Archivum Mathematicum

Veronika Chrastinova
On the Darboux transformation. II.

Archivum Mathematicum, Vol. 31 (1995), No. 2, 121--138

Persistent URL: http://dml.cz/dmlcz/107532

Terms of use:

© Masaryk University, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/107532
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 31 (1995), 121 — 138

ON THE DARBOUX TRANSFORMATION II

VERONIKA CHRASTINOVA

ABSTRACT. Automorphisms of the family of all Sturm-Liouville equations y” =qy
are investigated. The classical Darboux transformation arises as a particular case of
a general result.

1. INTRODUCTION

To make this part independent of [7], we recall the classical Darboux result.
Let nonvanishing functions = (), = () be solutions of the Sturm-
Liouville equations

(1) = () = ()

where the potentials () () differ by a constant: — = € R. Then the

function ~= ' — ' satisfies the Sturm-Liouville equation

(2) =) C= =2 )

We moreover recall the following generalization derived in [7] by elementary
method.

Retaining the notation and all assumptions as above, let us consider new vari-
ables

(3) =/ 4! N
and choose quite arbitrarily the functions = (), = ( ) # 0. Denoting
moreover

(4) ~:1(___ ,_) -
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then the functions

(%) Tz MOV - 3 (0-V)is

satisfy certain Sturm-Liouville equations

such that the difference of new potentials = ~is equal to the constant ~— "= () €
R depending on the choice of the previous difference — = . The generalization
resists on the fact that the identity — = — = € R simplifies as
(6) '+ = =0

in terms of variables (3).
For the particular choice = | = ( € R), the formulae (5) can be
rewritten as

“Z HE-D HE+D) HA-B)
(7)
“= M- HE-B) HA+B)

and are quadrature-free. The more intricate choice = = gives
= 304B) HE+B) ~HA-B)

(8)

= 30-B) 3(5-B) -3(5+B)

and this may be regarded a generalization of the classical result. Our present aim
is to determine all quadrature-free formulae. The method of proof inspired from
[4,5] will not be elementary and may be of a certain independent interest.

2. FUNDAMENTAL CONCEPTS

Our reasonings will be carried out in the space R™ of all real sequences =
(2 ), * € R. Denoting by ! ?2 the coordinates in R defined by
‘( )= we shall deal with the family F of °°-smooth functions of the kind

= (! ™), each depending on a finite number = () of coordinates,
vector fields = 1! Ty 2 24+ (' € F) given by infinite series with quite
arbitrary terms, and differential forms = 1! 4.4 " n( = () fgF).

In order to simplify the exposition, the domain of definition of functions, vector
fields, and differential forms will be not specified. (If necessary, one can suppose
that all functions under consideration are defined on a certain boz given by certain
inequalities ? : ¢.) Accepting this common convention, we shall nevertheless
speak of various F-modules V. Recall that a sequence ' 2 ... €V is called a
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basis of such F-module V if every € V can be uniquely expressed by a finite
sum = 144 mm (= () g F) Asubmoduled CV is called
generic if there exists a basis of & which may be completed to give a basis of V.
Denoting by (V) the cardinality of a basis (i.e., either (V') is a natural number or
(V) = 0), clearly (U) < (V) if i CV is a generic submodule and () V)
if moreover (U) oo and U # V. For example, the totality & of all differential
forms is an F-module with the basis ! 2 and differential forms vanishing
at a fixed point do not constitute a generic submodule of ®. The totality 7 of all
vector fields  is an F-module but 1t does not have any basis in the above sense.
The vector field = ! by 2 24 can be substituted into the
differential form = ' !4+ ...+ 7 " which provides the function denoted
()= t'14...4 ™™g F For the particular case = = L
-+ m ™ we abbreviate = ()=1 Ly m m
which is common “directional derivative” of function generalized on the infinite-
dimensional space R®. In particular * = ! for every coordinate *. Quite
analogous is the Lie derivative Lz € ® which may be regarded for a “directional
derivative” of a form in the direction of the vector field . Using the well-known
rules

Lz( + Y=Lz +Lz Lz( )= + Lz Lz =

it may be easily calculated in terms of coordinates:

»CZ(l 1_1_.”_1_71 n):Z zz+Zz i_
©) PP DORE IO DR
EX(5 =)

In particular, if = ! then the operator £z turns into the “derivation with
respect to the parameter” given by

*C(’)/atl(l 1_|_+n n):E - 7

which is a very particular case of (9).

Admissible mappings F of the space R™ which assign a point F = =
(L 2 ) to apoint = (1 ? ) are given by a certain infinite array of
equations

(10) i

‘(o) (=12 )

where ? € F. Then, for every € F, we introduce the transformed function
F* = oF, equivalently, F* ( )= ( ). Moreover, using the well-known rules
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the transformed differential form
F* =F's ! ‘=YF ‘F* ‘=xF* ! F*!

can be calculated in terms of coordinates. Quite explicitly, using the formulae (10),
one can then obtain

(11) o= (! ")

in particular F* * = ¢. Moreover

(12) F* =X z( 1 n(z)) [y z( 1 n(z))z ; J

(where ®= (! 7(D) in particular F* =% ¢ J J Transformation

of vector fields causes some troubles. Assuming that the inverse F~! = G exists,
hence (10) can be inverted by certain formulae

where ¢ € F, we may introduce the transformed vector field F, by the property
(13) (F., ) =G* (F") ( € F is varying)

In particular we have

(14)

for every coordinate 7, hence finally
(15) F, =Y/ —
where 7 = (F. ) J is given as above.

3. UNDERDETERMINED DIFFERENTIAL EQUATIONS

We shall deal with systems of ordinary differential equations which involve
more unknown functions ' = 1( ) ™ = ™( ) than is the total number of
differential equations under consideration. Since every such a higher order system
can be represented by an equivalent first order system, we may assume, that our
equations are

1 1( 1 m c+1 m )

(16)

c c( 1 m c+1 m )
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without any essential loss of generality. Here 1 < in order to avoid
trivialities. Assuming the functions ? to be *-smooth, such a system admits
a lot of solutions: the functions ¥t = ¢¥1( ) ™ = () can be arbitrarily
chosen and then the remaining ' = () ¢ = ¢( ) are uniquely determined
by choosing the initial values *( )= 1! ¢( )= ¢ at a certain point =

We shall be interested in automorphisms of certain particular systems of the kind
(16) preserving the independent variable . In full generality, such automorphisms
will transform every solution

S L L
= () My )t em) (=1 )
1 ™ are certain very special and fixed functions and the constant
is not apriori limited. It follows that all derivatives of the solution (17) must be
taken into account, 1.e., we are compelled to use the space R with coordinates

1 1
(18) 0 o i I A
where J stands for the derivative ® J ¢, Note that the variables | ¢ 4
5 must not be included into the coordinates. This is the consequence of

formulae (16) and their derivatives, for instance

Eo ok m k
2k 2:_+Z_jy+z -4 (=1 )
j=1 0 i=et1 1
and analogously for higher order derivatives ¢ * ¢ ( =3 4 =1 ).

But in order to obtain a clear theory, it is better to reformulate the problem in
terms of differential forms.

According to the above reasonings, we find ourselves in the space R® with
coordinates (18). We introduce the differential forms

N S S O S A )
(19)
= o (=1 =01 )

which may be regarded for a good substitute of the original system (16) and

moreover express the sense of the variables 7:amapping F of an interval
into R*® given by

F()=( o) o) ) ey oEtO) 2()  )EeRY
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in terms of the coordinates (18) clearly satisfies

(20) F* "=F* 1=0
if and only if ()= () ()= () is asolution of the system (16)
and moreover J( )= * () ¢ are higher order derivatives.

But the most important achievement of this reformulation is that it can be
expressed without any use of coordinates. This is achievement as follows. Denoting

by
e S T s L
the common module of all differential forms on our space with coordinates (18),

let 2 C ® be the submodule

T T R T T
i.e., the submodule generated by all forms (19), which constitute even a basis of
2. One can observe that the property (20) can be expressed only in terms of the
submodule ©Q C ®: it is equivalent to F* =0 ( € Q).

The submodule € C ® is of a certain special kind. First of all, it is of codimension
lsince € Q but the form  together with all forms from 2 generate . It follows
that the submodule Q1 C 7 of all vector fields € 7 satisfying ( ) =0( €9Q)
consists of all multiples of a single vector field, e.g., of the vector field

@ SEEED SEIIE T o) SENERE
j=1 ] =

One can calculate the Lie derivatives
k

k

. : : .

(22) Lx PE) 7420 7 ExiE

i 0 ios

These equations are not preserved if  is replaced by an arbitrary vector field
€ QL. Let us however consider the filtration

(23) Qo CQ C---CQ=U8
consisting of submodules
Q={" © g 0 -1 -1t CQ

Then the equations imply £x€; C 41 and using the general rule £L;x =
() 4+ Lx (validforall €7, €®),it follows that

(24) LzQ, CQpa(all ) Q4+ L2909, = Q41 ( large)

for every nonvanishing vector field € Q%. These properties of the submodule
Q C ® are quite enough in the following sense: in the module ® of all forms on R,
let Q C @ be a submodule of codimension 1 such that there exists a filtration (23)
satisfying (24) for an arbitrary (equivalently: appropriate) nonvanishing vector
field € QLY C7T. Then Q may be regarded for the submodule corresponding to a
certain system (16) in the construction as stated above. Expressively saying, these
submodules @ C & called diffieties represent the systems (16) in a coordinate-
free manner. In reality, we shall not need this result so that more comments are
unnecessary.
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4. STANDARD FILTRATIONS

Recall that diffiety is a submodule 2 C ® of the module ® of all differential
forms such that (® Q) = 1 and that there exist filtration (23) satisfying (24) with
0# € QL. Later on, we shall be interested in automorphisms of the diffiety Q,
i.e., in invertible transformations F such that F*Q = Q. This is an extremely
difficult task and it will be facilitated by using a certain special filtration, cf. [4,5].

For an arbitrary submodule I' C Q of a diffiety 2, let KerI' C T be the
submodule of all € T such that £Lx € T for a certain nonvanishing vector
field € QL. (One can observe that the choice of the field  is not important.
This follows from the rule L;x = Lx validforany €F, €& Qt, e)
In equivalent terms, € I' belongs to Ker I' if the composition

el - Lx €Q— theclass [Lx |inQ T

is vanishing. Since this composition — [Lx ]is F-linear (which is a consequence
of the equations

+ —=[x( + ) =[x ]+[Lx ]
—[Lx( )] =1 + Lx ]= [£x ]

where € T), it follows that Ker I is indeed a module. Moreover I' Ker T is
injectively transformed into Q I’ and even more: if Im I' C © is the submodule
of £ generated by all forms of the kind £x ( € T') then T' KerT' is bijectively
transformed onto Im T' T' (by means of Lx), hence

(25) (I Ker[')= (Im T T)

This self-evident equation will be soon needed. Then a filtration (23) satisfying
(24) will be called a standard one if moreover

erflsp1 =Qs (> er “{lp = Ker{lg 0
26 Ker Q11 = Q 0) Ker?Qy = KerQg # Q

is satisfied. There may exist many standard filtrations of a given diffiety excepting
a certain very interesting particular case which will be introduced.

In virtue of (245), there exist a finite number of forms ! # € Q such that
every € {2 can be represented by a finite linear combination of certain forms of
the kind £% 7 ( =01 ;=1 ). In view of future needs, we shall be
however interested only in the case = 1 in a certain “approximative sense”. This
vague term can be precisely expressed as follows: we shall be interested only in
such diffieties €2 that every form € (2 satisfies a congruence

(27) =y Fch ol (mod ! ‘)

with (a certain finite sum and) appropriate fixed forms ! ¢ € Q. Alternative-
ly, (27) is expressed by

(28) =Y feh tani i (R derF)
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To avoid some exceptional singular points, all the forms ! cotox bkt

will be assumed linearly independent and may be therefore used for a basis
of Q. As yet they are not uniquely determined (for instance, one can choose !
for “*1 and then £x ! for the new ! as well) but this unconvenience can be
suppressed. We shall prove a theorem which may be regarded for a convenient
substitute for the uniqueness of the basis of €.

5. THEOREM

Assuming (27){ there exists a unique standard filtration of the diffiety @ C ®.
Proof. Since 7 € 2, we have also Lx 7 € 2 and hence

Lx ie{! e 1 Ly 1 (=1 ; large enough)

in virtue of (27) applied on the forms = /. So we may introduce the (in general
non-standard) filtration (23) with terms

(29) Q. ={" e byt L (=01

note that the requirements (24) are clearly satisfied. One can moreover see that
(242) is true even for all > 0. This filtration will be successively improved to the
sought result.

One can directly find that Ker Q41 = €5 for every > 0. This is the property
(26,), however, the property (262) is not yet guaranteed.

Continuing the proof, let us successively define Q_; = Ker Qy, Q_o = Ker Q_1,
and so on. So we obtain a descending sequence Qp D 2_1 D Q_5 D which 1s
therefore stationary after a certain term:

(30) Q_R 75 Q—R—l but Q—R—l = Q—R—Z =
Let us introduce the modules
Q=0 % =Q_gn Qr=Q Qry1 =

Clearly Qg C Q; C --- C Q = UQ, and we shall verify that the requirements
(24), (26) are satisfied (for the modules Q; at the place of ), i.e., that we have
a standard filtration.

First of all, since €, = Ker Qs+1, the module Q consists of all € Qs-l—l with
Lx € Qgyq1 hence LxQg C Qg1 and (24)) is true. Moreover, we have

1§ (Qs+1 QS)E (Qs+1 KerQs+1): (IHl Qs+1 Qs+1) <
S (Qs+2 Qs+1)

by using the definition of Ker Q,11, (26), (24;). However Q; = Q,_g for large
enough (> ) hence

(Qs+2 Qs+1) = (QS—R+2 Qs—R+1) =1
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(see (29)) and it follows (Qs-l—l Qs) = 1for all > 0. Moreover clearly
1< (Q KerQg) = (Im Qo Q) < (21 Qo) =1
whence (Qg Ker Q) = 1. Altogether taken, it follows
()= (KerQo)+1 (Qg1)= (2)+1 ( 20)

So if we take an initial form defined by the properties =~ € Qq but = € Ker (:20,
then £Lx = € €y but Lx~ € Q¢ = Ker {2y, consequently Eg(’ € 25 but Eg(f € Qy,
and so on. Denoting by ~! ~° a basis of Ker Qg it follows that

(31) Q={" Lx  Lx
for all > 0. Recall moreover the property
Ker?Qo = Ker’Q_ g =Q_gr_2=Q_g_1 = Ker Qg
(see (30)) which means that £xKer Qg C Ker Qq hence
(32) LxFe{™ ) (=1 )

Using (31), (32), the remaining properties (245), (26) can be verified at once.

Concerning the uniqueness let (23) be a standard filtration and we have to
prove that ©, = Q,, where €, are the modules (31). For this aim, recall that £x
transforms Ker {2y into 1tself:

(33) Ker €¢ = Ker 2Qy — Ker Qg

and moreover yields the injective linear mappings

(34) Qo KerQp —Im Qg Q9 C 2y Qo

(35) Qs+1 Ker Qs+1 = Qs+1 Q;, —Im Qs+1 Qs+1 C Qs+2 Qs+1

It follows easily that Ker 2g consists just of such forms € € that all terms of
the series  Lx L% are contained in a finite-dimensional module (namely
in KerQp). But recalling (31) and (32), the same property have just the forms
lying in the module {1 “¢} = Ker £, hence Ker g = Ker y. Moreover, in

virtue of the injectivity of the mappings (34), (35), necessarily = € Ker . On the
other hand, the module Ker Qg = Ker Qo together with all forms = Lx~ Eg( N
generate the whole diffiety Q (see (31)), hence in virtue of (34) and (35), necessarily
€ Qp and even

(36) Q, ={" e - L5

(using the injectivity (34) and (35)) by induction on . This is the desired result.
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6. THE RESOLVING DIFFIETY

After all necessary preliminaries, we come to the main task. Recalling the
original equations (1), one can see that three functions of independent
variable and their derivatives (in principle, of all orders), and a variable parameter

(ensuring the difference — = € R) are in the play. Abbreviating the
derivatives by lower indices (explicitly ;= * * where will be any of ),
the equations (1) permit to explicitly determine all derivatives ,  ( > 2) in

terms of ;and s =( — ); (where( — )J)o= — but( — )= ;if >1)
so we find ourselves in the infinite-dimensional space with coordinates

(37) 01 0 1 of= ) 1 2

and the structure of the problem is determined by the equations

(38) = o—-1 = o0—1 = 1— o = 1—( =)o =0
(39) s— s11 =0 (=01 )

Here (38) are substitute for the requirements € R, and (1), moreover (38) and
(39) ensure the true sense of the derivatives (we refer to (19), (20) for more details).
Individually the equations (38), (39) do not make a good sense: in the spirit of
Section 3 above we have to introduce the diffiety Q generated by all differential
forms appearing in (38) and (39).

More explicitly, to abbreviate the notation, we introduce the vector field
expressed in terms of coordinates (37) by

(40) =—4+ 11—+ o—+ 1—+( - )0—-1-2 s+1
0 1 0 1 =

the recurrences
(41) 1= s st = s st1= sEF (=01 )

for certain special functions (including the coordinates (37)) and the differential
forms

(42) s= s — s+l s = s — s+1 s = s — s+1
One can then verify the formulae Lx =0,
(43) Lx s= 541 L£x s= s41 Lx s = s41
At the same time clearly
2= o0 3= 2= 107+ 1

(44)
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and therefore (in particular)
(45) 2= o+t o 2=( =)o+t ol = )
by direct calculations. In terms of the new notation clearly

(46) Q={ o 101 0 1 !}

We have indeed a diffiety: the forms from €2 together with the single form €
generate the module @ of all differential forms, and there is filtration (23) defined
(for instance) by

(47) Q=4 001 0 1 0 st

which satisfies the requirement (24), see (43) and (45). Our next aim will be to
determine the (unique) standard filtration of €. The result will be employed to the
study of certain automorphisms of {2 which may be regarded for a generalization
of the Darboux transformation.

7. CALCULATION OF STANDARD FILTRATION

First of all, KerQ, 1=, ( =0 1 ) and (denoting Q_; ={ 001 0 1})
clearly Ker Q¢ = Q_; in virtue of (43), (45). Second, in order to determine Ker Q_,
recall again the formulae

-0 g— 1 00— 1 1— o+ o 1—( =)o+ ol = )
(the arrows stand for £x) which imply
01— 01— 11— 11+ 0 o— ol = )o

whence we may introduce

(48) Q_s=KerQ2_; = 00 01— 01}

Third, in order to determine Ker _s, we may use the above formulae (especially

(45)) which imply
b1— 01— 11— 11+ 0 o— ol = )o— 0 )

10— 10— 11— 11+ = )oo— oo

00— 00—~ 01— 01+ 10— 10

It follows that

(49)  Qs=KerQ2={ o00—00 01— o01—(10— 10)}
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Denoting the last forms in the braces and | respectively, one can see that there
is the alternative formula

= (o1—01)— (01— 01)
Fourth, in order to determine Ker €2_3, we use the obvious equations
=900— 00 — 01T 01= 10— 10
to conveniently express ¢ and g:

o=(o( — o1+ o0o1)+ 1 )(o1— 01)

o=(ol — o1+ o01)+ 1) (01— 01)
Then we obtain (use also (45))

— 91— 01+ 10— 10=2(01— 01)—
— (oot o00)+ 00 =

= 200 — 01+ o00)+(o01+01))(o1—01)+ 0o

more briefly
—-2(o01— 01)

—=2 go(lo1—01) (01— 01)
modulo . Consequently
(50) Q_4=KerQ_ 3= oo +(o1— 01) }

Then, obviously, 2_5s = KerQ_, ={ }and Q_s=KerQ_5={ } = Ker2Q_,.

We are done: the sequence

(51) Q=0,CH=0435C - -=Q=UQ,
provides the sought standard filtration of Q.

Comparing this result with the general one (31), we have =1, ! =  and the
initial form ~ = ¢ o +( 01— o 1) . Note that the form  may be replaced
by any nonvanishing multiple and analogously, any form of the kind ~ +

( # 0) may be regarded for an initial form: after this change, the filtration (51)
does not change.
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8. DETERMINATION OF AUTOMORPHISMS

Every automorphism F of our diffiety Q obviously preserves all terms €, of
the standard filtration (51), and also the submodule KerQy = { } C Qp (as
follows at once from the uniqueness of these objects and the obvious fact that
automorphisms of diffieties turn standard filtrations into standard filtrations). We
shall explicitly employ only the invariance of Ker €y and the first term €. This
1s expressed by

(52) F* = FFo= "+

with certain coefficients (where #0, # 0). On the other hand, we shall
systematically employ that the automorphisms F preserve the submodule Q+ C 7.
This is expressed by F, = ( #0) where isthe vector field (40) generating

QL. Note that the unknown factor satisfies the equation
(53) = =(F. ) =G" F*

which is a particular case of (13).

In order to calculate such automorphisms in full generality, the following method
will be examined: first, (52;) means that F* is a function of merely  (explicitly
F* = ()), second, (522) taken only modulo  means that F may be regarded
for a contact transformation (the form ~ is multiplied by a factor ), which permits
to specify the transformations F* F* F* for certain function closely
related to = (see below), third, the rule (13) makes it possible to investigate even
the functions

(54) F* ,F* , F* , (,= °* ,= ° ,= °)

fourth, we may expect that the crucial variables o o can be expressed in terms
of functions ; 5, ( =01 ) and then the sought F* F* ¢ F* 4 can be
easily found (since they are expressed in terms of functions (54) by the same
formulae), finally, the knowledge of the last triple of the transformed functions
may be regarded for the sought result.

In reality we are however not interested in quite general automorphisms F which
are rather far from the classical Darboux transformations: we have to look only
for special automorphisms F which preserve the independent variable | that is,
which satisfy F* = . In this special case clearly = G* = G*"1 =1 by using
(53), hence F,, = and the rule (13) simplifies as F* = F* . It follows
that the functions (54) can be easily found in terms of F* F* F*

F,= °‘F* F" ,= °‘F" F* ,= °F*

We shall moreover see that the presumed invariance of ~ will imply certain very
strong additional requirement for these functions.
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Passing to explicit calculations, recall that we suppose F* = (hence F* =
F* for every function ) and F* = ( ) with a certain function . We turn
to (522) which will be considered only modulo and . Since clearly
(55) = 59(o0 0= 0 o)+(o1—o01) (01— 01)
modulo |, we find it useful to introduce the functions = o9, = o o,

= 01— 0 1.Then

|
R

H (=P In + In }

(so that the form { } may be used instead of ~) and (525) is expressed by

(56) F'(—) nF* + InF* = ( (=) In 4+ In )

If are kept fixed for a moment, this congruence means that two subcases should
be distinguished: either both InF* and InF* are functions of In and In | or
there is only one relation between these quadruple of functions (so that either
InF* or InF* may be represented as a composed function of the remaining

triple). We shall separately deal with these subcases.

9. THE “POINT TRANSFORMATION” SUBCASE

In accordance with the above remark, we begin with the assumption
(57) InF* = (In In ) InF* = (In In )
Substitution into (56) yields the identities

F (=) + 1= (=) oF(=)+ 2=

(where the lower indices denote partial derivatives with the respect to the argu-
ments at the noted places, e.g., 1 = In ). Tt follows easily

(58) (1;; )2:1?*(—)2: TG Sl

by elimination of the unimportant function . In principle the formulae (57), (58)
determine F* F* F* and then clearly

(59) F* OI(F* F* )1/2 F* OI(F* F* )1/2

(as follows from the obvious formulae ¢ =/ , ¢ =+/ ). However in reality
we are as yet dealing only with necessary conditions: all the automorphisms F
must be of the mentioned kind but the converse need not be true.
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In order to obtain necessary and sufficient requirements for the functions ,
we shall proceed as follows. One can find that the functions

(60) 0= 0= 1 1 2 3

can be used for coordinates instead of the original ones (37), as well. This follows
from the obvious formulae

_ _ [ e
o=V o= = Van

= ° and the identity

the recurrences ;= * ¢,

Il
o
w

(61) ’In + In In =

(identical with (61)) which permits to express s intermsof o 1 2 ¢ 1.In
general, formulae for ; (> 3) are obtained if  is repeatedly applied to (61). It
follows that all ; (> 0) can be expressed in terms of new coordinates. Using

= (o0 o)=1 o— o1 (0)? clearly
and then s = ° ( In ). These are all interrelations between the functions

s s s- The corresponding interrelations must be satisfied for the transforms
F*  F*  F*  which provides the additional requirements for the functions
. It 1s however quite sufficient to ensure only the relations corresponding to

(61), (62), that is, the relations

(63) InF* + InF* hF* = F =F InF”
since the higher order ones (involving ; for 2 and  for 0) appear if the

operator  is repeatedly applied to (63) and therefore do not bring any novelty.
We shall first deal with (632). Using (58), (571) and the identity

=11 + 21 + a(a= )
where | = (see (62)) and = (direct verification), we obtain
the requirement

o )= 2
(64) —————=(1—+ 22—+ 4)

Quite analogously, using (633) and its consequence, the derived identity

F* F* F*
InF* = = —F
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the requirement (631) can be found equivalent to the equation F* = F~* |
that is, to the equation
(65) InF* = F*( )

Using (58), this can be explicitly rewritten as

D S B _s
(66) = )2—(1 + 2—+ 4)

In particular we have
(1—4+ 2=+ D(1—4+ 20—+ 4)=
whence easily
(67) 11= 22= 14+ 1 4= 24+ 24=0 444+ (124+12)=

At this place note that the Jacobian 51— 5 1 of the functions with respect to
the variables In  In  should not vanish (otherwise the functions (60) cannot be
used for coordinates after applying the automorphism F which is a contradiction).
Moreover (64), (66) are possible only if 4 = 4 = 0 (otherwise the left hand sides

would not be even functions of the variable ), hence (67) reducesto 11 = 22 =
0, 1241 2= . Altogether taken, one can find that this may happen if one
of the following possibilities holds true:
(68) either 1 ;é 0 1= 2= 0 12 =
(69) or 2#0 2 = 1:0 21 =
We shall discuss (68), (69) separately.

In the first subcase (68), we have = (), = (In ), = (In ) and

the identity (64) simplifies into relation (683), that is,

() ="(n)'(n )

where the primes denote the partial derivatives with respect to the first argument.
(The identity (66) may be omitted; it is a consequence of (64) and (67).) It follows
= ()n , = ()In with therelation () = () ( ). So we have

oo 0 pr — e pr 1 ey

where the last formula follows from (58) by direct calculation (using moreover
F* = o and ()( )= () ). Returning to the variables , ;, we obtain
the final result

F* :( a—1 b)l/ZI( a—l( )b )1/2:( 144 1-b a-—1 )1/2

(70)
F* _( a—1 —b)1/2:( 1-b6 146 a-—1 )1/2
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This may be regarded for a mere modification of the identity, which is obtained
if = = 1. Interesting transformation appears even if = 1and = ()
arbitrary, then the potentials of the transformed functions differ by the value

=()0) =0)-
In the second subcase (69), we have = (), = (In ), = (In )and
the identity (64) simplifies into the relation (693), that is,

() ='(n )'(ln )

(Then (66) is automatically satisfied and may be omitted.) It follows = ( )In |,
= ( )In  with the relation () = ( ) ( ). Using (58), we obtain

F* — b()\) F* — a()\) F* — a()\) ( )

and consequently

F* :( a b)1/2 :( a—1 14+ 1+a)1/2
(71)

F* :( a —b)1/2 :( a—1 1-b 1+a)1/2
The classical Darboux transformation appears if = = 1.

We shall prove in the concluding Section 10 that the (seemingly more general)
“contact transformation” subcase does not give any -preserving automorphisms,
hence (70) and (71) represent the most general automorphisms of our diffiety.
Comparing this with the quadrature-free formulae (7) and (8) in Introduction, it
Is necessary to substitute = = , % = = const., = ()=
(hence = , = = ) and it follows that (7) and (8) are particular cases
of (70) and (7T1)if = (), = ( ) are merely constants.

So we may conclude: the formulae(7)and(8)with = ()
= () # Ononconstant cannot be already generalized. They provide
the most general quadrature-free and — preserving automorphisms
of couples of Sturm-Liouville problems (1) with potentials differing
by a constant.

10. THE “CONTACT TRANSFORMATION” SUBCASE

Recalling (56), let us suppose the existence of a relation of the kind
(72) InF* = (InF* In In )
Substitution into (56) gives immediately

(73) F'(=)P+ 1=0 2= 3= (=)
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whence
(74) s= 2 (=)

by elimination of . If we deal with a contact transformation, the functions F*
F* | F* can be calculated in terms of variables

bl

(75) In In
by virtue of equations (72), (731), (74). However the identities In = — and
In = are true, hence the transformed (632) and (65) must be satisfied,

too. They ensure that the functions F* | F* can be expressed in terms of
variables (75). Finally, applying  on the equation (74) one can calculate in
terms of F* and the variables (75), hence = ; would be expressible in
terms of (75). But this is a contradiction since the functions (60) may be chosen
for coordinates.
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