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CONJUGACY CRITERIA AND PRINCIPAL SOLUTIONS
OF SELF-ADJOINT DIFFERENTIAL EQUATIONS

ONDREJ DoSLY, JAN KOMENDA

ABSTRACT. Oscillation properties of the self-adjoint, two term, differential equation
*) (=1)™(p()y™) ) + g(z)y = 0

are investigated. Using the variational method and the concept of the principal
system of solutions it is proved that (*) is conjugate on R = (—oc0, co) if there exist
an integer m € {0,1,...,n — 1} and cg,...,cm € R such that

0
/ p2(n m l)p 1(1’)5[1’:00:/ p2(n m l)p 1(l’)dl’
0
and

T3
limsup / q(x)(co—l—clx—l—~~~—|—cmacm)2 de <0, g(z)Z0.
1

x » T2

Some extensions of this criterion are suggested.

I. INTRODUCTION

In this paper we study oscillation properties of solutions of the self-adjoint
differential equation

(1.1) (=)™ (p(2)y™) ™ + g(2)y = 0,

where € I = (a,b), —o0o < a <b < oo, p(z)>0o0nIandp ! g€ Li(l).
Particularly, we give conditions on the functions p, ¢ which guarantee that (1.1) is
conjugate on [I.

Recall that two points #1,22 € I are said to be conjugate relative to (1.1)
if there exists a nontrivial solution y of (1.1) such that ¥ (z;) = 0 = y@ (),
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i=20,1,...,n—1. Equation (1.1) is said to be conjugate on I whenever there exists
at least one pair of points of I which are conjugate relative to (1.1); in the opposite
case equation (1.1) is said to be disconjugate on I. If there exists ¢ € I such that
(1.1) is disconjugate on (e, b) then this equation is said to be nonoscillatory at b. In
the opposite case (1.1) is said to be oscillatory at b. Oscillation and nonoscillation
of (1.1) at the left end point a are defined in the same way.

The problem of conjugacy on a given interval has been recently studied for
various differential equations. Hawking and Penrose [8] proved that the second
order equation

(1.2) —y +q(@)y=0
is conjugate on R provided ¢(z) < 0 and ¢ Z 0 on R. This result was extended
by Tipler [13] who showed that (1.2) is conjugate on R if

T2

(1.3) lim sup q(z) de < 0.

r1 a,x2 b ¢y

Concerning the more general second order equation

—(p(@)y) +a(x)y =0,
Miiller-Pfeiffer [9] proved that this equation is conjugate on an arbitrary interval
Iif
b
(1.4) p H@)de=0c0o= p '(x)de.

a

and (1.3) hold. A similar criterion was proved in [9] for the fourth order equation
and it was conjectured that the result may be extended to (1.1). This conjecture
was shown to be correct in [4] where the following statement was proved.

Theorem A. Suppose that there exist an integer m € {0,1,...,n — 1} and
o, ..., cm € R such that

0

(1.5) g2 m by Yz)dr = 00 = g2 Dy Yx) dx.
0

If

(1.6) lim sup q(x)(co+clx—|—~~~—|—cmxm)2 dr <0

then (1.1) is conjugate on R.
In [11] it was proved that (1.3) may be replaced by a weaker condition

(1.7) lim sup q(z)de <0, q(x)Z0.

r1 a,v2 b g
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In this paper we combine Theorem A with (1.7); we show that (1.1) is conjugate
on R if (1.5) holds and (1.6) is replaced by the weaker condition

T2

lim sup g(2)(co+ 1+ -+ epa™)ide <0, q(x) £0.

T T2 r1

In contrast to [4] where a rather tedious proof of Theorem A is presented, here
we used the method based on the concept of the principal system of solutions
introduced in [5].

The paper 1s organized as follows. In the next section we recall basic properties
of solutions of self-adjoint, even order, differential equations and their relation
to linear Hamiltonian systems. Section 3 is devoted to the investigation of the
principal system of solutions of the equation

(p()y™) =0

and in Section 4 these results are used to prove the main statement of the paper
— a conjugacy criterion for (1.1). The last section contains some remarks and
comments concerning possible extension of the results of the paper.

2. PRELIMINARY RESULTS

In this section we recall some results concerning oscillation properties of linear
differential equations and their relation to linear Hamiltonian systems (LHS).
Let y be a solution of the self-adjoint equation

(2.1) (—1)* pe(z)y® ) =,

where p, >0on I and po,p1,...,Pn 1,Pn " € Lioc(I). Let uy =y, ... up =y Y,
Un :pny(n)avn k= —Y, k+1 +pn ky(n k)ak = 1a"'an_ 1a U = (ula"'aun)Ta
v = (vi,...,v,)7 (the superscript ”7” denotes the transpose of a vector or a

matrix). Then (u,v) is a solution of the LHS
(2.2) u = Au+ B(x)v, v =C(x)u— ATv,
where A, B, C' are n X n matrices with entries

1, forj=i4+1,i=1,...,n—1,
Aij =
0, elsewhere,

B(z) = diag{0,. ..,O,pnl(x)},
C(x) = diag{po(z),...,pn 1(x)},

(2.3)
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see e. g. [3, Chap. IT]. We say that the solution (u,v) of (2.3) is generated by the
solution y of (1.2). Conjugate points relative to (2.1) are defined in the same way
as for (1.1).

Two points 1, 22 are said to be conjugate relative (2.2) if there exists a solution
(u,v) of this system such that u(z;) = 0 = u(x2) and u(z) is not identically zero
between z; and x2. Consequently, 1,22 are conjugate relative (1.1) if and only if
they are conjugate relative to (2.3) with A, B, C given by (2.4). These definitions
of conjugate points relative to (2.1) and (2.2) are motivated by the calculus of
variations, where the nonexistence of conjugate points implies positive definiteness
of the functional of the second variation, see e. g. [2]. Conjugacy, disconjugacy,
oscillation and nonoscillation of (2.1) and (2.2) are defined via conjugate points in
the same way as for (1.1).

Now let us recall some facts concerning linear Hamiltonian systems. Simulta-
neously with (2.2) consider the matrix system

(2.4) U =AU + B(z)V, V =C()U - ATV

Here U,V are n x n matrices of real-valued functions. A solution (U, V) of (2.4)
is said to be self-conjugate whenever U7 (2)V (z) = VT (2)U(x). Two solutions
(U1,V1), (U, Va) of (2.4) are said to be linearly independent if every solution U, V
of (2.4) can be expressed in the form (U, V) = (U1Cy + U2Ca, V1 C1 + V3 (), where
(4, Cy are constant n xn matrices. If (U1, V1), (Us, Va) are self-conjugate solutions,
it can be shown that they are linearly independent if and only if the constant matrix
UL (z)Va(z) — VL (2)Us(x) is nonsingular. A self-conjugate solution (U, V3) is
said to be principal at b if Up(z) is nonsingular near b and there exists a solution
(U1, V1), linearly independent of (Uy, V3), such that Uy (x) is nonsingular near b and
lim, , U, 1(9:)Ub(a:) = 0. The solution (U, V1) linearly independent of (Up, V5)
is said to be nonprincipal at b. Tt can be proved that (U, V) is the principal
solution at b if and only if

T 1

h%l U, 1(:;)B(s)UbT 1(5) ds =0

and that the principal solution is determined uniquely up to a right multiple by a
constant nonsingular n X n matrix.

Let 41, ..., yn be solutions of (2.1) and (u1,v1), ..., (4n, vy) be the solutions of
(2.2) generated by y1,...,yn. If (U, V) is the solution of (2.4) such that wy,... uy
and vy, ..., v, form the columns of U and V respectively, we say that the solution
(U, V) of (2.4) is generated by the solutions y1,...,yn of (2.1). If y1,...,yn gen-
erate the principal solution at b of (2.4) we call y1,...,yn the principal system of
solutions of (2.1) at b. If yy1, ..., y, generate the nonprincipal solution at b of (2.4)
we call y1, ..., yn the nonprincipal system of solutions of (2.1) at b.

Now we give some auxiliary results, which we use in the proof of Theorem 4.1.
The conjugacy criterion given in this theorem is based on the following variational
lemma.
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Lemma 1. ([7]). Equation (2.1) is conjugate on I = (a,b) if and only if there
exists a function y € W™ (I), supp y C I, such that

b N
I(y;a,b) = () (y*)? de < 0.
a k=0

The following properties of equation (2.1) and LHS (2.2) are well known and
their proofs can be found in [3, Chap. II].

Lemma 2. Let (2.1) be disconjugate on I and let 1,22 € I, ¢;, d; € R", i =
0,...,n— 1, be arbitrary. There exists unique solution y of (2.1) satisfying the
boundary conditions y) (21) = ¢;, Y (x2) =di, i =0,...,n— 1.

Lemma 3. Let (U, V) be a self-conjugate solution of (2.4) such that the matrix
U(x) is nonsingular for x € Iy C I and ¢ € Iy. Then

xr

Uy(x) =U(x) U Ys)B(s)UT Y(s)ds,

Vi(z) =uT Yz) + V(x) U 1(:;)B(s)UT L(s)ds
is also a self-conjugate solution of (2.4) and VI (z)U(z) — UL (z)V(z) = I (the
identity matrix).

We need also a result concerning transformations of the equation (2.1), which
can be found in [1].

Lemma 4. Let h(x) € C"(I) be a positive real-valued function such that its
quasiderivatives hl"l = p,p(") plotll = _ pll 4 p o pte D plee 1] =
— m2" 21 4 pih are absolutely continuous on I. The transformation y = hz
transforms equation (2.1) into the equation

(=D (Ps(a)z") ") =0,
k=0
where P, = p,h%, Po=h _,(=1)*(ph®)5).

Throughout the paper we shall also use another definition of disconjugacy
and nonoscillation for linear differential equations, introduced by Nehari. To
distinguish these concepts from the above given ones, we shall speak about N-
discongugacy and N-nonoscillation.

Consider a linear differential equation

(2.5) Ly) =y +qn 1(2)y™ Y4+ gola)y =0,

where qi(2) € C(I). This equation is said to be N-disconjugate on an interval
Iy C I whenever every nontrivial solution of this equation has at most (n — 1)
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zeros on Iy, every zero counted according to its multiplicity, (2.5) is said to be N-
nonoscillatory at b if there exists ¢ € I such that this equation is N-disconjugate
on (e, b).

Recall briefly oscillation properties of solutions of (2.5). A system of solutions
Y1, ..., Yn of (2.5) is said to form the Markov system of solutions on an interval
Iy C I if the Wronskians

Y Yk

W(yla"'ayk): k=1

RN

ygk 1) y;(f 1)

are positive throughout 7. The proofs of the following lemmata may be found in

[3, Chap. III]

Lemma 5. Equation (2.5) is N-disconjugate on an interval (d,b) C I if and only
if there exists a Markov system of solutions of (2.5) on (d,b). This system can be
found in such a way that it satisfies the additional conditions

yi >0on (d,b),i=1,...,n,
(2.6) ye 1=o(yy) forx = bk=2,... n.

Lemma 6. Letyi, ..., y2n be the linearly independent solutions of (2.1) such that

T G B ST
e b yky1()
Then w1, ..., yn form the principal system of solutions at b and Y41, ..., Yyan the

nonprincipal system of solutions at b of (2.1), particularly, for any two n-tuples,
1< <igo- <ty <20, 1 < j1 < Ja-or < jn < 2n, such that o, < jg,
k=1,...,n, and at least one inequality is strict, we have

Wi, 4
lim Wi i)

=0.
il bW(yjl,...,yjn)

III. PRINCIPAL SYSTEM OF SOLUTIONS

In this section we describe explicitely the so-called ordered system of solutions
at +oo of the equation

(3.1) (p(2)y™ (2))™) = 0.

This description of ordered system plays crucial role in the proof of the conjugacy
criterion for (1.1) given in the next section.

In order to simplify the formulation of our results, we introduce the following
terminology.
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Definition. A solution y of (3.1) is said to be polynomial if y™) = 0. In the
opposite case, i. e., y™) Z 0, it is said to be nonpolynomial.

n 1

Equation (3.1) has n linearly independent polynomial solutions 1,... % and

n linearly independent nonpolynomial solutions

We also use the following notation. If f,¢ : [T,00) = R for some T' € R we
write

f<gast >0 <— lim —= =10.

Recall that by Lemma 5 equation (3.1) always possesses a system of solutions
Yiy - s Yn, U1, - - -, Yn such that

(3.2) Yr<y2 << Yn <P < G2 << Un
In this case, by Lemma 6, 41, ..., y, 1s the principal system of solutions at co and
U1, ..., Yn is the nonprincipal system. The system of solutions satisfying (3.2) is

sald to be ordered at .

To describe explicitely ordered system of solution of (3.1) at oo, we distinguish
four (mutually disjoint) cases, each covered by one of the next four theorems.

Theorem 3.1. Suppose that m € {0,1,...,n—1}, n<2(m+1), k:=n—m—1
and

(3.2) 2®p Yx)de = oo, ¥ 1y Nx)de < oo,

If
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-1 . . .
yi(e)= (e—0)" Wrp YWydt— "7 (=Ddam LI ki Yyde,
0 =0 J 0
k 2
y2(x) = (x =) YWty T(t)dt — " (=1)7a™ tJ
0 =0 J
X thritly Y)dt,
0
yk($): (l‘—t)n 1t2k 1p 1(t)dt—l‘n 1 tZk 1p 1(t)dt,
0 0
Yrt1 () = (x =)™ %p (), dt
0
Y1 (2) = (x—=0)" W Yydt = (x—0)" 4 p Y()dt,
0 0
T 2k 1 n—1 . . .
z(z)=  (z2—0)" 'p t)dt — R D t'p L(t)dt,
0 =0 J 0
2k 2
z -1 . . .
Hz) = (e—0" Yp '(t)dt — TN (cnfen VI iy Yy,
0 =0 J 0
k
T —1 . . .
m(@) = (e—0)" Wl Y0di— T (=1)fer 1 @t 1y L)de
0 =0 J 0

then the ordered system of solutions of (3.1) at oo is

2m n+2

1< <z <z <z << by <™ <

<y <2< <y 1 <2 P <y o < < Yt

Proof. First we prove the ordering of nonprincipal system of solutions whose
smallest solution we prove to be y;. We have

Sy (n-1! 7

VS ey, 0T e
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ko1 .

, —Din—j5-1! , ,

(_1)] . (TL ) (TL J ) : e omoJ 2 tk-l—]p 1(t)dt:
Jiin=1=7Hln—-m—-2-j) 0

1o . . .
(DI L Ry Ydt =

(n_l)' fl‘—t)k 1tkp 1(t)dt— ;

(k=1 j=0
- EZ:B' Ox(x_t)’“ Hp Ht)dt - . (=% Hthp Hydt =
_ EZ: ;: R 1(t)dt:(—1)k27l:;: ;: (t=a)t e e

Ife >0, wehave  (t—x)f thp Y(t)dt< 5 Yhp Y(t)dt= | 7 1p (t)dt,
(m+1)(x) = 0 and thus y; < 2™+, Further,

hence lim, Y
. yl(l‘) 1 . m 1 . m+1
th e ﬁth yg )(l‘) = ﬁth ) yg )(t)dt
and
Y (1) dt| = (s—0)F 's*p (s)ds dt =
0 0ot
= (s =) Lsfp Y(s)dt ds+
0o
T T — ¢ kS
—+ (s =) Lsfp Y(s)dt ds = s"p 1(s) —(8 ) ds+
i 0 0 k 0
k7 1
+ s"p 1(s) _b Z ) ds = . sskp 1(s)ds+

1
s¥p L(s) —(s— )" + 5" ds.

Since by our assumption lim, Ox t2%p L(t)dt = oo, the first integral in the last
expression tends to oo as # — oo. The second integral is positive (for s > z > 0
we have s¥ > (s — x)*), hence lim, |y§m)(x)| = oo which means z™ < y;.

By a similar computation one may verify that

i) ()
th omis = 0, th omA 1 ,
j=1,....k=n—m—1, hence z™tJ 1<yj<xm+j.

To prove the remaining inequalities, we proceed in the same way. As an exam-
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ple, we prove that %7 "+l = gn 2k 1 o < g?m 42 — 420k We have

Zgn Zk)(l‘): x(x_t)Zk 1 (n_l)'p 1(t)dt—

0 (2k — 1)!
2% 1
(n—1)! i 2k § 1 o1
: L (1)ig% i tp () dt =
| 4 — |
=0 g2k —j— 1) 0
T * 1 or_q , o
:% (w = 1) Tp (t)dt - U (mnet T iy Ywydt =
(2k=1) =0 J 0
— (n—l)' x(x_t)zk 1p 1(t)dt— (l‘—t)Zk 1p 1(t)dt —
G 0
(n—1)! 2% 1.1
== —1 t)dt.
Further, | (z —1)% 'p Y(t)dt] < _ ¢** 'p (t)dt — 0 as v — oo and hence
lim, ;,ﬁ(_zl =0,i. e,z <a” ?*. Next we show that 2” ?* < z. It holds
. z1(x) 1 . (n 2k 1)
th PR 2k 1)1 th 7 (z) =
_ 1 T O PR
= th m th . Zl (t)dt =
1 xr
=——1 — )% 1p Ys)ds dt
(n—Qk—l)!xlm ) t (s —1) p ~(s)ds
and
lim (s = )2 lp Ys)ds dt =
v 0 ¢
= lim (s —t)2% lp Ys)dt ds+ (s —)% 1p Ys)dt ds =
v 0 0 © 0
) T _t)zk s (5—15)2’“ z
=-1 ! (87 d —_ Ys)ds =
Jim ) p (s) 5% ) s+ ) % Op (s)ds
z 2k 2k 2k
:th ) P 1(5)82—kds—|— ) p *(s) 82_147_% ds = oo,

since the integrand in the last integral is positive for z > 0. Consequently, we have
me n+1:xn 2k 1_<Z1 _<me n+2:x2n k. O

The remaining three statements of this section may be proved in the same way
as Theorem 3.1.



CONJUGACY CRITERIA 227

Theorem 3.2. Suppose that (3.2) holds and n > 2(m + 1). Let

k1
T -1 . . .
yi=  (z—0" YWp ydi— " (=1)fem Vi by Yg)dt
0 _ J 0
j=0
- k2o ' '
o= (x—t)" Ly Yt)dt — (=1 b
0 j=0 J

X th ity Y)dt

Ymil = (l‘—t)n 1tk+mp 1(t)dt—
0
k m 1
n—1 dgn 1 Fbmetg, 1
- ;o e t p - (t)dt,
7=0 0
z1(x) = (x —t)" p L(t)dt
xr
e m= (x—=0)" 't "ty 1)dt)
xlf
2k mp1 = (x—=0)" 1k Ty Yydi—
0
n 2 n—1
_ j (—I)Jl‘n 1 4 tZk n+]+1p 1(t)dt
7=0 0
xr
= (x—t)" Y p Lt)dt—
0
oo
- (=) YT R Ly Yyt
7=0 J 0

then the ordered system of solutions of (3.1) at oo is

<= m <1<z o << < <™ <

<y <"t < et gy < 2P

n 1
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Theorem 3.3. Let m and k be the same as in Theorem 3.1, n < 2m + 3, 1. e,
k< m+2 and

(3.4) 2y Yx)de < oo, ¥ 1y Yx)de = oo
If
@ k2o . . .
yi(e) = (x—=t)" WFp Yt)dt — ; (=1)dem 3 Hip (1) dt,
0 j= 0
i 3 n—1 J .
ya(e) = (x—t)" Wty Yt)dt — , N AR AR (R
0 g J 0
J
Uk 1( )_ (l‘—t)n 1t2(k 1)p 1(t)dt—l‘n 1 tZ(k 1)p 1(t) dt
0 0
yr () = (x —1)" L2k 1y L) dt
0
Ymt1(x) = (x =)™ 1" tp Yt)dt
0
i 2k 2 n—1 . . .
z(z)=  (z—=t)" 'p t)dt — (=1 b t'p t(t)dt
0 g J 0
]_
i 2k 3 n—1 . . .
mE)=  (z—=t)" p (t)dt - j (=1)7gm™ 1Y Ity (1) dt
0 , 0
7=0

T —1 . . .
w(@)= (-7 Y p 1) di— ”j (—1)fzm 13 R 1 1),
0 =0 0

then the ordered system of solutions of (3.1) at oo is

L<oe @™ M2 <™ M o 2 < <
<2y <2< <y <2 P < < < U
Theorem 3.4. Let (3.4) holds and n > 2m+3,i. e, k >m+ 2. If
i k 2
n@ = (=0 Lkp L(t)dt — ”j‘,l (=1)izn 1 i 0 iy Y()dt

7=0
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" k3

1 . )
pe)= (-0 WHp Ya - "0 (cpien 1
0 0 7]
]_
% tk-l—j-l—lp 1(t)dt
0
fut k m 2 n—1
bnpi= (e =0 W (1)t - RS
0 . 7]
j=0
% tk+m+1p 1(t) dt,
0
z1 = (x —t)" 'p (t)dt
xr
2 opgok = (l‘—t)n 1t n+2k 1p 1(t)dt
xr
! "o
Zog np1=  (z—t)" 1 "p Lt)dt - S (=1 1
0 0 7]
]_
% tj+2k np 1(t)dt
0
’ n 1k 11 b n—1 S
= (z—t)" 7 p ()dt - R N
0 : J
Jj=0

xR Yy L)t
0

then the ordered system of solutions of (3.1) at oo is

<= m 1 =1Lz << < 1< < <

<™y < <y <2<t L

Remark 3.1. To determine an ordered system of solutions at —oo one may use
the same method. It suffices in the above theorems to replace , by  Asa
corollary of previous theorems we have the following statement which plays crucial
role in the proof of the conjugacy criterion for (1.1) given in the next section.

Corollary 3.1. Let V*,V denote the subspaces of the solution space of (3.1)
generated by the principal system of solution at co and —oo, respectively. If for
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somem € {0,...,n—1}
0
xZ(n m l)p 1(l‘)dl‘:0®: xZ(n m l)p 1(1‘)dl‘
0
then
Vtny D Lin{l,z,...,2™}.

Remark 3.2. The statement of Corollary 3.1 1s implicitely given without proof
in [4]. In that paper it is claimed that if the first integral in (3.3) is divergent and

0 % 2p (z)dr < oo then the principal solution at co of the LHS correspond-
ing to (3.1) is of the form

Ug(z) = H(x) C1+ b YBYHT Y(t)dt , Vo(x)=HT (x)Cs,

where I is the fundamental matrix of the system H = AH satisfying H(0) = I,

L1 0 0 0

0 Bs(ydt ©2 = ’

Cl: 0 Inml

0

Im-l—lLIn m 1 being identity matrices of the dimension given by their subscript

and Bs(t) is the (n — m — 1) x (n — m — 1) matrix which we get if we write the
matrix H 1(¢)B(#)HT *(t) in the form
B, B

1 T1_ b1 D3

H "BH = BQT B

with (m+ 1) x (m+ 1) and (m + 1) x (n —m — 1) matrices By, By. If

-~ 0 0 M S 0
= In m 1 Ca = 0 0

and
xr

U(x)=H(z) Ci+ H 'WBOHT *@)dtCy |, V(e)=HT *(z)Ch

then the matrix UOT‘N/ — VOT[j is nonsingular, i. e., (Uy, Vo) and (ﬁ, ‘N/) form the

base of the solution space of (2.2) and by a direct computation one may verify
that .

. "B ' B B

U Ya)Us(x) = s e oo

T 0 B2T o B . Ds

0

To prove that (Upy, Vp) is the principal solution at oo, one needs to show that
U Yz)U(xz) = 0 as & — oo. After some computations it is possible to see that
this is a difficult problem. Moreover, this approach does not give any information
about the ordered system of solutions.



CONJUGACY CRITERIA 231
IV. CONJUGACY CRITERION
In the following theorem we give the conjugacy criterion which extends the

result of [11] to equation (1.1) and generalizes also the main result of [4] given in
Theorem A.

Theorem 4.1. Suppose there exist an integer m € {0,...,n — 1} and real con-
stants cq, ..., ¢y such that
0
xZ(n m 1)p 1(x)da::oo, xZ(n m 1)p 1(x)dx:oo

0

and the function h(z) = cg + -+ -+ ca™ satisfies

ta
(4.1) lim sup q(z)h*(z)dr < 0.

t1 to t1
If ¢ Z0 in R then (1.1) is conjugate on R.

Proof. The proof is based on the variational principle given in Lemma 1. Tt
suffices to find a function y € W27 (R) with suppy C R such that the quadratic
functional I(y; —oo, o0) is negative.

The equation (3.1) can be rewritten in the form of LHS (2.3) with C' =0, i. e,

(4.2) u = Au+ B(x)v, v =—-ATv.
and its matrix analogy is
(4.3) U =AU + B(x)V, V =-ATV,

where A, B(x) are n X n matrices given by (2.3). Let z € R, d > 0, p > 0 be such
that ¢(x) < —d for | — 2| < p (the existence of such quantities follows from (4.1)
and the fact that ¢ Z 0) and let 21,22 € R be such that 1 < Z — p, 2 4+ p < z2.
Further, let A be any C™ function which is positive in (Z — p, Z+ p) and is equal to
zero outside this interval. Finally, choose xg, z3 € R such that xy < z; and x5 >
3.

Now, denote by f, g the solution of the boundary value problem

(p(x)y™ (2))) =0
FD(z0) =0, FD(x1) = hD (1), ¢V (23) =0, gD (22) = hD(x2),
i=0.. .n—1,

respectively. As the equation (3.1) is disconjugate, by Lemma 2 this problem has
=0,

unique solution for every z;, ¢ ..., 3. Define the test function y as follows

o

’ x < Zo,

S~y

5]
~—

(), ro < <Xy,
y(r) =  h(x)(14+0A(x)), 1<z < 2,
(

$)a l‘zgl‘gl’g,

o @

’ T > T3,
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where § > 0. Then y € W*"(R) and suppy C R. Denote by (u1,v1) and (uz, vs)
solutions of (4.2) corresponding to the solutions f,¢ of (3.1). If we denote ¢ =
(co, .- ¢m,0,...,0)T € R" then by Lemma 3

x 1 1
ui(z) = Up(x) U, 'BU] 'ds U, 'BUL 'ds ¢
i ’ T 1
vi(x) = Vp(z) U 'BUF Yds+ U] '(x) U 'BUE Yds ¢
T T 1

us(x) = Ug() Up'BUE ‘'ds Up'BUL 'ds ¢

i T2
z 1

Up'BUEL Yds ¢,

va(z) = Vg(x) URlBUg 1d8—U1€ 1(l‘)

i T2

where (Ugr, Vg), (UL, V1) denote the principal solutions of (2.4) at oo and —oo,
such that Uy and Ug contain at first m + 1 columns functions 1, ... 2" and their
derivatives up to order n — 1. Hence, u; and uy satisfy the following boundary
conditions:

Ul(l‘o) =
Uz(l‘g) =

where

h(z) = (h(z),h (z),..., K" D))" = UL (2)e = Ur(z)e.

Let us compute

T r1 T
p(f("))zdx = v} Buyde = vl (u, — Aup)de =
To To To
T, % o T T, %
= vu, — (vi w1+ Au)de = vyuy  —
xr
T ’
— vlT(—A—i—A)uldx: vlT(xl)ul(xl).
To
Similarly, we get
T3 T3 T3
p(g"™)de = vl Buydr = vt (uy — Aug)de =
Ta T2 T2
T, @ o T T, @
= vyuy = — (vy us + v Aug)de = vj ug I
2 . 2
T3

— va(—A + A)usdr = —va(xz)uz(xz)

T2
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Using these results, we have

1

p(f("))zdx: vlT(xl)ul(xl) =" Ug 1BUE Lds X
X U, 'BUL Yds Vi (xn) + U Haey) Ur(z) U, 'BUT lds x
0 . . . 0 .
X U 'BUL 'ds  e=cT U, 'BUL tds e

Here the fact that Vi (z)e = 0 has been used. In a similar way we obtain
T3 T3 1
p(g(”))zdx =T URlBUg Yds c.

T2 T2

As Ur(x) and Ug(z) are the first components of the principal solutions of (4.3) at
—oo and oo, we have

T 1

(4.4) U, 'BUL 'ds  — 0 forzg — —0
and

T3 1
(4.5) Up'BUL 'ds  —0  foras — o0

Now we estimate ;Dl qf*dz and ;23 qg*dz. To do it we prove the monotonicity
of the functions f/h and g/h on (wg, 1) and (z2, z3). Suppose, that z1,..., 22,
is an ordered system of solutions at oo of (3.1), 1. e., z; = o(z41) for # = o0, i =
1,...,2n — 1. By Lemma 5 these solutions form a Markov system of solutions
in some neighbourhood of oo, i. e., all Wronskians W(z1,...,2;) are positive,
k=1,...,2n, if z is sufficiently large. By Lemma 6 z1,..., 2z, form principal
system of solutions of (3.1) at co. Because h(z) = cg+ -+ ¢ppa™ is contained in
the principal system of solutions of (3.1) at oo, there exist constants d;, i = 1,...,n,
such that h(z) = dy21+- - -+dy2,. Now denote k =max{i: i € {1,...,n}; d; # 0}
and replace z; by h. This new system of solutions z1,...,2k 1,R, Zk41,.. ., 22n
has the same properties as z1,...,22,. By Lemma 4 the transformation y = hy
transforms (3.1) into the equation

(=" (ph* g™ )™ -+ (Prg) + h(ph™)) Mg =0,
1. e., w =y 18 the solution of

(4.6) (=) (ph*w™ ) 4 4 (Piw) = 0.
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We shall show that this equation is N-disconjugate on [#4, 23], if 5 is sufficiently
large. Put

wlz—(zl/h),...,wk 1:—(Zk 1/h),wk:(zk+1/h),...,w2n 1:(22n/h)

As 21, .. 2k 1, Ry Zk41, - - -, 22, form the Markov system of solutions of (3.1), we
have

wy = —(21/h) =h W (2, h) >0, W(wi,wa) =h 3W(z1,20,h) >0
W(wy,...,w)=(=1)'W((z1/h),...,(z/h) ) = (=1)'h CYOW(h, 21, . %) =
(=1)%h " YWz, ... zi,h) > 0fori<k
W(wy,. .., w)= (=W ((zi/h) ... (z 1/h), (zeg1/h) ..., (z/h)) =
(=1)*h CHOW(h, 2y, .. z) =
(—1)2kh : 1W(z1,...,zk Lhy zkg1, o 2) >0
for k <1< 2n.

Hence, wy, ..., w2y 1 form the Markov system of solutions of (4.6) on [z3, z3] for
zo sufficiently large. By Lemma 5 the equation (4.6) is N-disconjugate on [z2, 23],
i. e, every solution of (4.6) has at most 2n — 2 zeros on this interval. The function
(g/h) is asolution of (4.6) and has the zeros of multiplicity n—1 both at z2 and #3.
It follows that (g/h) cannot have zero on (22, x3), i. €., g/h is monotonic on this
interval. In a similar way the existence of a Markov system and disconjugacy
of (4.6) on [zg, #1] for 21 sufficiently close to —oo can be proved. Hence f/h is
monotonic on (g, 1). Now, by the second mean value theorem of integral calculus
there exists & € (g, #1) such that

Ty Ty Ty

gfidz = qh*(f/h)*de = gh’dz.
o o 51
Similarly
T3 T3 52
qg® dz = qh*(g/h)* dx = gh?dz,

for some &3 € (22, 23).
Further let us compute the integral

T2 T2

py™)2 4 gy de = PI(R(1+6A)) ™M + gh* (1 +6A)?  da =
- PL(ASA)Y™? 4 gh%(1 + 26A + 82A%) dr <
' Z+p Z2
<4 pl(hAY ™2 de +  qhPde+
T op Ty
Z+p T+p
+ 26(—d) AR? dx + &° gh?’ A% dz <
T p T p

< 6K + gh?dr — 26d Ko,

Ty
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where K; = ;-I_; p[(hA(a:))(”)]zdx and Ky = ;-I_; Ah?dx > 0. Consequently,

using the previous estimates,

I(y, —o0,00) = I(y, o, x3) = 1(y, ®o,x1) + I(y, 21, 22) + I(y, 22, 23) <

< Ky — 20dKo + gh*de + (U, 'BUL 'ds) et
T3 T1 52
+cT( URlBUg Yds) te+ qh*dz + gh?dz
To &1 T2
&2
=6 K + gh’de — 26d K-+
&1
+cT( ULlBULT Yds) Lo+ c7( URlBUg Yds) te

In view of (4.4) and (4.5) we can choose z1, 22 and g, 23 in such a way that
' PULBUL Mds) e < 6%/3,¢T( P UR'BUE 'ds) e < 6%/3 and (4.1) im-
plies that ;12 qh?dx < 6%/3, whenever t; < z; and t5 > 5. Consequently,

I(y, ®o, #3) < 62K — 26dKo + 6% = §(6(K1 + 1) — 2dK>),

where Ky > 0, 1. e., I(y,a,b) < 0if § > 0 is sufficiently small. This completes the
proof. a

V. REMARKS ON RELATED PROBLEMS

By a slight modification of the proof of Theorem 4.1 we may establish the
following criterion for conjugacy of the equation

n

(5.1) (pi(2)y ") + q(t)y = 0,

7=0

on an arbitrary interval I = (a,b), a,b € R. In this criterion equation (5.1) is
viewed as a perturbation of (2.1).

Theorem 5.1. Let (2.1) be disconjugate on I, m € {1,...,n} and suppose that
there exist solutions y1,...,ym of (3.1) which are involved at principal system
of solutions both at a and b. If (2.1) is N-nonoscillatory at a and b, there exist
€1,...,cm € R such that the function h(z) = c1y1 (%) + - - - + emym (2) satisfies

ta
lim sup q(z)h?(x)de <0
t1 aita bty
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and ¢ Z 0 on I = (a,b), then (1.1) is conjugate on I.

As an example of application of the previous theorem consider the equation
(5.1) (—=1)"y™) + p(t)y =0

in the interval I = (0, 00). Equation (5.1) can be viewed as a perturbation of the
Euler equation

(5.2) (—1)ny B2y g

o

where pis, = Pzn(zn2 1) and

Pon(A) = (=1)" AN = 1) ... (A — 20 + 1).

This approach has been used in [6] in order to investigate oscillation properties of
(5.1).

First of all, recall basic properties of the Euler equation (5.2). The real function
y = Pap(2) has n local minima and (n — 1) local maxima if n is even (n maxima
and (n — 1) minima for n odd) and its graph is symmetric with respect to the line

2n_1 The equation

r = 7 -

2n—1

PZn(A):PZH 9

has exactly 2n — 2 simple roots, denote them A < Ay < --- < A, 1 < 2n—1-—

A 1< 2n—1=X, 2<---<2n—1-—Xq, and one double root A, = 2"2 L The so-
lutions of (5.2) are of the form y; =%, i=1,....n—1, y, = 2 y Ynt1 =
2 lgt, Yngigr =t 1 M i=1,...,n— 1. It is not difficult to verify that
these solutions form the ordered system at co as well as at 0 and that y, = 1

is the only solution of (5.2) (up to a multiply by a nonzero real constant) which is
contained both in principal system of solutions at £ = 0 and ¢ = co. Hence, as a
corollary of Theorem 5.1, we have the following statement.

Theorem 5.2. Suppose that

. t2 2n—1 /,LG
lim sup t p(t)+ - dt <0
t1 O0)t2 t1 t

and

p(t) + % Z0 on (0,00).

Then (5.2) is conjugate on I = (0, 00).
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Remark 5.1. i) Observe that Theorem 5.1 is not applicable if one wants to
investigate conjugacy of the equation (5.1) on the interval 7 = (0, c0), considered
as a perturbation of the equation y(**) = 0 instead of (5.2). The reason is that in
(27) = ( generated
by solutions which are contained both in principal systems at 0 and oo is zero.

this case the dimension of the solution space of the equation y

ii) The test function used in the proof of Theorem 4.1 is the best possible in
the sense that for the functions f, ¢ the positive contributions of ZDI p(f(”))zdx,

and Z;’ p(g(”))zdx are the smallest as possible, since f, ¢ are the solutions of

the equation (3.1) which is the Euler-Lagrange equation corresponding to the
quadratic functional

iii) The open problem is whether Theorem 5.1 holds without the assumption
that (2.1) is N-nonoscillatory at a and b. This assumption was needed to estimate

3
theintegrals "' ¢f?, ¥ qg* by the second mean value theorem of integral calculus
To To
(we needed the monotonicity of f/h and g/h). Observe also that this assumption
may be dropped if ¢(z) < 0 near a and b.
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