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OSCILLATION OF LINEAR FUNCTIONAL EQUATIONS
OF HIGHER ORDER

W. NOWAKOWSKA anD J. WERBOWSKI

ABSTRACT. The paper contains sufficient conditions under which all solutions of
linear functional equations of the higher order are oscillatory.

1. INTRODUCTION

Let ® be the set of real numbers and let I denote an unbounded subset of
R4 =[0,00). By ¢™ we mean the m-th iterate of the function g : I — I, i.e.

go(t):t, gm+1(t):g(gm(t)), tel, m=0,1,...

In the whole of this paper upper indices at the sign of a function will denote
iterations. In each instance we have the relation ¢'({) = g(¢). Exponents of a
power of a function will be written after a bracket containing the whole expression
for the function.

We consider the oscillatory behavior of solutions of functional equations of the
form

() Qo(D)z(t) + Qu(t)x(g(1) + Q2()x(g* (1) + . + @mir(Hz (g™ (1)) = 0,

where Qp : [ — Rfork=0,1,....m+1,m>1,and g : I — I are given functions
and z 1s an unknown real valued function. We also assume that

(1) g(t) #1¢ and limi_oog(t) = 0, tel.

By a solution of equation (F) we mean a function # : I — R such that
sup{|z(s)| : s € I;, = [to,00) NI} > 0 for any ¢y € Ry and z satisfies (F) on
1.

A solution z of equation (F) is called oscillatory if there exists a sequence
of points {t,}22,t, € I, such that lim,_ot, = oo and z(t,)x(thy1) < 0 for
n=1,2 ... Otherwise it is called nonoscillatory.
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In contrast with the extensive development of the oscillation theory of differen-
tial and difference equations (for example see [2], [4] and the references contained
therein), the authors are of the opinion that at this time in the literature there are
no known oscillation criteria for functional equations. The purpose of this paper
is to obtain sufficient conditions under which all solutions of (E) are oscillatory.

First let us observe that existence of oscillatory solutions of equation (F) is
connected with the sign of the functions @; ({ = 0,1,...,m+ 1) on I. For example,
it is easy to prove that either Q;(t) > 0 or @;(t) < 0 for ¢ = 0,1,...,m + 1,
t € I, implies that equation (F) possesses only oscillatory solutions. If one of the
coefficients ); has an opposite sign then others, i.e. if there exists j € {0, 1,..., m—+
1} such that Q;(¢) < 0 and Q;(t) > 0, i € {0,1,...m+ 1} — {j} then equation
(E) can possess both oscillatory and nonoscillatory solutions. For example, the
functional equation

3e(t) —ba(t+ 7))+ x(t+27)+ 2t 4+ 37) =0, t €[0,00)

has an oscillatory solution = cos2¢ and a nonoscillatory solution # = ¢+ 1. So,
a question arises: if the last case holds, under what additional conditions on the
coefficients ); every solution of () will be oscillatory. We present some answers
to this question in case

Q1) <0 and @Q;(t)>0 ({=0,2,3,...m+1) for tel

Without loss of generality we may assume that Q,(¢t) = -1, te€l.
Then equation (F) takes the form

(L) 2(g(t) = Qo()z(t) + Q(D)z(g7(1) + - + Qmar (Wx(g™ (1)),  m=>1.

In the proofs of our theorems the following lemmas will be useful.

Lemma 1. Consider the functional inequality
(2) w(g(1) > P()x(t) + Q()a(g" (1), k> 1,
where P,@ : I — R, and g satisfies condition (1). If

E—1 k E41
(3) iminf  QU()  PGH(0)>

I3t k41
Fimeo i=0 ji=1 +

then the functional inequality (2) has not positive solutions for large t € I.

Proof. Suppose that x is a nonoscillatory positive solution of (2) and let () > 0
for ¢t € It,, t1 > 0. Then also, in view of (1), there exists a point t3 € I, such
that z(g*(t)) > 0 for t € I, and ¢ € {1,2,...,k+ 1}. Therefore from (2) we have
fort eI,

w(g(t)) = P(t)x(t)
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which gives for i € {1,2,....,k+ 1}

(1 )2 2(0) PG
Using now (4) in (2) one gets
(5) 2(g(t) 2 P(O)z(t) + 2(9())Q) P(g'(1))
and .
o Py <1- P
B A )
By iteration for ¢ = 0,1,..., k — 1 we have
i ’ itj i x Z(t)
Q@(ﬂ%:f%g+@DSl—J%g(D$@iww)

Summing now both sides of the above inequality from ¢ = 0 to i = k — 1 we obtain

" Q(gi(t))' Pt () <k — '_ P(gi(t))%~
Since
LI g () i 20
P P(yg (t))m S P(g'( ))W
e M 3
= O P(g'(1))
therefore
(6) Z;wahﬂmfwmsk P-ﬂﬁ%n;PWW)
Let
k41 k=1 k
% A< hantl—l»lg Qlg'(t)) Py (1))
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Then there exist a constant B € (A, 1) and a point t3 € I, such that

(7) A< B< i Qlg'(t))  P(g't (1)) for teI,.

Choose now the least natural number M such that
g M

(8) L

which is possible because of B > A. From (6) we have

F—1 ¥
B z(t) .
—<1- P(g'(t
P ey, W)
Thus
k-1 k
z(t) B B
)< 1—-= <= - =
wty  PWW)s -4 <y max Bol-g
2=0
1k Mt ooa
=% i1 "B
Hence we have
k B ot g
r(g"(t) 2 z(t)  Plg'())
2=0

and

Repeating we have .
ol B 2 k
w0y 2 3 wle®)  P()
Similarly we get
%) W) 2 S ) PE),
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Thus

1> 2 on PEw).

Therefore we have for 7 € {0,1,...,k— 1}

1> 2 QUi e o).

ji=1

Summing now from ¢ = 0 to ¢ = k — 1 we get

B ) o
v> T ey P
i=0 j=1
and by (7)
M
B
k> — B.
- A
But this contradicts (8). Thus the proof of the lemma is complete. a

A slight modification in the proof of Lemma 1 leads to the following result
Lemma 2. If
liminf — Q(s'(t)  PH®)> =7

Ist k41
Fimeo i=0 ji=1 +

then the functional inequality

(10) 2(g(1)) < P(O)z(t) + Q(O)z(¢" (1),  k>1,
where P, @ : I — R} and g satisfies (1) has not negative solutions for large t € I.
Corollary 1. If (3) holds, then the functional equation

(S) 2(g(t)) = P(W)e(t) + Q)z(g" 1 (1),  k>1,
where P, (), g are the same as in Lemmas 1 and 2, has only oscillatory solutions.

Remark 1. From Corollary 1 in the case &k = 1 we get Theorem 1 of [1].

2. MAIN RESULTS

In this section we study sufficient conditions for the oscillation of all solutions
of equation (L). Further we consider equation (L) for m > 1 because for m =
1 equation (L) resolve itself into equation (S5). As usually we take f;; a; =
1. Moreover, for convenience, we will assume that inequalities about values of
functions are satisfied for all large ¢ € 1.

We give now two independent conditions for oscillation of all solutions of equa-

tion (L).
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Theorem 1. Let

m+1 k—1

(11) iminf  Qr(t)  Qo(e’(1) >

I3t—oo
%

I

Then every solution of equation (L) is oscillatory.

Proof. Suppose that (L) has a nonoscillatory solution z and let #(¢) > 0. Then
also, in view of assumption (1) about function g, (¢*(t)) > 0,4 € {1,2,...,m+1}.
Thus from equation (L) we get

2(g(1)) = Qo(t)x(t)

which gives for £ = 3,4,....m+1

(12) He (1) 2 26°0) Qule (1)
Using now (12) in equation (L) we obtain
m+1 k—1
2(9(1) 2 Qo(D)z(t) +2(4*(t)  Qu(t) Qol¢’ (1)).

In view of Lemma 1 and (11) the last inequality has not positive solutions, which
contradicts the fact that z(¢) > 0 for sufficiently large t € I.

When z(t) < 0 the proof is similar but we apply Lemma 2 in it. Thus the proof is
complete. a

We give now another oscillation criterion for equation (L).

Theorem 2. If

. . m—1 . m i m m+1
(13) lim inf _ Glg (t))jleo(g P> :
where .
Gt = Qr()Qm-rt+2(9" 1)) + Q41 (1),
k=2

then all solutions of equation (L) oscillate.

Proof. Assume that z is an eventually positive solution of equation (L). Then,
as in proof of Theorem 1, the following inequality is true

2(g" (1)) > 0 for ke{l,2,...m+ 1}
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Thus from equation (L) we obtain

2(9(0) > Quopra(Dalg™ ™ 42(0)  for  k=2,..m,

which gives

(14) (g (1)) > 2(g™ (1) Qm_ry2(g"71(2)) for k=2,...,m.
iFrom equation (L) and inequality (14) we have

m

x(g(t)) = Qo(t)x(t) + x(g™ (1)) Qe(D)Qm-r42(9" ' (1) + Qi (1) =

k=2
= Qo(t)x(t) + G(H)z(g™ (1)),
Using now Lemma 1 for the above inequality we get a contradiction with the

fact that x is a positive solution of (L). Similarly for z(¢) < 0 in view of Lemma
2 we get a contradiction. Thus the proof is complete. a

Remark 2. One can observe that conditions (11) and (13) for oscillation are
independent. For example, the following third order functional equation

Sa(t) — 10tz(t + 1) + 5t(t + Da(t + 2) + [PP2(t+3) =0,  t € Ry,

has only oscillatory solutions, since condition (11) of Theorem 1 is fulfilled. How-
ever, condition (13) of Theorem 2 is not satisfied. Consider now the functional
equation

5r(t) — 10te(t + 1) +t(t+ Dt +2) + 6[Pz(t +3) =0, ¢ € R,.
Then condition (13) is fulfilled. In this case condition (11) is not satisfied.

3. APPLICATIONS

In this section we show an application of the main results of this paper to
recurrence equations. Consider a recurrence equation of the form

(RE) z(n+ 1) =ag(n)z(n) + az(n)x(n+ 2) + ...+ ami1(n)z(n + m+ 1),

where n € N = {1,2,...}, m > 1 is a natural number, ap : N — Ry for k =
0,2,...,m+ 1. Apply now Theorems 1 and 2 to equation (RFE) to obtain the
following results

Corollary 2. If
m+1 k—1
lim inf ag(n) ag(n+j) >

n—oQ

bl

|

then every solution of equation (RE) is oscillatory.
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Corollary 3. Let

m—1 m m
lim inf ag(n+i+j) ag(n +Dam—pr2(n+k =14+ ampr(n+1i) >
nee i=0 j=1 k=2
m+1
m
15 R
(15) > T

Then every solution of equation (RE) oscillates.

Remark 3. If in equation (RE) we take ag(n) =1, ap(n) =0 for k = 2,3,...,m,
then from condition (15) we get a similar result as in Theorem 1 of [3].
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