensor �eld along 
. Moreover, from (2.12) we observe that�( _
) is constant along 
, and thus a �r-geodesic whose tangent initially belongsto D remains in D. We call such a �r-geodesic which is tangent to D a horizontal�r-geodesic.Now, recall the de�nition of a Sasakian locally �-symmetric space ([11]).De�nition 2.1. A Sasakian manifold M = (M;�; �; �; g) is said to be locally�-symmetric if �2(rVR)(X;Y )Z = 0 for all vector �elds V;X; Y; Z 2 D.As a generalization of the above Sasakian one, a contact metric locally �-symmetric space is de�ned by D.E.Blair([3]) by the same condition. In [7] wecharacterized a Sasakian locally �-symmetric space by followingTheorem 2.2. A Sasakian manifold M is locally �-symmetric if and only if Msatis�es the condition (C) for any horizontal �r-geodesic.Concerning Theorem 2.2 we prove



A CONTACT METRIC MANIFOLD : : : 323Theorem 2.3. A Sasakian manifold M is locally �-symmetric if and only if Msatis�es the condition (C) for any �r-geodesic 
.Proof. From (2.8) and (2.12) we see that( �r�R)(Y;X)� = 0for all vector �elds X and Y on M . Then, taking account of Theorem 2.2, itsu�ces to prove g(( �r�R)(Y; V )V;X) = 0 for all vector �elds V;X; Y 2 D. Itfollows from (2.10) and (2.11) thatg(( �r�R)(Y; V )V;X) =(r�R)(Y; V )V;X) � g(�R(Y; V )V;X) + g(R(�Y; V )V ); X)+ g(R(X;�V )V; Y ) + g(R(X;V )�V; Y )(2.13)for all vector �elds V;X; Y 2 D. From (2.8) and the second Bianchi identity, wehave((r�R)(Y; V )V;X) =g(�Y; V )g(V;X) � g(�Y;X)g(V; V ) + g(R(V;X)�Y; V )+ g(�V;X)g(V; Y ) � g(R(V;X)�V; Y ):(2.14)Thus, from (2.13) and (2.14), we have(( �r�R)(Y; V )V;X) =g(�Y; V )g(V;X) � g(�Y;X)g(V; V ) + 2g(R(V;X)�Y; V )+ g(�V;X)g(V; Y )� 2g(R(V;X)�V; Y )+ g(R(Y; V )�V;X) � g(�R(Y; V )V;X)(2.15)for all vector �elds V;X; Y 2 D. From the de�nition of the curvature tensor,taking account of (2.4) and (2.7), we obtain(2.16)R(Y;X)�Z � �R(Y;X)Z = g(�Y; Z)X � g(X;Z)�Y � g(�X;Z)Y + g(Y; Z)�X;where X, Y and Z are vector �elds on M . By using (2.16), from (2.15) we seethat g(( �r�R)(Y; V )V;X) = 0 for all vector �elds V;X; Y 2 D. �S. Tanno ([13]) de�ned the k-nullity distribution of Riemannianmanifold (M; g),for a real number k, byN (k) : p! Np(k) = fz 2 TpM jR(x; y)z = k(g(y; z)x � g(x; z)y)for any x; y 2 TpMg;and he proved



324 JONG TAEK CHOProposition 2.4. Let M = (M;�; �; �; g) be a contact metric manifold. If �belong to the k-nullity distribution, then k � 1. If k < 1, then M admits threemutually orthogonal and integral distributions D(0), D(�) and D(��), de�ned bythe eigenspaces of h, where � = p1� k.In [8], we provedTheorem 2.5. Let M be a contact metric manifold with � belonging to the k-nullity distribution. Then M is locally �-symmetric (in the sense of D.E.Blair) ifand only if M satis�es the condition (C) for any horizontal �r-geodesic.Since a contact metric manifoldM with � belonging to the 1-nullity distributionis a Sasakian manifold, the above Theorem 2.5 is a extension of Theorem 2.2. Fora contact metric manifold with � belonging to the 0-nullity distrbution, D.E. Blair([2]) provedTheorem 2.6. Let M be a contact metric manifold with � belonging to the 0-nullity distribution. Then M is locally the product of a 
at (n + 1)-dimensionalmanifold and an n-dimensional manifold of positive constant sectional curvatureequal to 4. 3. 3-dimensional contact metric manifoldsIn this section we prove Theorem A. Recently, it was proved in [14] that a3-dimensional contact metric manifold always satis�es(3.1) (rX�)Y = g(X + hX; Y )� � �(Y )(X + hX)for all vector �elds X;Y .Lemma 3.1. A 3-dimensional contact metric manifold is Sasakian if and only ifh = 0.Proof. Assume that M3 is a contact metric manifold. Then from (2.7) and (3.1)we get g(hX; Y )���(Y )hX = 0. Taking account of (2.3), we have g(hX; Y ) = 0 forall vector �elds X;Y on M and hence, we have h = 0. The converse is obvious.�Now we prove Theorem A.Proof of Theorem A. Let M3 = (M3; �; �; �; g) be a 3-dimensional contactmetric manifold satisfying the condition (C) for any �r-geodesic 
. It is well-known that the curvature tensor R of a 3-dimensional Riemannian manifold isexpressed byR(Y;X)Z =�(X;Z)Y � �(Y; Z)X + g(X;Z)QY � g(Y; Z)QX� 12�fg(X;Z)Y � g(Y; Z)Xg(3.2)for all vector �eldsX;Y; Z, where �(Y;X) = g(QY;X) and � is the scalar curvatureof the manifold.



A CONTACT METRIC MANIFOLD : : : 325From (3.2) and the assumption we have0 =( �rxR)(y; x)x= ( �rx�)(x; x)y � ( �rx�)(y; x)x+ g(x; x)( �rxQ)y � g(y; x)( �rxQ)x� 12(x� )fg(x; x)y � g(y; x)xg;(3.3)for any x; y 2 TpM and any p 2M . For any unit v orthogonal to �, let fv; �v; �gbe an adapted orthonormal basis of TpM (p 2 M ). Then from (3.3) we getg(( �rxR)(v; x)x; v) = 0, g(( �rxR)(�v; x)x; �v) = 0 and g(( �rxR)(�; x)x; �) = 0,and summing up these three equalities, we have(3.4) ( �rx�)(x; x) = 0:Also, from (3.3) we get ( �rvR)(�v; v)v = 0, ( �rvR)(�; v)v = 0 and thus we have(3.5) ( �rv�)(�v; �v) = ( �rv�)(�; �)and(3.6) ( �rv�)(�v; �) = 0:Taking account of (3.1), we see that(3.7) Txy = �(y)(�x + �hx)� �(x)�y � g(�x+ �hx; y)�for x; y 2 TpM and p 2M . From (2.11) and (3.7) we have the formulas (3.8),(3.9)and (3.10) which are equivalent to (3.4),(3.5) and (3.6), respectively:(3.8) (rx�)(x; x) = 2f�(x)�(�hx; x)� g(�hx; x)�(�; x)g;(3.9) (rv�)(�; �)� (rv�)(�v; �v) = 2f(2 + g(hv; v))�(�; �v) + �(�hv; �)g;(3.10) (rv�)(�v; �) = �(�v; �v) + �(�v; �hv) � f1 + g(hv; v)g�(�; �)for any unit x 2 TpM and unit vector v orthogonal to �.Let W be the subset of M on which the number of distinct eigenvalues ofh is constant. Then W is an open and dense subset of M . We �x any pointq in W . Then from (2.3) there exists a C1 function � such that he1 = �e1,he2 = ��e2, h� = 0 where fe1; e2 = �e1; e3 = �g is a local orthonormal frame�eld on a neighborhood Nq(� W ) containing q. We denote �ijk = g(reiej ; ek),



326 JONG TAEK CHO�ij = �(ei; ej), ri�jk = (rei�)(ej ; ek) and rhRijkl = g((rhR)(ei; ej)ek; el) forh; i; j; k; l = 1; 2; 3. Then from (2.4) we get(3.11) �132 = �(1 + �); �231 = 1� �and(3.12) �131 = �232 = 0:Also, from (2.6) and taking account of (2.5) and (3.2), we have(3.13) �� = �12and(3.14) 4��312 = �22 � �11:Moreover, from (3.8) we get(3.15) r1�11 = 0; r2�22 = 0and(3.16) r3�33 = 0:Substituting x = 1p2(e1+e2) and x = 1p2 (e1�e2), respectively in (3.8) and takingaccount of (3.15), we have2r1�12 + 2r2�12 +r1�22 +r2�11 = �4�(�31 + �32)and �2r1�12 + 2r2�12 +r1�22 �r2�11 = 4�(�31 � �32):By summing these two equalities, we have(3.17) r1�22 + 2r2�12 = �4��23and substracting (3.17) from the preceding one, we have(3.18) r2�11 + 2r1�12 = �4��13:Also, substituting x = 1p2 (e1 + e3) and x = 1p2(e1 � e3), respectively in (3.8) andtaking account of (3.16), we have2r1�13 + 2r3�31 +r1�33 +r3�11 = 2��23



A CONTACT METRIC MANIFOLD : : : 327and �2r1�13 + 2r3�31 +r1�33 �r3�11 = 2��23:Summing these two equalities we have(3.19) r1�33 + 2r3�13 = 2��23and substracting (3.19) from the preceding one, we have(3.20) r3�11 + 2r1�31 = 0:A similar calculation for x = 1p2 (e2 + e3) and x = 1p2 (e2 � e3) gives(3.21) r2�33 + 2r3�23 = 2��13and(3.22) r3�22 + 2r2�32 = 0:On the one hand, from the second Bianchi identity, we have2r2�12 + 2r3�13 �r1�22 �r1�33 = 0:(3.23) 2r1�21 + 2r3�23 �r2�11 �r2�33 = 0:(3.24)From (3.17), (3.19) and (3.23) (resp.(3.18), (3.21) and (3.24)), we have (3.25)(resp.(3.26)): r1�22 +r1�33 = ���23;(3.25) r2�11 +r2�33 = ���13:(3.26)On the other hand, from (3.5) we haver1�33 �r1�22 = 4(� + 1)�23(3.27)and r2�33 �r2�11 = 4(�� 1)�13:(3.28)Thus, from (3.25)-(3.28) we haver1�33 = 12(3�+ 4)�23; r2�33 = 12(3�� 4)�13(3.29)and r1�22 = �12(5�+ 4)�23; r2�11 = �12(5�� 4)�13:(3.30)Also, from (3.17),(3.18) and (3.30), we have(3.31) r1�12 = �14(3�+ 4)�13 and r2�21 = �14(3�� 4)�23:



328 JONG TAEK CHOLemma 3.2. �ij = 0 on Nq(� W ), where i 6= j, i; j = 1; 2; 3.Proof. . Di�erentiating (2.5) in the direction � and taking account of (3.16) wehave �� = 0. Thus from (3.13) we have �12 = 0 on Nq .Now we prove �13 = 0 and �23 = 0 on Nq . Di�erentiating (2.5) in the directionse1 and e2 and taking account of (3.11), (3.12) and (3.29) we have(3.32) �23 = 8(e1�)and(3.33) �13 = 8(e2�);respectively.Also, di�erentiating �12 = 0 in the direction �, we have(3.34) r3�12 = �312(�11 � �22):Substituting x = � in (3.3), we get �r3�12 = 0; and from (3.7) we get �r3�12 =r3�12 + �22 � �11: Thus we see that(3.35) r3�12 = �11 � �22:At �rst, if there exists a point in Nq(� W ) such that �11 = �22, then �13 = �23 = 0at that point. In fact, di�erentiating �12 = 0 in the direction e1 and e2, then fromthe assumption and (3.11) we have r1�12 = �(1 + �)�13 and r2�21 = (1� �)�23,respectively. Thus taking account of (3.31) we have �13 = �23 = 0 at the pointin Nq . Next, suppose there exists a point m such that �11(m) 6= �22(m). Thenwe see that �11 6= �22 on a su�ciently small neighborhood U (m) of m. From(3.34) and (3.35) we get �312 = 1 on U (m). Thus (3.14) becomes 4� = �22 � �11on U (m). Di�erentiating this equation in the directions e1 and e2 and takingaccount of (3.11), (3.12), (3.32) and (3.33) we have r1�22 = �12(4� + 3)�23 andr2�11 = �12 (4�� 3)�13. Thus taking account of (3.30) we have(3.36) (�+ 1)�23 = 0and(3.37) (�� 1)�13 = 0on U (m). Di�erentiating (3.36)(resp.(3.37)) in the direction e1(resp.e2) and takingaccount of (3.32) and (3.33), we have(3.38) 18�223 + (�+ 1)(e1�23) = 0



A CONTACT METRIC MANIFOLD : : : 329and(3.39) 18�213 + (�� 1)(e2�13) = 0on U (m). If there exists a point n in U (m) such that �13(n) 6= 0, then from (3.37)we get �(n) = 1, and from (3.39) we get �13(n) = 0, a contradiction. Also, if thereexist a point n in U (m) such that �23(n) 6= 0, then from (3.36) we get �(n) = �1,and from (3.38) we get �23(n) = 0, a contradiction. Thus we have �13 = �23 = 0on U (m). At last, we conclude that �13 = �23 = 0 also on Nq. �From Lemma 3.2, we see that � is locally constant on Nq(� W ). Since �13 =�23 = 0, from (3.29)-(3.31), we getr1�12 = 0; r1�22 = 0; r1�33 = 0;r2�12 = 0; r2�11 = 0; r2�33 = 0:(3.40)Also, taking account of (3.12), we have(3.41) r1�13 = 0 and r2�23 = 0:The equations (3.19)-(3.22), together with (3.40) and (3.41), yield(3.42) r3�11 = 0; r3�13 = 0; r3�22 = 0; r3�23 = 0:From (3.15), (3.16), (3.40) and (3,42), we see that the scalar curvature � is con-stant. Returning to the condition (C), from (3.3), by using polarization, we have0 =Sx;z;w�(rx�)(z; w)y + �(Qz)g(�x+ �hx;w)y � �(x)g(�Qz;w)y� g(�x+ �hx;Qz)�(w)y � �(z)g(Q�x +Q�hx;w)y + �(x)g(Q�z;w)y+ g(�x+ �hx; z)�(Qw)y � (rx�)(y; z)w � �(Qw)g(�x+ �hx; y)z+ �(x)g(�Qw; y)z + g(�x+ �hx;Qw)�(y)z + �(w)g(Q�x +Q�hx; y)z� �(x)g(Q�w; y)z � g(�x+ �hx;w)�(Qy)z + g(x; z)f(rwQ)y+ �(Qy)(�w + �hw)� �(w)�Qy � g(�w + �hw;Qy)�� �(y)(Q�w +Q�hw) + �(w)Q�y + g(�w + �hw; y)Q�g � g(y; x)f(rzQ)w+ �(Qw)(�z + �hz)� �(z)�Qw � g(�z + �hz;Qw)�� �(w)(Q�z + Q�hz) + �(z)Q�w + g(�z + �hz;w)Q�g�
(3.43)
for any x; y; z; w 2 TqM , where Sx;z;w denotes the cyclic sum for tangent vectorsx; z; w. First, substitute y = e1, x = e1, z = e2, w = e3 into (3.43). Then takingaccount of (3.40) and (3.41) we haver1�23 +r3�12 �r2�31� ��22 + (3�� 1)�33 � (2�� 1)�11 = 0:(3.44)



330 JONG TAEK CHONext, substitute y = e2, x = e1, z = e2, w = e3 into (3.43). Then taking accountof (3.41) and (3.42) we haver1�23 +r2�31 �r3�12� (�� 1)�11 � (� + 1)�22 � 2��33 = 0:(3.45)Finally, substitute y = e3, x = e1, z = e2, w = e3 into (3.43). Then taking accountof (3.40) we have r2�31 +r3�12 �r1�23+ (� � 1)�33 + �22 � ��11 = 0:(3.46)From (3.44), (3.45) and (3.46), we have2r2�31 = (2�� 1)�11 + ��22 � (3� � 1)�33;2r3�12 = (3�� 1)�11 + (�� 1)�22 � (4�� 2)�33;2r1�23 = (3�� 2)�11 + (2�+ 1)�22 � (5�� 1)�33:(3.47)Now suppose there exists a point m 2 Nq such that �11(m) 6= �22(m). Then wesee that �312(m) = 1 in the proof of Lemma 3.2, and from (3.10) and (3.14) weobtain r2�31 = (�� 1)(�11 � �33);r3�12 = �11 � �22;r1�23 = (�+ 1)(�22 � �33)(3.48)at m. Thus from (3.47) and (3.48) we have�11 + ��22 � (�+ 1)�33 = 0;3(�� 1)�11 + (�+ 1)�22 � 2(2�� 1)�33 = 0;(3�� 2)�11 � �22 � 3(�� 1)�33 = 0(3.49)at m. Since �22(m) � �11(m) = 4�(m) from (3.14), the above (3.49) gives(� + 1)(�11 � �33) = �4�2;2(2�� 1)(�11 � �33) = �4�(� + 1);3(� � 1)(�11 � �33) = 4�which yields �(m) = 0. Since � is locally constant on Nq , we see that � = 0. Now,we consider jjhjj2. Then jjhjj2 = 2�2 is a function on M , and by the continuityargument we observe that h = 0 on M . Thus by Lemma 3.1 we see that M isSasakian, and by Theorem 3.1 we see that M is locally �-symmetric.



A CONTACT METRIC MANIFOLD : : : 331Or suppose �11 = �22 on Nq . Then from (3.10) and (3.14) we haver2�31 = (�� 1)(�11 � �33);r3�12 = 0;r1�23 = (�+ 1)(�22 � �33):(3.50)From (3.47) and (3.50), we see that(� + 1)(�11 � �33) = 0;2(2� � 1)(�11 � �33) = 0;3(� � 1)(�11 � �33) = 0which yields �11 = �33 on Nq . In this case, taking account of Lemma 3.2, we seethat M is a Einstein manifold and hence, of constant sectional curvature. At last,we have our conclusion. �4. A contact metric manifold with �belonging to the k-nullity distributionIn the present section we prove Theorem C. The following Lemma is known (cf.p. 446-447 in [13] or p. 251 in [10]).Lemma 4.1. Let M = (M2n+1; �; �; �; g) be a contact metric manifold with �belonging to the k-nullity distribution. Then(4.1) (rX�)Y = g(X + hX; Y )� � �(Y )(X + hX):Proof of Theorem C. Let M2n+1(n � 2) be a contact metric manifold with �belonging to the k-nullity distribution, i.e.,(4.2) R(X;Y )� = k(�(Y )X � �(X)Y );where k is a real number. From (4.2) we see that( �r�R)(Y;X)� = 0for all vector �elds X and Y onM . Thus, by virtue of Theorem 2.5, it only remainsto examine g(( �r�R)(Y; V )V;X) = 0 for all vector �elds V;X; Y 2 D. From (2.9)and (4.1) we get(4.3) TXY = �(Y )(�X + �hX) � �(X)�Y � g(�X + �hX; Y )�:Then it follows from (2.11) and (4.3), together with (2.1) and (2.2), thatg(( �r�R)(Y; V )V;X) =(r�R)(Y; V )V;X) � g(�R(Y; V )V;X) + g(R(�Y; V )V;X)+ g(R(X;�V )V; Y ) + g(R(X;V )�V; Y )(4.4)



332 JONG TAEK CHOfor all vector �elds V;X; Y 2 D. On the other hand, from (4.2) and the secondBianchi identity we obtaing((r�R)(Y; V )V;X) =kfg(�Y; V )g(V;X) + g(�hY; V )g(V;X)� g(�Y;X)g(V; V )� g(�hY;X)g(V; V )g� g(�hV; V )g(Y;X) + g(�V;X)g(V; Y )+ g(�hV;X)g(V; Y )g+ g(R(V;X)�Y; V ) + g(R(V;X)�hY; V )� g(R(V;X)�V; Y )� g(R(V;X)�hV; Y );(4.5)where X;Y 2 D. From the de�nition of the curvature tensor, taking account of(2.4) and (4.1), we obtaing(R(Y;X)�Z;W ) � g(�R(Y;X)Z;W )= g(�Y + �hY; Z)g(X + hX;W )� g(X + hX;Z)g(�Y + �hY;W )� g(�X + �hX;Z)g(Y + hY;W ) + g(Y + hY; Z)g(�X + �hX;W );(4.6)where X;Y; Z;W 2 D. Since g(( �r�R)(Y; V )V;X) = 0, from (4.4), (4.5) and (4.6),we have(k � 1)fg(�Y; V )g(X;V )� g(�Y;X)g(V; V ) + g(�V;X)g(V; Y )g+ (k + 3)fg(�hY; V )g(X;V )� g(�hY;X)g(V; V ) � g(�hV; V )g(X;Y )+ g(�hV;X)g(V; Y )g= g(�Y; V )g(hX; V ) � g(�Y;X)g(hV; V ) + g(�V;X)g(hV; Y )� 3fg(�hY; V )g(hX; V )� g(�hY;X)g(hV; V ) � g(�hV; V )g(hX; Y )+ g(�hV;X)g(hV; Y )g+ g(R(V;X)�hV; Y ) � g(R(V;X)�hY; V );(4.7)for all vector �elds V;X; Y 2 D. Since h is symmetric operator and 2n + 1 � 5,we assume that hY = �Y and hV = �V , where Y and V are unit and mutuallyorthogonal. Then from (4.7) we obtain(k � 1)g(Y; �X) + (k + 3)�g(Y; �X)=�g(Y; �X) � 3�2g(Y; �X)+ �g(�R(V;X)Y; V ) � �g(R(V;X)�Y; V ):(4.8)Also, from (4.6) we have(4.9) g(�R(V;X)Y; V ) � g(�R(V;X)�Y; V ) = (1 � �2)g(Y; �X):
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