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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 217 { 238CONJUGACY CRITERIA AND PRINCIPAL SOLUTIONSOF SELF{ADJOINT DIFFERENTIAL EQUATIONSOnd�rej Do�sl�y, Jan KomendaAbstract. Oscillation properties of the self-adjoint, two term, di�erential equation(*) (�1)n(p(x)y(n))(n) + q(x)y = 0are investigated. Using the variational method and the concept of the principalsystem of solutions it is proved that (*) is conjugate on R = (�1;1) if there existan integerm 2 f0;1; : : : ; n� 1g and c0; : : : ; cm 2 R such thatZ 0
1

x2(n� m� 1)p� 1(x)dx =1 = Z
10 x2(n� m� 1)p� 1(x)dxand limsupx1 #�1 ;x2 "1

Z x2x1 q(x)(c0 + c1x+ � � �+ cmxm)2 dx � 0; q(x) 6� 0:Some extensions of this criterion are suggested.I. INTRODUCTIONIn this paper we study oscillation properties of solutions of the self-adjointdi�erential equation(1.1) (�1)n(p(x)y(n))(n) + q(x)y = 0;where x 2 I = (a; b); �1 � a < b � 1, p(x) > 0 on I and p� 1; q 2 Lloc(I).Particularly, we give conditions on the functions p; q which guarantee that (1.1) isconjugate on I.Recall that two points x1; x2 2 I are said to be conjugate relative to (1.1)if there exists a nontrivial solution y of (1.1) such that y(i)(x1) = 0 = y(i)(x2),1991 Mathematics Subject Classi�cation : 34C10.Key words and phrases: conjugate points, principal system of solutions, variational method,conjugacy criteria.Received February 17, 1995.



218 OND�REJ DO�SL�Y, JAN KOMENDAi = 0; 1; : : :; n�1. Equation (1.1) is said to be conjugate on I whenever there existsat least one pair of points of I which are conjugate relative to (1.1); in the oppositecase equation (1.1) is said to be disconjugate on I. If there exists c 2 I such that(1.1) is disconjugate on (c; b) then this equation is said to be nonoscillatory at b. Inthe opposite case (1.1) is said to be oscillatory at b. Oscillation and nonoscillationof (1.1) at the left end point a are de�ned in the same way.The problem of conjugacy on a given interval has been recently studied forvarious di�erential equations. Hawking and Penrose [8] proved that the secondorder equation(1.2) �y 0 0 + q(x)y = 0is conjugate on R provided q(x) � 0 and q 6� 0 on R. This result was extendedby Tipler [13] who showed that (1.2) is conjugate on R if(1.3) lim supx1 # a; x2 " b Z x2x1 q(x) dx < 0:Concerning the more general second order equation�(p(x)y 0 )0 + q(x)y = 0;M�uller-Pfei�er [9] proved that this equation is conjugate on an arbitrary intervalI if(1.4) Z b p� 1(x) dx =1 = Z a p� 1(x) dx:and (1.3) hold. A similar criterion was proved in [9] for the fourth order equationand it was conjectured that the result may be extended to (1.1). This conjecturewas shown to be correct in [4] where the following statement was proved.Theorem A. Suppose that there exist an integer m 2 f0; 1; : : : ; n � 1g andc0; : : : ; cm 2 R such that(1.5) Z 0
1

x2(n� m� 1)p� 1(x) dx =1 = Z

10 x2(n� m� 1)p� 1(x) dx:If(1.6) lim supx1 #�1 ;x2 "1

Z x2x1 q(x)(c0 + c1x+ � � �+ cmxm)2 dx < 0then (1.1) is conjugate on R.In [11] it was proved that (1.3) may be replaced by a weaker condition(1.7) lim supx1 # a; x2 " b Z x2x1 q(x) dx � 0; q(x) 6� 0:



CONJUGACY CRITERIA 219In this paper we combine Theorem A with (1.7); we show that (1.1) is conjugateon R if (1.5) holds and (1.6) is replaced by the weaker conditionlim supx1 #�1 ;x2 "1

Z x2x1 q(x)(c0 + c1x+ � � �+ cmxm)2 dx � 0; q(x) 6� 0:In contrast to [4] where a rather tedious proof of Theorem A is presented, herewe used the method based on the concept of the principal system of solutionsintroduced in [5].The paper is organized as follows. In the next section we recall basic propertiesof solutions of self-adjoint, even order, di�erential equations and their relationto linear Hamiltonian systems. Section 3 is devoted to the investigation of theprincipal system of solutions of the equation(p(x)y(n))(n) = 0and in Section 4 these results are used to prove the main statement of the paper{ a conjugacy criterion for (1.1). The last section contains some remarks andcomments concerning possible extension of the results of the paper.2. PRELIMINARY RESULTSIn this section we recall some results concerning oscillation properties of lineardi�erential equations and their relation to linear Hamiltonian systems (LHS).Let y be a solution of the self-adjoint equation(2.1) n
Xk=0(�1)k � pk(x)y(k) � (k) = 0;where pn>0 on I and p0; p1; : : : ; pn� 1; p� 1n 2 Lloc(I). Let u1 = y; : : : ; un = y(n� 1);vn = pny(n); vn� k = �v 0n� k+1 + pn� ky(n� k); k = 1; : : : ; n � 1; u = (u1; : : : ; un)T ,v = (v1; : : : ; vn)T (the superscript "T" denotes the transpose of a vector or amatrix). Then (u; v) is a solution of the LHS(2.2) u0 = Au+ B(x)v; v 0 = C(x)u� AT v;where A;B;C are n � n matrices with entries(2.3) Aij = � 1; for j = i+ 1; i = 1; : : : ; n� 1;0; elsewhere;B(x) = diagf0; : : : ; 0; p� 1n (x)g;C(x) = diagfp0(x); : : : ; pn� 1(x)g;



220 OND�REJ DO�SL�Y, JAN KOMENDAsee e. g. [3, Chap. II]. We say that the solution (u; v) of (2.3) is generated by thesolution y of (1.2). Conjugate points relative to (2.1) are de�ned in the same wayas for (1.1).Two points x1; x2 are said to be conjugate relative (2.2) if there exists a solution(u; v) of this system such that u(x1) = 0 = u(x2) and u(x) is not identically zerobetween x1 and x2. Consequently, x1,x2 are conjugate relative (1.1) if and only ifthey are conjugate relative to (2.3) with A;B;C given by (2.4). These de�nitionsof conjugate points relative to (2.1) and (2.2) are motivated by the calculus ofvariations, where the nonexistence of conjugate points implies positive de�nitenessof the functional of the second variation, see e. g. [2]. Conjugacy, disconjugacy,oscillation and nonoscillation of (2.1) and (2.2) are de�ned via conjugate points inthe same way as for (1.1).Now let us recall some facts concerning linear Hamiltonian systems. Simulta-neously with (2.2) consider the matrix system(2.4) U 0 = AU + B(x)V; V 0 = C(x)U � ATVHere U; V are n � n matrices of real-valued functions. A solution (U; V ) of (2.4)is said to be self-conjugate whenever UT (x)V (x) = V T (x)U (x). Two solutions(U1; V1); (U2; V2) of (2.4) are said to be linearly independent if every solution U; Vof (2.4) can be expressed in the form (U; V ) = (U1C1+U2C2; V1C1+V2C2), whereC1; C2 are constant n�n matrices. If (U1; V1); (U2; V2) are self-conjugate solutions,it can be shown that they are linearly independent if and only if the constant matrixUT1 (x)V2(x) � V T1 (x)U2(x) is nonsingular. A self-conjugate solution (Ub; Vb) issaid to be principal at b if Ub(x) is nonsingular near b and there exists a solution(U1; V1), linearly independent of (Ub; Vb), such that U1(x) is nonsingular near b andlimx! b�

U � 11 (x)Ub(x) = 0. The solution (U1; V1) linearly independent of (Ub; Vb)is said to be nonprincipal at b. It can be proved that (Ub; Vb) is the principalsolution at b if and only iflimx! b�

�

Z xU � 1b (s)B(s)UT � 1b (s) ds�

� 1 = 0and that the principal solution is determined uniquely up to a right multiple by aconstant nonsingular n � n matrix.Let y1; : : : ; yn be solutions of (2.1) and (u1; v1); : : : ; (un; vn) be the solutions of(2.2) generated by y1; : : : ; yn. If (U; V ) is the solution of (2.4) such that u1; : : : ; unand v1; : : : ; vn form the columns of U and V respectively, we say that the solution(U; V ) of (2.4) is generated by the solutions y1; : : : ; yn of (2.1). If y1; : : : ; yn gen-erate the principal solution at b of (2.4) we call y1; : : : ; yn the principal system ofsolutions of (2.1) at b. If y1; : : : ; yn generate the nonprincipal solution at b of (2.4)we call y1; : : : ; yn the nonprincipal system of solutions of (2.1) at b.Now we give some auxiliary results, which we use in the proof of Theorem 4.1.The conjugacy criterion given in this theorem is based on the following variationallemma.



CONJUGACY CRITERIA 221Lemma 1. ([7]). Equation (2.1) is conjugate on I = (a; b) if and only if thereexists a function y 2W 2;n(I); supp y � I, such thatI(y; a; b) = Z ba " n
Xk=0 pk(x)(y(k))2 # dx < 0:The following properties of equation (2.1) and LHS (2.2) are well known andtheir proofs can be found in [3, Chap. II].Lemma 2. Let (2.1) be disconjugate on I and let x1; x2 2 I; ci; di 2 Rn; i =0; : : : ; n � 1; be arbitrary. There exists unique solution y of (2.1) satisfying theboundary conditions y(i)(x1) = ci; y(i)(x2) = di; i = 0; : : : ; n� 1.Lemma 3. Let (U; V ) be a self-conjugate solution of (2.4) such that the matrixU (x) is nonsingular for x 2 I0 � I and c 2 I0. ThenU1(x) =U (x) Z xc U � 1(s)B(s)UT � 1(s)ds;V1(x) =UT � 1(x) + V (x) Z xc U � 1(s)B(s)UT � 1(s)dsis also a self-conjugate solution of (2.4) and V T1 (x)U (x) � UT1 (x)V (x) = I (theidentity matrix).We need also a result concerning transformations of the equation (2.1), whichcan be found in [1].Lemma 4. Let h(x) 2 Cn(I) be a positive real-valued function such that itsquasiderivatives h[n] = pnh(n), h[n+1] = � � h[n] �

0 + pn� 1h(n� 1); : : : ; h[2n� 1] =� � h[2n� 2] �

0 + p1h0 are absolutely continuous on I. The transformation y = hztransforms equation (2.1) into the equationn
Xk=0(�1)k(Pk(x)z(k))(k) = 0;where Pn = pnh2; P0 = h P nk=0(�1)k(pkh(k))(k).Throughout the paper we shall also use another de�nition of disconjugacyand nonoscillation for linear di�erential equations, introduced by Nehari. Todistinguish these concepts from the above given ones, we shall speak about N-disconjugacy and N-nonoscillation.Consider a linear di�erential equation(2.5) L(y) = y(n) + qn� 1(x)y(n� 1) + � � �+ q0(x)y = 0;where qk(x) 2 C(I). This equation is said to be N-disconjugate on an intervalI0 � I whenever every nontrivial solution of this equation has at most (n � 1)



222 OND�REJ DO�SL�Y, JAN KOMENDAzeros on I0, every zero counted according to its multiplicity, (2.5) is said to be N-nonoscillatory at b if there exists c 2 I such that this equation is N-disconjugateon (c; b).Recall brie
y oscillation properties of solutions of (2.5). A system of solutionsy1; : : : ; yn of (2.5) is said to form the Markov system of solutions on an intervalI0 � I if the WronskiansW (y1; : : : ; yk) = �

�

�

�

�

�

�

y1 : : : yk... ...y(k � 1)1 : : : y(k � 1)k �

�

�

�

�

�

�

; k = 1; : : : ; nare positive throughout I0. The proofs of the following lemmata may be found in[3, Chap. III]Lemma 5. Equation (2.5) is N-disconjugate on an interval (d; b) � I if and onlyif there exists a Markov system of solutions of (2.5) on (d; b). This system can befound in such a way that it satis�es the additional conditionsyi > 0 on (d; b); i = 1; : : : ; n;yk � 1 = o(yk) for x! b; k = 2; : : : ; n:(2.6)Lemma 6. Let y1; : : : ; y2n be the linearly independent solutions of (2.1) such thatlimx! b yk(x)yk+1(x) = 0; k = 1; : : : ; 2n� 1:Then y1; : : : ; yn form the principal system of solutions at b and yn+1; : : : ; y2n thenonprincipal system of solutions at b of (2.1), particularly, for any two n-tuples,1 � i1 < i2 � � � < in � 2n, 1 � j1 < j2 � � � < jn � 2n, such that ik � jk,k = 1; : : : ; n, and at least one inequality is strict, we havelimx! b W (yi1 ; : : : ; yin)W (yj1 ; : : : ; yjn) = 0:III. PRINCIPAL SYSTEM OF SOLUTIONSIn this section we describe explicitely the so-called ordered system of solutionsat �1 of the equation(3.1) (p(x)y(n)(x))(n) = 0:This description of ordered system plays crucial role in the proof of the conjugacycriterion for (1.1) given in the next section.In order to simplify the formulation of our results, we introduce the followingterminology.



CONJUGACY CRITERIA 223De�nition. A solution y of (3.1) is said to be polynomial if y(n) � 0. In theopposite case, i. e., y(n) 6� 0, it is said to be nonpolynomial.Equation (3.1) has n linearly independent polynomial solutions 1; : : : ; xn� 1 andn linearly independent nonpolynomial solutions�y1 = Z x0 (x� t)n� 1p� 1(t)dt; : : : ; �yn = Z x0 (x� t)n� 1tn� 1p� 1(t)dt:We also use the following notation. If f; g : [T;1) ! R for some T 2 R wewrite f � g as t!1 () limt!1

f(t)g(t) = 0:Recall that by Lemma 5 equation (3.1) always possesses a system of solutionsy1; : : : ; yn; ~y1; : : : ; yn such that(3.2) y1 � y2 � � � � � yn � ~y1 � ~y2 � � � � � ~yn:In this case, by Lemma 6, y1; : : : ; yn is the principal system of solutions at 1 and~y1; : : : ; ~yn is the nonprincipal system. The system of solutions satisfying (3.2) issaid to be ordered at 1.To describe explicitely ordered system of solution of (3.1) at 1, we distinguishfour (mutually disjoint) cases, each covered by one of the next four theorems.Theorem 3.1. Suppose that m 2 f0; 1; : : :; n� 1g, n � 2(m+1), k := n�m� 1and(3.2) Z

1 x2kp� 1(x)dx =1; Z

1 x2k � 1p� 1(x)dx <1;If



224 OND�REJ DO�SL�Y, JAN KOMENDAy1(x) = Z x0 (x� t)n� 1tkp� 1(t)dt� k � 1
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 tk+jp� 1(t)dt;y2(x) = Z x0 (x� t)n� 1tk+1p� 1(t)dt� k � 2
Xj=0 � n� 1j � (�1)jxn� 1� j� Z

10 tk+j+1p� 1(t)dt;...yk(x) = Z x0 (x� t)n� 1t2k � 1p� 1(t)dt� xn� 1 Z

10 t2k � 1p� 1(t)dt;yk+1(x) = Z x0 (x� t)n� 1t2kp� 1(t); dt...ym+1(x) = Z x0 (x� t)n� 1tk+mp� 1(t)dt = Z x0 (x� t)n� 1tn� 1p� 1(t)dt;z1(x) = Z x0 (x� t)n� 1p� 1(t)dt� 2k � 1
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 tjp� 1(t)dt;z2(x) = Z x0 (x� t)n� 1tp� 1(t)dt� 2k � 2
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 tj+1p� 1(t)dt;...zk(x) = Z x0(x� t)n� 1tk � 1p� 1(t)dt� k
Xj=0 � n� 1j � (�1)jxn� 1� jZ

10 tj+k � 1p� 1(t)dtthen the ordered system of solutions of (3.1) at 1 is1 � � � � � z1 � x2m� n+2 � z2 � � � � � xm� 1 � zk � xm �� y1 � xm+1 � � � � � yn� m� 1 � xn� 1 � yn� m � � � � � ym+1:Proof. First we prove the ordering of nonprincipal system of solutions whosesmallest solution we prove to be y1. We havey(m+1)1 = (n� 1)!(n�m � 2)! Z x0 (x� t)n� m� 2tkp� 1(t)dt�



CONJUGACY CRITERIA 225� k � 1
Xj=0(�1)j (n� 1)!(n� j � 1)!j!(n� 1� j)!(n �m � 2� j)!xn� m� j � 2 Z

10 tk+jp� 1(t)dt == (n� 1)!(k � 1)! 2

4

Z x0(x� t)k � 1tkp� 1(t)dt�k � 1
Xj=0 � k � 1j � (�1)jxk � 1� j Z

10 tk+jp� 1(t)dt3

5 == (n� 1)!(k � 1)! �

Z x0 (x� t)k � 1tkp� 1(t)dt� Z

10 (x� t)k � 1tkp� 1(t)dt� == (n� 1)!(k � 1)! Z

1x �(x � t)k � 1tkp� 1(t)dt = (�1)k (n� 1)!(k � 1)! Z

1x (t� x)k � 1tkp� 1(t)dt:If x > 0, we have R

1x (t�x)k � 1tkp� 1(t)dt� R

1x tk � 1tkp� 1(t)dt = R

1x t2k � 1p� 1(t)dt,hence limx!1

y(m+1)1 (x) = 0 and thus y1 � xm+1. Further,limx!1

y1(x)xm = 1m! limx!1

y(m)1 (x) = 1m! limx!1

Z x0 y(m+1)1 (t)dtand j Z x0 y(m+1)1 (t)dtj = Z x0 �

Z

1t (s � t)k � 1skp� 1(s)ds� dt == Z x0 �

Z s0 (s � t)k � 1skp� 1(s)dt� ds++ Z

1x �

Z x0 (s� t)k � 1skp� 1(s)dt� ds = Z x0 skp� 1(s) � � (s � t)kk � s0 ds++ Z

1x skp� 1(s) � � (s � t)kk � x0 ds = 1k Z x0 skskp� 1(s)ds++1k Z

1x skp� 1(s) � �(s � x)k + sk � ds:Since by our assumption limx!1

R x0 t2kp� 1(t)dt =1, the �rst integral in the lastexpression tends to 1 as x ! 1. The second integral is positive (for s > x > 0we have sk > (s � x)k), hence limx!1

jy(m)1 (x)j =1 which means xm � y1.By a similar computation one may verify thatlimx!1

yj(x)xm+j = 0; limx!1

yj(x)xm+j � 1 =1;j = 1; : : : ; k = n�m� 1, hence xm+j � 1 � yj � xm+j .To prove the remaining inequalities, we proceed in the same way. As an exam-



226 OND�REJ DO�SL�Y, JAN KOMENDAple, we prove that x2m� n+1 = xn� 2k � 1 � z1 � x2m� n+2 = x2n� k. We havez(n� 2k)1 (x) = Z x0 (x� t)2k � 1 (n� 1)!(2k � 1)!p� 1(t)dt�� 2k � 1
Xj=0 (n � 1)!j!(2k � j � 1)! (�1)jx2k � j � 1 Z

10 tjp� 1(t) dt == (n � 1)!(2k � 1) 2

4

Z x0(x � t)2k � 1p� 1(t)dt� 2k � 1
Xj=0 � 2k�1j � (�1)jx2k � 1� j Z

10 tjp� 1(t)dt3

5 == (n� 1)!(2k � 1)! �

Z x0 (x� t)2k � 1p� 1(t)dt� Z

10 (x� t)2k � 1p� 1(t)dt� == � (n� 1)!(2k � 1)! Z

1x (x� t)2k � 1p� 1(t)dt:Further, j R

1x (x � t)2k � 1p� 1(t)dtj � R

1x t2k � 1p� 1(t)dt ! 0 as x ! 1 and hencelimx!1

z1(x)xn�2k = 0, i. e., z1 � xn� 2k. Next we show that xn� 2k � 1 � z1. It holdslimx!1

z1(x)xn� 2k � 1 = 1(n � 2k � 1)! limx!1

z(n� 2k � 1)1 (x) == limx!1

1(n� 2k � 1)! limx!1

Z x0 z(n� 2k)1 (t)dt == 1(n � 2k � 1)! limx!1

Z x0 �

Z

1t (s � t)2k � 1p� 1(s)ds� dtand limx!1

Z x0 �

Z

1t (s � t)2k � 1p� 1(s)ds� dt == limx!1

�

Z x0 �

Z s0 (s � t)2k � 1p� 1(s)dt� ds+ Z

1x �

Z x0 (s � t)2k � 1p� 1(s)dt� ds� == � limx!1

�

Z x0 p� 1(s) � (s � t)2k2k � s0 ds+ Z

1x � (s � t)2k2k � x0 p� 1(s)ds� == limx!1

�

Z x0 p� 1(s)s2k2k ds+ Z

1x p� 1(s) � s2k2k � (s � x)2k2k � ds� =1;since the integrand in the last integral is positive for x > 0. Consequently, we havex2m� n+1 = xn� 2k � 1 � z1 � x2m� n+2 = x2n� k. �The remaining three statements of this section may be proved in the same wayas Theorem 3.1.



CONJUGACY CRITERIA 227Theorem 3.2. Suppose that (3.2) holds and n � 2(m + 1): Lety1 = Z x0 (x� t)n� 1tkp� 1(t)dt� k � 1
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 tk+jp� 1(t)dty2 = Z x0 (x� t)n� 1tk+1p� 1(t)dt� k � 2
Xj=0 � n� 1j � (�1)jxn� 1� j� Z

10 tk+j+1p� 1(t)dt...ym+1 = Z x0 (x� t)n� 1tk+mp� 1(t)dt�� k � m� 1
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 tk+m+jp� 1(t)dt;z1(x) = Z

1x (x� t)n� 1p� 1(t)dt...zk � m = Z

1x (x� t)n� 1t� n+2kp� 1(t)dt)zk � m+1 = Z x0 (x� t)n� 1t2k � n+1p� 1(t)dt�� n� 2
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 t2k � n+j+1p� 1(t)dt...zk = Z x0 (x� t)n� 1tk � 1p� 1(t)dt�� k
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 tj+k � 1p� 1(t)dt:then the ordered system of solutions of (3.1) at 1 isz1 � � � � � zk � m � 1 � zk � m+1 � x � � � � � zk � xm �� y1 � xm+1 � � � � � x2m � ym+1 � x2m+1 � � � � � xn� 1:



228 OND�REJ DO�SL�Y, JAN KOMENDATheorem 3.3. Let m and k be the same as in Theorem 3.1, n < 2m + 3, i. e.,k < m + 2 and(3.4) Z

1 x2k � 2p� 1(x)dx <1; Z

1 x2k � 1p� 1(x)dx =1:If y1(x) = Z x0 (x� t)n� 1tkp� 1(t)dt� k � 2
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 tk+jp� 1(t) dt;y2(x) = Z x0 (x� t)n� 1tk+1p� 1(t)dt � k � 3
Xj=0 � n� 1j � jxn� 1� j Z

10 tk+j+1p� 1(t) dt;...yk � 1(x) = Z x0 (x� t)n� 1t2(k � 1)p� 1(t)dt� xn� 1 Z

10 t2(k � 1)p� 1(t) dtyk(x) = Z x0 (x� t)n� 1t2k � 1p� 1(t) dt...ym+1(x) = Z x0 (x� t)n� 1tn� 1p� 1(t) dt:z1(x) = Z x0 (x� t)n� 1p� 1(t)dt� 2k � 2
Xj=0 � n � 1j � (�1)jxn� 1� j Z

10 tjp� 1(t)dtz2(x) = Z x0 (x� t)n� 1tp� 1(t) dt� 2k � 3
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 tj+1p� 1(t) dt...zk(x)= Z x0(x� t)n� 1tk � 1p� 1(t) dt�k � 1
Xj=0 � n�1j � (�1)jxn� 1� j Z

10 tj+k � 1p� 1(t) dt:then the ordered system of solutions of (3.1) at 1 is1 � � � � � x2m� n+2 � z1 � x2m� n+3 � � � � � zk � 1xm � zk �� xm+1 � y1 � xm+2 � � � � � yk � 1 � xn� 1 � yk � � � � � ym+1:Theorem 3.4. Let (3.4) holds and n � 2m+ 3, i. e., k � m+ 2. Ify1(x) = Z x0 (x� t)n� 1tkp� 1(t)dt� k � 2
Xj=0 � n� 1j � (�1)jxn� 1� j Z

10 tk+jp� 1(t)dt



CONJUGACY CRITERIA 229y2(x) = Z x0 (x� t)n� 1tk+1p� 1(t)dt � k � 3
Xj=0 � n � 1j � (�1)jxn� 1� j� Z

10 tk+j+1p� 1(t)dt...ym+1= Z x0 (x� t)n� 1tk+mp� 1(t)dt�k � m� 2
Xj=0 � n� 1j � (�1)jxn� 1� j� Z

10 tk+m+1p� 1(t) dt;z1 = Z

1x (x� t)n� 1p� 1(t)dt...z
� n+2k = Z

1x (x� t)n� 1t� n+2k � 1p� 1(t)dtz2k � n+1= Z x0 (x� t)n� 1t2k � np� 1(t)dt�n� 2
Xj=0 � n� 1j � (�1)jxn� 1� j� Z

10 tj+2k � np� 1(t)dt...zk= Z x0 (x� t)n� 1tk � 1p� 1(t)dt�k � 1
Xj=0 � n� 1j � (�1)jxn� 1� j� Z

10 tk+j � 1p� 1(t)dt:then the ordered system of solutions of (3.1) at 1 isz1 � � � � � zk � m� 1 � 1 � zk � m � x � � � � � zk � 1 � xm � zk �� xm+1 � y1 � � � � � ym+1 � x2m � � � � � xn� 1:Remark 3.1. To determine an ordered system of solutions at �1 one may usethe same method. It su�ces in the above theorems to replace R

10 by R 0
�1

. As acorollary of previous theorems we have the following statement which plays crucialrole in the proof of the conjugacy criterion for (1.1) given in the next section.Corollary 3.1. Let V+ , V � denote the subspaces of the solution space of (3.1)generated by the principal system of solution at 1 and �1, respectively. If for



230 OND�REJ DO�SL�Y, JAN KOMENDAsome m 2 f0; : : : ; n� 1g
Z 0

�1

x2(n� m� 1)p� 1(x) dx =1 = Z

10 x2(n� m� 1)p� 1(x) dxthen V+ \ V � � Linf1; x; : : :; xmg:Remark 3.2. The statement of Corollary 3.1 is implicitely given without proofin [4]. In that paper it is claimed that if the �rst integral in (3.3) is divergent and
R

10 x2k � 2p� 1(x) dx <1 then the principal solution at 1 of the LHS correspond-ing to (3.1) is of the formU0(x) = H(x) � C1 + Z x0 H � 1(t)B(t)HT � 1(t) dt� ; V0(x) = HT � 1(x)C2;where H is the fundamental matrix of the system H 0 = AH satisfying H(0) = I,C1 = � Im+1 00 R

10 �B3(t)dt � ; C2 = � 0 00 In� m� 1 � ;Im+1; In� m� 1 being identity matrices of the dimension given by their subscriptand �B3(t) is the (n � m � 1) � (n �m � 1) matrix which we get if we write thematrix H � 1(t)B(t)HT � 1(t) in the formH � 1BHT � 1 = � �B1 �B2�BT2 �B3 �with (m+ 1)� (m+ 1) and (m + 1)� (n �m � 1) matrices �B1; �B2. If~C1 = � 0 00 In� m� 1 � ; ~C2 = � Im+1 00 0 �and~U (x) = H(x) � ~C1 + Z x0 H � 1(t)B(t)HT � 1(t) dt ~C2 � ; ~V (x) = HT � 1(x) ~C2then the matrix UT0 ~V � V T0 ~U is nonsingular, i. e., (U0; V0) and ( ~U; ~V ) form thebase of the solution space of (2.2) and by a direct computation one may verifythat ~U � 1(x)U0(x) =  

�R x0 �B1 �

� 1 �R x0 �B1 �

� 1 �R x0 �B2 �� �R x0 �BT2 � �R x0 �B1 �

� 1 �R

1x �B3 �

! :To prove that (U0; V0) is the principal solution at 1, one needs to show that~U � 1(x)U (x) ! 0 as x ! 1. After some computations it is possible to see thatthis is a di�cult problem. Moreover, this approach does not give any informationabout the ordered system of solutions.



CONJUGACY CRITERIA 231IV. CONJUGACY CRITERIONIn the following theorem we give the conjugacy criterion which extends theresult of [11] to equation (1.1) and generalizes also the main result of [4] given inTheorem A.Theorem 4.1. Suppose there exist an integer m 2 f0; : : : ; n � 1g and real con-stants c0; : : : ; cm such that
Z 0

�1

x2(n� m� 1)p� 1(x)dx =1; Z

10 x2(n� m� 1)p� 1(x)dx =1and the function h(x) = c0 + � � �+ cmxm satis�es(4.1) lim supt1 #�1 ;t2 "1

Z t2t1 q(x)h2(x)dx � 0:If q 6� 0 in R then (1.1) is conjugate on R.Proof. The proof is based on the variational principle given in Lemma 1. Itsu�ces to �nd a function y 2 W 2;n(R) with supp y � R such that the quadraticfunctional I(y;�1;1) is negative.The equation (3.1) can be rewritten in the form of LHS (2.3) with C = 0, i. e.,(4.2) u0 = Au+B(x)v; v 0 = �AT v:and its matrix analogy is(4.3) U 0 = AU +B(x)V; V 0 = �ATV;where A;B(x) are n�n matrices given by (2.3). Let �x 2 R; d > 0; � > 0 be suchthat q(x) � �d for jx� �xj � � (the existence of such quantities follows from (4.1)and the fact that q 6� 0) and let x1; x2 2 R be such that x1 < �x � �; �x + � < x2.Further, let � be any Cn function which is positive in (�x��; �x+�) and is equal tozero outside this interval. Finally, choose x0; x3 2 R such that x0 < x1 and x2 >x3.Now, denote by f; g the solution of the boundary value problem(p(x)y(n)(x))(n) = 0f (i)(x0) = 0; f (i)(x1) = h(i)(x1); g(i)(x3) = 0; g(i)(x2) = h(i)(x2);i = 0; : : : ; n� 1;respectively. As the equation (3.1) is disconjugate, by Lemma 2 this problem hasunique solution for every xi; i = 0; : : : ; 3. De�ne the test function y as followsy(x) = 8

>

>

>

>

>

<

>

>

>

>

>

:

0; x < x0;f(x); x0 � x � x1;h(x)(1 + ��(x)); x1 < x < x2;g(x); x2 � x � x3;0; x > x3;



232 OND�REJ DO�SL�Y, JAN KOMENDAwhere � > 0. Then y 2W 2;n(R) and supp y � R. Denote by (u1; v1) and (u2; v2)solutions of (4.2) corresponding to the solutions f; g of (3.1). If we denote c =(c0; : : : ; cm; 0; : : : ; 0)T 2 Rn then by Lemma 3u1(x) = UL(x) �

Z xx0 U � 1L BUT � 1L ds� �

Z x1x0 U � 1L BUT � 1L ds�

� 1 cv1(x) = � VL(x) Z xx0 U � 1L BUT � 1L ds+ UT � 1L (x)� �

Z x1x0 U � 1L BUT � 1L ds�

� 1 cu2(x) = UR(x) �

Z x3x U � 1R BUT � 1R ds� �

Z x3x2 U � 1R BUT � 1R ds�

� 1 cv2(x) = � VR(x) Z x3x U � 1R BUT � 1R ds� UT � 1R (x)� �

Z x3x2 U � 1R BUT � 1R ds�

� 1 c;where (UR; VR); (UL; VL) denote the principal solutions of (2.4) at 1 and �1,such that UL and UR contain at �rst m+1 columns functions 1; : : : ; xm and theirderivatives up to order n � 1. Hence, u1 and u2 satisfy the following boundaryconditions: u1(x0) = 0 u1(x1) = ~h(x1)u2(x3) = 0 u2(x2) = ~h(x2);where ~h(x) = (h(x); h0 (x); : : : ; h(n� 1)(x))T = UL(x)c = UR(x)c:Let us compute
Z x1x0 p(f (n))2dx = Z x1x0 vT1 Bv1dx = Z x1x0 vT1 (u01 �Au1)dx == � vT1 u1 � x1x0 � Z x1x0 (vT1 0 u1 + vT1 Au1)dx = � vT1 u1 � x1x0 �� Z x1x0 vT1 (�A +A)u1dx = vT1 (x1)u1(x1):Similarly, we get

Z x3x2 p(g(n))2dx = Z x3x2 vT2 Bv2dx = Z x3x2 vT2 (u02 �Au2)dx == � vT2 u2 � x3x2 � Z x3x2 (vT2 0 u2 + vT2 Au2)dx = � vT2 u2 � x3x2 �� Z x3x2 vT2 (�A + A)u2dx = �vT2 (x2)u2(x2)



CONJUGACY CRITERIA 233Using these results, we have
Z x1x0 p(f (n))2dx = vT1 (x1)u1(x1) = cT �

Z x1x0 U � 1L BUT � 1L ds�

� 1�� �

Z x1x0 U � 1L BUT � 1L ds V TL (x1) + U � 1L (x1)� UL(x1) �

Z x1x0 U � 1L BUT � 1L ds� �� �

Z x1x0 U � 1L BUT � 1L ds�

� 1 c = cT �

Z x1x0 U � 1L BUT � 1L ds�

� 1 c:Here the fact that VL(x)c � 0 has been used. In a similar way we obtain
Z x3x2 p(g(n))2dx = cT �

Z x3x2 U � 1R BUT � 1R ds�

� 1 c:As UL(x) and UR(x) are the �rst components of the principal solutions of (4.3) at�1 and 1, we have(4.4) �

Z x1x0 U � 1L BUT � 1L ds�

� 1 ! 0 for x0 !�1and(4.5) �

Z x3x2 U � 1R BUT � 1R ds�

� 1 ! 0 for x3 !1Now we estimate R x1x0 qf2dx and R x3x2 qg2dx. To do it we prove the monotonicityof the functions f=h and g=h on (x0; x1) and (x2; x3). Suppose, that z1; : : : ; z2nis an ordered system of solutions at 1 of (3.1), i. e., zi = o(zi+1) for x!1; i =1; : : : ; 2n � 1. By Lemma 5 these solutions form a Markov system of solutionsin some neighbourhood of 1, i. e., all Wronskians W (z1; : : : ; zk) are positive,k = 1; : : : ; 2n, if x is su�ciently large. By Lemma 6 z1; : : : ; zn form principalsystem of solutions of (3.1) at 1. Because h(x) = c0 + � � �+ cmxm is contained inthe principal system of solutions of (3.1) at1, there exist constants di; i = 1; : : : ; n,such that h(x) = d1z1+� � �+dnzn. Now denote k = maxfi : i 2 f1; : : : ; ng; di 6= 0gand replace zk by h. This new system of solutions z1; : : : ; zk � 1; h; zk+1; : : : ; z2nhas the same properties as z1; : : : ; z2n. By Lemma 4 the transformation y = h�ytransforms (3.1) into the equation(�1)n(ph2�y(n))(n) + � � �+ (P1�y 0 )0 + h(ph(n))(n)�y = 0;i. e., w = �y 0 is the solution of(4.6) (�1)n(ph2w(n� 1))(n) + � � �+ (P1w)0 = 0:



234 OND�REJ DO�SL�Y, JAN KOMENDAWe shall show that this equation is N-disconjugate on [x2; x3], if x2 is su�cientlylarge. Putw1 = �(z1=h)0 ; : : : ; wk � 1 = �(zk � 1=h)0 ; wk = (zk+1=h)0 ; : : : ; w2n� 1 = (z2n=h)0 :As z1; : : : ; zk � 1; h; zk+1; : : : ; z2n form the Markov system of solutions of (3.1), wehave w1 = �(z1=h)0 = h� 2W (z1; h) > 0; W (w1; w2) = h� 3W (z1; z2; h) > 0W (w1; : : : ; wi) = (�1)iW ((z1=h)0 ; : : : ; (zi=h)0 ) = (�1)ih� (i+1)W (h; z1; : : : ; zi) =(�1)2ih� i� 1W (z1; : : : ; zi; h) > 0 for i < kW (w1; : : : ; wi) = (�1)kW ((z1=h)0 ; : : : ; (zk � 1=h)0 ; (zk+1=h)0 ; : : : ; (zi=h)0 ) =(�1)kh� (i+1)W (h; z1; : : : ; zi) =(�1)2kh� i� 1W (z1; : : : ; zk � 1; h; zk+1; : : : ; zi) > 0for k � i < 2n:Hence, w1; : : : ; w2n� 1 form the Markov system of solutions of (4.6) on [x2; x3] forx2 su�ciently large. By Lemma 5 the equation (4.6) is N-disconjugate on [x2; x3],i. e., every solution of (4.6) has at most 2n�2 zeros on this interval. The function(g=h)0 is a solution of (4:6) and has the zeros of multiplicityn�1 both at x2 and x3.It follows that (g=h)0 cannot have zero on (x2; x3), i. e., g=h is monotonic on thisinterval. In a similar way the existence of a Markov system and disconjugacyof (4:6) on [x0; x1] for x1 su�ciently close to �1 can be proved. Hence f=h ismonotonic on (x0; x1). Now, by the second mean value theorem of integral calculusthere exists �1 2 (x0; x1) such that
Z x1x0 qf2dx = Z x1x0 qh2(f=h)2dx = Z x1�1 qh2dx:Similarly

Z x3x2 qg2 dx = Z x3x2 qh2(g=h)2 dx = Z �2x2 qh2 dx;for some �2 2 (x2; x3).Further let us compute the integral
Z x2x1 n p(y(n))2 + qy2 o dx = Z x2x1 n p[(h(1 + ��))(n)]2 + qh2(1 + ��)2 o dx == Z x2x1 n p[(h��)(n)]2 + qh2(1 + 2��+ �2�2)o dx �� �2 Z �x+��x� � p[(h�)(n)]2dx+ Z x2x1 qh2dx++ 2�(�d) Z �x+��x� � �h2 dx+ �2 Z �x+��x� � qh2�2 dx << �2K1 + Z x2x1 qh2 dx� 2�dK2;



CONJUGACY CRITERIA 235where K1 = R �x+��x� � p[(h�(x))(n)]2dx and K2 = R �x+��x� � �h2dx > 0. Consequently,using the previous estimates,I(y;�1;1) = I(y; x0; x3) = I(y; x0; x1) + I(y; x1; x2) + I(y; x2; x3) �� �2K1 � 2�dK2 + Z x2x1 qh2dx+ cT (Z x1x0 U � 1L BUT � 1L ds)� 1c++cT (Z x3x2 U � 1R BUT � 1R ds)� 1c+ Z x1�1 qh2dx+ Z �2x2 qh2dx= �2K1 + Z �2�1 qh2dx� 2�dK2++cT (Z x1x0 U � 1L BUT � 1L ds)� 1c+ cT (Z x3x2 U � 1R BUT � 1R ds)� 1cIn view of (4.4) and (4.5) we can choose x1; x2 and x0; x3 in such a way thatcT (R x1x0 U � 1L BUT � 1L ds)� 1c < �2=3, cT (R x3x2 U � 1R BUT � 1R ds)� 1c < �2=3 and (4.1) im-plies that R t2t1 qh2dx < �2=3, whenever t1 < x1 and t2 > x2. Consequently,I(y; x0; x3) � �2K1 � 2�dK2 + �2 = �(�(K1 + 1)� 2dK2);where K2 > 0, i. e., I(y; a; b) < 0 if � > 0 is su�ciently small. This completes theproof. �V. REMARKS ON RELATED PROBLEMSBy a slight modi�cation of the proof of Theorem 4.1 we may establish thefollowing criterion for conjugacy of the equation(5.1) n
Xj=0(pj(x)y(j))(j) + q(t)y = 0;on an arbitrary interval I = (a; b); a; b 2 R. In this criterion equation (5.1) isviewed as a perturbation of (2.1).Theorem 5.1. Let (2.1) be disconjugate on I, m 2 f1; : : : ; ng and suppose thatthere exist solutions y1; : : : ; ym of (3.1) which are involved at principal systemof solutions both at a and b. If (2.1) is N-nonoscillatory at a and b, there existc1; : : : ; cm 2 R such that the function h(x) = c1y1(x) + � � �+ cmym(x) satis�eslim supt1 # a;t2 " b Z t2t1 q(x)h2(x)dx � 0



236 OND�REJ DO�SL�Y, JAN KOMENDAand q 6� 0 on I = (a; b), then (1.1) is conjugate on I.As an example of application of the previous theorem consider the equation(5.1) (�1)ny(2n) + p(t)y = 0in the interval I = (0;1). Equation (5.1) can be viewed as a perturbation of theEuler equation(5.2) (�1)ny(2n) � �2nt2n y = 0;where �2n = P2n(2n� 12 ) andP2n(�) = (�1)n�(� � 1) : : : (� � 2n+ 1):This approach has been used in [6] in order to investigate oscillation properties of(5.1).First of all, recall basic properties of the Euler equation (5.2). The real functiony = P2n(x) has n local minima and (n � 1) local maxima if n is even (n maximaand (n� 1) minima for n odd) and its graph is symmetric with respect to the linex = 2n� 12 . The equation P2n(�) = P2n � 2n� 12 �has exactly 2n � 2 simple roots, denote them �1 < �2 < � � � < �n� 1 < 2n � 1 ��n� 1 < 2n�1��n� 2 < � � � < 2n�1��1, and one double root �n = 2n� 12 . The so-lutions of (5.2) are of the form yi = t�i; i = 1; : : : ; n� 1; yn = t 2n�12 ; yn+1 =t 2n�12 lg t; yn+i+1 = t2n� 1� �i; i = 1; : : : ; n� 1. It is not di�cult to verify thatthese solutions form the ordered system at 1 as well as at 0 and that yn = t 2n�12is the only solution of (5.2) (up to a multiply by a nonzero real constant) which iscontained both in principal system of solutions at t = 0 and t = 1. Hence, as acorollary of Theorem 5.1, we have the following statement.Theorem 5.2. Suppose thatlim supt1 # 0;t2 "1

Z t2t1 t 2n�12 h p(t) + �2nt2n i dt � 0and p(t) + �2nt2n 6� 0 on (0;1):Then (5.2) is conjugate on I = (0;1).



CONJUGACY CRITERIA 237Remark 5.1. i) Observe that Theorem 5.1 is not applicable if one wants toinvestigate conjugacy of the equation (5.1) on the interval I = (0;1), consideredas a perturbation of the equation y(2n) = 0 instead of (5.2). The reason is that inthis case the dimension of the solution space of the equation y(2n) = 0 generatedby solutions which are contained both in principal systems at 0 and 1 is zero.ii) The test function used in the proof of Theorem 4.1 is the best possible inthe sense that for the functions f , g the positive contributions of R x1x0 p(f (n))2dx;and R x3x2 p(g(n))2dx are the smallest as possible, since f; g are the solutions ofthe equation (3.1) which is the Euler-Lagrange equation corresponding to thequadratic functional I1(y) = Z ba p(x)(y(n)(x))2dx:iii) The open problem is whether Theorem 5.1 holds without the assumptionthat (2.1) is N -nonoscillatory at a and b. This assumption was needed to estimatethe integrals R x1x0 qf2, R x3x2 qg2 by the second mean value theorem of integral calculus(we needed the monotonicity of f=h and g=h). Observe also that this assumptionmay be dropped if q(x) � 0 near a and b.References[1] Ahlbrandt, C.D., Hinton, D.B., Lewis, R.T., The e�ect of variable change on oscillationand disconjugacy criteria with application to spectral theory and asymptotic theory, J.Math. Anal. Appl. 81 (1981), 234-277.[2] Bliss, G. A., Lectures on the Calculus of Variations, Chicago Press, Chicago 1946.[3] Coppel, W. A., Disconjugacy, Lecture Notes in Math. No 220, Springer Verlag, Berlin-Hei-delberg 1971.[4] Do�sl�y, O., The existence of conjugate points for self-adjoint linear di�erential equations,Proc. Roy. Soc. Edinburgh 113A (1989), 73-85.[5] Do�sl�y, O., Oscillation criteria and discreteness of the spectrum of self-adjoint, even order,di�erential operators, Proc. Roy. Soc. Edinburgh 119A (1991), 219-231.[6] Do�sl�y, O., Osi�cka, J., Kneser-type oscillation criteria for self-adjoint two-term di�erentialequations, Georgian Math. J. 2 (1995), 241-259.[7] Glazman, I. M., Direct Methods of Qualitative Analysis of Singular Di�erential Operators,Jerusalem 1965.[8] Hawking, S. W., Penrose, R., The singularities of gravity collapse and cosmology, Proc.Roy. Soc. London A314 (1970), 529-548.[9] M�uller-Pfei�er, E., Existence of conjugate points for second and fourth order di�erentialequations, Proc. Roy. Soc. Edinburgh 89A (1981), 281-91.
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