
Archivum Mathematicum

Veronika Chrastinová
On the Darboux transformation. II.

Archivum Mathematicum, Vol. 31 (1995), No. 2, 121--138

Persistent URL: http://dml.cz/dmlcz/107532

Terms of use:
© Masaryk University, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107532
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 121 { 138ON THE DARBOUX TRANSFORMATION IIVeronika Chrastinov�aAbstract. Automorphisms of the family of all Sturm-Liouville equations y00 = qyare investigated. The classical Darboux transformation arises as a particular case ofa general result. 1. IntroductionTo make this part independent of [7], we recall the classical Darboux result.Let nonvanishing functions y = y (x ), z = z (x ) be solutions of the Sturm-Liouville equations(1) y

00 = p (x )y ; z

00 = q (x )zwhere the potentials p (x ); q (x ) di�er by a constant: p � q = � 2 R. Then thefunction ~y = y

0 � y z

0
=z satis�es the Sturm-Liouville equation(2) ~y 00 = ~p (x )~y (~p = p � 2(z

0
=z )0):We moreover recall the following generalization derived in [7] by elementarymethod.Retaining the notation and all assumptions as above, let us consider new vari-ables(3) U = y

0
=y + z

0
=z ; V = y

0
=y � z

0
=zand choose quite arbitrarily the functions h = h (� ), g = g (�; x; V ) 6= 0. Denotingmoreover(4) ~

U = 1
g

�
h � @ g

@ x

� V

0 @ g

@ V

�
;

~
V = g ;1991 Mathematics Subject Classi�cation : 34A25, 58A10.Key words and phrases: di�ety, Darboux transformation, Monge system.This work was supported by grant 201/93/0452 of Czech Grant Agency.Received June 2, 1994.



122 VERONIKA CHRASTINOV�Athen the functions(5) ~y = e

12 R ( ~U+~V )dx
; ~z = e

12 R ( ~U�~V )dxsatisfy certain Sturm-Liouville equations~y 00 = ~p (x )~y ; ~z 00 = ~q (x )~zsuch that the di�erence of new potentials ~p; ~q is equal to the constant ~p �~q = h (� ) 2R depending on the choice of the previous di�erence p � q = � . The generalizationresists on the fact that the identity y

00
=y � z

00
=z = p � q = � 2 R simpli�es as(6) V

0 + U V = �; �

0 = 0:in terms of variables (3).For the particular choice h = A� , g = B V (A; B 2 R), the formulae (5) can berewritten as(7) ~y = V

12 (AB�1)
y

12 (AB+B)
z

12 (AB�B)
;~z = V

12 (AB�1)
y

12 (AB�B)
z

12 (AB+B)and are quadrature-free. The more intricate choice h = A� , g = B �=V gives(8) ~y = V

12 (1+B)
y

12 (AB+B)
z

� 12 (AB�B)
;~z = V

12 (1�B)
y

12 (AB�B)
z

� 12 (AB+B)and this may be regarded a generalization of the classical result. Our present aimis to determine all quadrature-free formulae. The method of proof inspired from[4,5] will not be elementary and may be of a certain independent interest.2. Fundamental conceptsOur reasonings will be carried out in the space R1 of all real sequences P =(p

1
; p

2
; : : : ), p

i 2 R. Denoting by t

1
; t

2
; : : : the coordinates in R1 de�ned by

t

i(P ) � p

i, we shall deal with the family F of C

1-smooth functions of the kind
f = f (t

1
; : : : t

m), each depending on a �nite number m = m (f ) of coordinates,vector �elds Z = z

1
@ =@ t

1+ z

2
@ =@ t

2+ : : : (z

i 2 F) given by in�nite series with quitearbitrary terms, and di�erential forms ' = a

1
dt

1+� � �+ a

n
dt

n (n = n (' ); a

i 2 F).In order to simplify the exposition, the domain of de�nition of functions, vector�elds, and di�erential forms will be not speci�ed. (If necessary, one can supposethat all functions under consideration are de�ned on a certain box given by certaininequalities a

i
< p

i
< b

i.) Accepting this common convention, we shall neverthelessspeak of various F-modules V. Recall that a sequence �

1
; �

2
; � � � 2 V is called a



ON THE DARBOUX TRANSFORMATION II 123basis of such F-module V if every � 2 V can be uniquely expressed by a �nitesum � = z

1
�

1 + � � �+ z

m
�

m (m = m (� ); z

i 2 F). A submodule U � V is calledgeneric if there exists a basis of U which may be completed to give a basis of V.Denoting by ` (V) the cardinality of a basis (i.e., either ` (V) is a natural number or
` (V) = 1), clearly ` (U) � ` (V) if U � V is a generic submodule and ` (U) < ` (V)if moreover ` (U) < 1 and U 6= V. For example, the totality � of all di�erentialforms ' is an F-module with the basis dt

1
; dt

2
; : : : and di�erential forms vanishingat a �xed point do not constitute a generic submodule of �. The totality T of allvector �elds Z is an F-module but it does not have any basis in the above sense.The vector �eld Z = z

1
@ =@ t

1 + z

2
@ =@ t

2 + : : : can be substituted into thedi�erential form ' = a

1
dt

1 + � � � + a

n
dt

n which provides the function denoted
' (Z ) = a

1
z

1 + � � �+ a

n
z

n 2 F . For the particular case ' = d f = @ f =@ t

1
:dt

1 +� � � + @ f =@ t

m
:dt

m, we abbreviate Z f = d f (Z ) = z

1
@ f =@ t

1 + � � � + z

m
@ f =@ t

mwhich is common \directional derivative" of function f generalized on the in�nite-dimensional space R1. In particular Z t

i � z

i for every coordinate t

i. Quiteanalogous is the Lie derivative LZ ' 2 � which may be regarded for a \directionalderivative" of a form ' in the direction of the vector �eld Z . Using the well-knownrules LZ(' +  ) = LZ ' + LZ  ; LZ(f ' ) = Z f :' + f LZ '; LZ d f = d Z f ;it may be easily calculated in terms of coordinates:(9) LZ(a

1
dt

1 + � � �+ a

n
dt

n) =Xi Z a

i
dt

i +Xi a

i
d Z t

i ==Xi 0@Xj z

j @ a

i
@ t

j1A dt

i +Xi a

i
dz

i ==Xi Xj �z

j @ a

i
@ t

j + a

j @ z

j
@ t

i � dt

i
:In particular, if Z = @ =@ t

1 then the operator LZ turns into the \derivation withrespect to the parameter" given byL@=@t1(a

1
dt

1 + � � �+ a

n
dt

n) = � @ a

i
@ t

1 dt

i
;which is a very particular case of (9).Admissible mappings F of the space R1 which assign a point FP = Q =(q

1
; q

2
; : : : ) to a point P = (p

1
; p

2
; : : : ) are given by a certain in�nite array ofequations(10) q

i � f

i(p

1
; : : : ; p

m(i)) (i = 1; 2; : : : )where f

i 2 F . Then, for every f 2 F , we introduce the transformed functionF� f = f �F, equivalently, F� f (P ) = f (Q ). Moreover, using the well-known rulesF�(' +  ) = F� ' + F�  ; F�(f ' ) = F� f : F� '; F� d f = d F� f ;



124 VERONIKA CHRASTINOV�Athe transformed di�erential formF� ' = F��a

i
dt

i = �F� a

i
: F� dt

i = �F� a

i
:d F� t

ican be calculated in terms of coordinates. Quite explicitly, using the formulae (10),one can then obtain(11) F� f = f (f

1
; : : : ; f

m);in particular F� t

i � f

i. Moreover(12) F� ' = �a

i(f

1
; : : : ; f

n(i))d f

i = �a

i(f

1
; : : : ; f

n(i))� @ f

i
@ t

j dt

j(where a

i � a

i(t

1
; : : : ; t

n(i)), in particular F� dt

i � �@ f

i
=@ t

j
:dt

j. Transformationof vector �elds causes some troubles. Assuming that the inverse F�1 = G exists,hence (10) can be inverted by certain formulae
p

i � g

i(q

1
; : : : ; q

n(i)) (i = 1; 2; : : : )where g

i 2 F , we may introduce the transformed vector �eld F� Z by the property(13) (F� Z )f = G�
Z (F� f ) (f 2 F is varying):In particular we have(14) (F� Z )t

j � G�
Z f

j = G��z

i @ f

j
@ t

i == �z

i(g

1
; : : : ; g

k) @ f

j
@ t

i (g

1
; : : : ; g

m)for every coordinate t

j , hence �nally(15) F� Z = ��z j @

@ t

jwhere �z j = (F� Z )t

j is given as above.3. Underdetermined differential equationsWe shall deal with systems of ordinary di�erential equations which involvemore unknown functions y

1 = y

1(x ); : : : ; y

m = y

m(x ) than is the total number ofdi�erential equations under consideration. Since every such a higher order systemcan be represented by an equivalent �rst order system, we may assume, that ourequations are(16) dy

1
=dx = f

1(x; y

1
; : : : ; y

m
; dy

c+1
=dx; : : : ; dy

m
=dx );

: : :

dy

c
=dx = f

c(x; y

1
; : : : ; y

m
; dy

c+1
=dx; : : : ; dy

m
=dx );



ON THE DARBOUX TRANSFORMATION II 125without any essential loss of generality. Here 1 � c < m in order to avoidtrivialities. Assuming the functions f

i to be C

1-smooth, such a system admitsa lot of solutions: the functions y

c+1 = y

c+1(x ); : : : ; y

m = y

m(x ) can be arbitrarilychosen and then the remaining y

1 = y (x ); : : : ; y

c = y

c(x ) are uniquely determinedby choosing the initial values y

1(a ) = a

1
; : : : ; y

c(a ) = a

c at a certain point x = a .We shall be interested in automorphisms of certain particular systems of the kind(16) preserving the independent variable x . In full generality, such automorphismswill transform every solution(17) y

1 = y

1(x ); : : : ; y

m = y

m(x )of the system (16) into the new solution
y

i � h

i(x; y

1(x ); : : : ; y

m(x ); : : : ; d

a
y

1(x )=dx

a
; : : : ; d

a
y

m(x )=dx

a) (i = 1; : : : ; m );where h

1
; : : : ; h

m are certain very special and �xed functions and the constant ais not apriori limited. It follows that all derivatives of the solution (17) must betaken into account, i.e., we are compelled to use the space R1 with coordinates(18) x; y

10 ; : : : ; y

m0 ; y

c+11 ; : : : ; y

m1 ; y

c+12 ; : : : ; y

m2 ; : : : ;where y

js stands for the derivative d

s
y

j
=dx

s. Note that the variables y

11 ; : : : ; y

c1 ; y

12 ;

: : : ; y

c2 ; : : : must not be included into the coordinates. This is the consequence offormulae (16) and their derivatives, for instance
d

2
y

k
=dx

2 = @ f

k
@ x

+ mXj=1 @ f

k
@ y

j0 f

j + mXi=c+1 @ f

k
@ y

i1 y

i2 (k = 1; : : : ; c )and analogously for higher order derivatives d

s
y

k
=dx

s (s = 3; 4; : : : ; k = 1; : : : ; c ).But in order to obtain a clear theory, it is better to reformulate the problem interms of di�erential forms.According to the above reasonings, we �nd ourselves in the space R1 withcoordinates (18). We introduce the di�erential forms(19) !

k = dy

k0 � f

k
dx (k = 1; : : : ; c ; f

k � f

k(x; y

10 ; : : : ; y

m0 ; y

c+11 ; : : : ; y

m1 ))
#

js � dy

c+js � y

c+js+1 dx (j = 1; : : : ; n ; s = 0; 1; : : : )which may be regarded for a good substitute of the original system (16) andmoreover express the sense of the variables y

js: a mappingF of an interval a < x < binto R1 given byF(x ) = (x; y

10(x ); : : : ; y

m0 (x ); y

c+11 (x ); : : : ; y

m1 (x ); y

c+12 (x ); : : : ; y

m2 (x ); : : : ) 2 R1



126 VERONIKA CHRASTINOV�Ain terms of the coordinates (18) clearly satis�es(20) F� !

k = F� #

js � 0if and only if y

1(x ) = y

10(x ); : : : ; y

m(x ) = y

m0 (x ) is a solution of the system (16)and moreover y

js(x ) � d

s
y

j(x )=dx

s are higher order derivatives.But the most important achievement of this reformulation is that it can beexpressed without any use of coordinates. This is achievement as follows. Denotingby � = fdx; dy

10 ; : : : ; dy

m0 ; dy

c+11 ; : : : ; dy

m1 ; dy

c+12 ; : : : ; dy

m2 ; : : : gthe common module of all di�erential forms on our space with coordinates (18),let 
 � � be the submodule
 = f!

1
; : : : ; !

c
; #

10 ; : : : #

n0 ; #

11; : : : ; #

n1 ; #

12; : : : ; #

n2 ; : : : g;i.e., the submodule generated by all forms (19), which constitute even a basis of
. One can observe that the property (20) can be expressed only in terms of thesubmodule 
 � �: it is equivalent to F� ! � 0 (! 2 
).The submodule 
 � � is of a certain special kind. First of all, it is of codimension1 since dx = 2 
 but the form dx together with all forms from
 generate �. It followsthat the submodule 
? � T of all vector �elds Z 2 T satisfying ! (Z ) = 0 (! 2 
)consists of all multiples of a single vector �eld, e.g., of the vector �eld(21) X = @ =@ x + mXj=1 f

j
@ =@ y

j0 + mXi=c+1 1Xs=0 y

is+1 @ =@ y

is :One can calculate the Lie derivatives(22) LX !

k �Xj @ f

k
@ y

10 !

j +Xj Xs @ f

k
@ y

js #

js ; LX #

js � #

js+1 :These equations are not preserved if X is replaced by an arbitrary vector �eld
Z 2 
?. Let us however consider the �ltration(23) 
0 � 
1 � � � � � 
 = [
sconsisting of submodules
s � f!

1
; : : : ; !

c
; #

10 ; : : : ; #

n0 ; : : : ; #

1s�1; : : : ; #

ns�1g � 
:Then the equations imply LX
s � 
s+1 and using the general rule LfX ' �
' (X )d f + f LX ' (valid for all X 2 T , ' 2 �), it follows that(24) LZ
s � 
s+1(all s ); 
s + LZ
s = 
s+1 (s large);for every nonvanishing vector �eld Z 2 
?. These properties of the submodule
 � � are quite enough in the following sense: in the module � of all forms on R1,let 
 � � be a submodule of codimension 1 such that there exists a �ltration (23)satisfying (24) for an arbitrary (equivalently: appropriate) nonvanishing vector�eld Z 2 
? � T . Then 
 may be regarded for the submodule corresponding to acertain system (16) in the construction as stated above. Expressively saying, thesesubmodules 
 � � called di�eties represent the systems (16) in a coordinate-free manner. In reality, we shall not need this result so that more comments areunnecessary.



ON THE DARBOUX TRANSFORMATION II 1274. Standard filtrationsRecall that di�ety is a submodule 
 � � of the module � of all di�erentialforms such that ` (�= 
) = 1 and that there exist �ltration (23) satisfying (24) with0 6= Z 2 
?. Later on, we shall be interested in automorphisms of the di�ety 
,i.e., in invertible transformations F such that F�
 = 
. This is an extremelydi�cult task and it will be facilitated by using a certain special �ltration, cf. [4,5].For an arbitrary submodule � � 
 of a di�ety 
, let Ker � � � be thesubmodule of all 
 2 � such that LX 
 2 � for a certain nonvanishing vector�eld X 2 
?. (One can observe that the choice of the �eld X is not important.This follows from the rule LfX ! � f LX ! valid for any f 2 F , X 2 
?, ! 2 
.)In equivalent terms, 
 2 � belongs to Ker � if the composition

 2 �! LX 
 2 
! the class [LX 
 ] in 
= �is vanishing. Since this composition 
 ! [LX 
 ] is F-linear (which is a consequenceof the equations

� + � ! [LX(� + � )] = [LX � ] + [LX � ];

f 
 ! [LX(f 
 )] = [X f 
 + f LX 
 ] = f [LX 
 ]where �; � ; 
 2 �), it follows that Ker � is indeed a module. Moreover �= Ker � isinjectively transformed into 
= � and even more: if Im � � 
 is the submoduleof 
 generated by all forms of the kind LX 
 (
 2 �) then �= Ker � is bijectivelytransformed onto Im �= � (by means of LX), hence(25) ` (�= Ker �) = ` (Im �= �):This self-evident equation will be soon needed. Then a �ltration (23) satisfying(24) will be called a standard one if moreover(26) Ker 
s+1 � 
s (s � 0); Ker 2
0 = Ker
0 6= 
0is satis�ed. There may exist many standard �ltrations of a given di�ety exceptinga certain very interesting particular case which will be introduced.In virtue of (242), there exist a �nite number of forms !

1
; : : : ; !

� 2 
 such thatevery ! 2 
 can be represented by a �nite linear combination of certain forms ofthe kind LkZ !

j (k = 0; 1; : : : ; j = 1; : : : ; � ). In view of future needs, we shall behowever interested only in the case � = 1 in a certain \approximative sense". Thisvague term can be precisely expressed as follows: we shall be interested only insuch di�eties 
 that every form ! 2 
 satis�es a congruence(27) !

�= �a

kLkZ !

1 (mod 


1
; : : : ; 


c)with (a certain �nite sum and) appropriate �xed forms 


1
; : : : ; 


c 2 
. Alternative-ly, (27) is expressed by(28) ! = �a

kLkZ !

1 +�c

j



j (a

k
; c

j 2 F):



128 VERONIKA CHRASTINOV�ATo avoid some exceptional singular points, all the forms 


1
; : : : ; 


c
; !

1
; LX !

1
; L2X !

1
;

: : : will be assumed linearly independent and may be therefore used for a basisof 
. As yet they are not uniquely determined (for instance, one can choose !

1for 


c+1 and then LX !

1 for the new !

1, as well) but this unconvenience can besuppressed. We shall prove a theorem which may be regarded for a convenientsubstitute for the uniqueness of the basis of 
.5. TheoremAssuming (27), there exists a unique standard �ltration of the di�ety 
 � �.Proof . Since 


j 2 
, we have also LX 


j 2 
 and henceLX 


j 2 f


1
; : : : ; 


c
; !

1
; : : : ; LSX !

1g (j = 1; : : : ; c ; S large enough)in virtue of (27) applied on the forms ! = 


j . So we may introduce the (in generalnon-standard) �ltration (23) with terms(29) 
s � f


1
; : : : ; 


c
; !

1
; LX !

1
; : : : ; LS+sX !

1g (s = 0; 1; : : : );note that the requirements (24) are clearly satis�ed. One can moreover see that(242) is true even for all s � 0. This �ltration will be successively improved to thesought result.One can directly �nd that Ker 
s+1 � 
s for every s � 0. This is the property(261), however, the property (262) is not yet guaranteed.Continuing the proof, let us successively de�ne 
�1 = Ker 
0, 
�2 = Ker 
�1,and so on. So we obtain a descending sequence 
0 � 
�1 � 
�2 � : : : which istherefore stationary after a certain term:(30) 
�R 6= 
�R�1 but 
�R�1 = 
�R�2 = : : : :Let us introduce the modules�
0 = 
�R ;

�
1 = 
�R+1 ; : : : ;

�
R = 
0 ;

�
R+1 = 
1 ; : : : :Clearly �
0 � �
1 � � � � � 
 = [�
s and we shall verify that the requirements(24), (26) are satis�ed (for the modules �
s at the place of 
s), i.e., that we havea standard �ltration.First of all, since �
s � Ker �
s+1, the module �
s consists of all ! 2 �
s+1 withLX ! 2 �
s+1 hence LX �
s � �
s+1 and (241) is true. Moreover, we have1 � ` (�
s+1 =

�
s) � ` (�
s+1 = Ker �
s+1) = ` (Im �
s+1 =

�
s+1) �� ` (�
s+2 =

�
s+1)by using the de�nition of Ker �
s+1, (26), (241). However �
s � 
s�R for s largeenough (s � R ) hence
` (�
s+2 =

�
s+1) � ` (
s�R+2 = 
s�R+1) = 1



ON THE DARBOUX TRANSFORMATION II 129(see (29)) and it follows ` (�
s+1 =

�
s) � 1 for all s � 0. Moreover clearly1 � ` (�
0 = Ker �
0) = ` (Im �
0 =

�
0) � ` (�
1 =

�
0) = 1whence ` (�
0 = Ker �
0) = 1. Altogether taken, it follows
` (�
0) = ` (Ker �
0) + 1; ` (�
s+1) = ` (�
s) + 1 (s � 0):So if we take an initial form de�ned by the properties �! 2 �
0 but �! =2 Ker �
0,then LX �! 2 �
1 but LX �! =2 �
0 = Ker 
1, consequently L2X �! 2 �
2 but L2X �! =2 �
1,and so on. Denoting by �
 1

; : : : ; �
 c a basis of Ker �
0 it follows that(31) �
s � f�
 1
; : : : ; �
 c ; �!; LX �! ; : : : ; LsX �! gfor all s � 0. Recall moreover the propertyKer 2�
0 = Ker 2
�R = 
�R�2 = 
�R�1 = Ker �
0(see (30)) which means that LXKer �
0 � Ker �
0 hence(32) LX�
 k 2 f�
 1

; : : : ; �
 cg (k = 1; : : : ; c ):Using (31), (32), the remaining properties (242), (26) can be veri�ed at once.Concerning the uniqueness let (23) be a standard �ltration and we have toprove that 
s � �
s, where �
s are the modules (31). For this aim, recall that LXtransforms Ker 
0 into itself:(33) Ker 
0 = Ker 2
0 ! Ker 
0 ;and moreover yields the injective linear mappings(34) 
0 = Ker 
0 ! Im 
0 = 
0 � 
1 = 
0 ;(35) 
s+1 = Ker 
s+1 = 
s+1 = 
s ! Im 
s+1 = 
s+1 � 
s+2 = 
s+1 :It follows easily that Ker 
0 consists just of such forms ! 2 
 that all terms ofthe series ! ; LX ! ; L2X ! ; : : : are contained in a �nite-dimensional module (namelyin Ker 
0). But recalling (31) and (32), the same property have just the formslying in the module f�
 1
; : : : ; �
 cg = Ker �
0, hence Ker 
0 = Ker �
0. Moreover, invirtue of the injectivity of the mappings (34), (35), necessarily �! =2 Ker
0. On theother hand, the module Ker 
0 = Ker �
0 together with all forms �! ; LX �! ; L2X �! ; : : :generate the whole di�ety 
 (see (31)), hence in virtue of (34) and (35), necessarily�! 2 
0 and even(36) 
s � f�
 1

; : : : ; �
 c ; �!; : : : ; LsX �! g(using the injectivity (34) and (35)) by induction on s . This is the desired result.



130 VERONIKA CHRASTINOV�A6. The resolving diffietyAfter all necessary preliminaries, we come to the main task. Recalling theoriginal equations (1), one can see that three functions y ; z ; p of independentvariable x and their derivatives (in principle, of all orders), and a variable parameter
� (ensuring the di�erence p � q = � 2 R) are in the play. Abbreviating thederivatives by lower indices (explicitly f s � d

s
f =dx

s where f will be any of y ; z ; p ),the equations (1) permit to explicitly determine all derivatives y s ; z s (s � 2) interms of p s and q s = (p � � )s (where (p � � )0 = p � � but (p � � )s � p s if s � 1)so we �nd ourselves in the in�nite-dimensional space with coordinates(37) x; �; y 0 ; y 1 ; z 0 ; z 1 ; p 0(= p ); p 1 ; p 2 ; : : :and the structure of the problem is determined by the equations(38) d� = dy 0 � y 1 dx = dz 0 � z 1 dx = dy 1 � py 0 dx = dz 1 � (p � � )z 0 dx = 0;(39) dp s � p s+1 dx � 0 (s = 0; 1; : : : ):Here (38) are substitute for the requirements � 2 R, and (1), moreover (38) and(39) ensure the true sense of the derivatives (we refer to (19), (20) for more details).Individually the equations (38), (39) do not make a good sense: in the spirit ofSection 3 above we have to introduce the di�ety 
 generated by all di�erentialforms appearing in (38) and (39).More explicitly, to abbreviate the notation, we introduce the vector �eld Xexpressed in terms of coordinates (37) by(40) X = @

@ x

+ y 1 @

@ y 0 + py 0 @

@ y 1 + z 1 @

@ z 0 + (p � � )z 0 @

@ z 1 + 1Xi=0 p s+1 @

@ p s ;the recurrences(41) y s+1 � X y s ; z s+1 � X z s ; p s+1 � X p s 2 F (s = 0; 1; : : : )for certain special functions (including the coordinates (37)) and the di�erentialforms(42) � s � dy s � y s+1 dx; � s � dz s � z s+1 dx; � s � dp s � p s+1 dx:One can then verify the formulae LX d� = 0,(43) LX � s � � s+1 ; LX � s � � s+1 ; LX � s � � s+1 :At the same time clearly(44) y 2 = py 0 ; y 3 = X y 2 = p 1 y 0 + py 1 ; : : : ;

z 2 = (p � � )z 0 ; z 3 = X z 2 = p 1 z 0 + (p � � )z 1 ; : : :



ON THE DARBOUX TRANSFORMATION II 131and therefore (in particular)(45) � 2 = p� 0 + y 0 � ; � 2 = (p � � )� 0 + z 0(� � d� )by direct calculations. In terms of the new notation clearly(46) 
 = fd�; � 0; � 1 ; � 0 ; � 1 ; � 0 ; � 1 ; : : : g:We have indeed a di�ety: the forms from 
 together with the single form dx = 2 
generate the module � of all di�erential forms, and there is �ltration (23) de�ned(for instance) by(47) 
s � fd�; � 0; � 1 ; � 0 ; � 1 ; � 0; : : : ; � sg;which satis�es the requirement (24), see (43) and (45). Our next aim will be todetermine the (unique) standard �ltration of 
. The result will be employed to thestudy of certain automorphisms of 
 which may be regarded for a generalizationof the Darboux transformation.7. Calculation of standard filtrationFirst of all, Ker
s+1�
s (s = 0; 1; : : : ) and (denoting 
�1=fd�; � 0; � 1 ; � 0 ; � 1g)clearly Ker 
0 = 
�1 in virtue of (43), (45). Second, in order to determine Ker 
�1,recall again the formulae
d� ! 0; � 0 ! � 1 ; � 0 ! � 1 ; � 1 ! p� 0 + y 0 � ; � 1 ! (p � � )� 0 + z 0(� � d� )(the arrows stand for LX ) which imply

z 0 � 1 � y 0 � 1 ! z 1 � 1 � y 1 � 1 + z 0 p� 0 � y 0(p � � )� 0 ;whence we may introduce(48) 
�2 = Ker 
�1 = fd�; � 0; � 0 ; z 0 � 1 � y 0 � 1g:Third, in order to determine Ker 
�2, we may use the above formulae (especially(45)) which imply
z 0 � 1 � y 0 � 1 ! z 1 � 1 � y 1 � 1 + z 0 p� 0 � y 0((p � � )� 0 � z 0 d� );

z 1 � 0 � y 1 � 0 ! z 1 � 1 � y 1 � 1 + (p � � )z 0 � 0 � py 0 � 0 ;

z 0 � 0 � y 0 � 0 ! z 0 � 1 � y 0 � 1 + z 1 � 0 � y 1 � 0 :It follows that(49) 
�3 = Ker 
�2 = fd�; z 0 � 0 � y 0 � 0 ; z 0 � 1 � y 0 � 1 � (z 1 � 0 � y 1 � 0)g:



132 VERONIKA CHRASTINOV�ADenoting the last forms in the braces � and � , respectively, one can see that thereis the alternative formula
� = d (z 0 y 1 � y 0 z 1)� X (z 0 y 1 � y 0 z 1)dx:Fourth, in order to determine Ker 
�3, we use the obvious equations

� = z 0 � 0 � y 0 � 0 ; � � z 0 � 1 + y 0 � 1 = y 1 � 0 � z 1 � 0to conveniently express � 0 and � 0:
� 0 = (y 0(� � z 0 � 1 + y 0 � 1) + y 1 � )= (z 0 y 1 � y 0 z 1);

� 0 = (z 0(� � z 0 � 1 + y 0 � 1) + z 1 � )= (z 0 y 1 � y 0 z 1):Then we obtain (use also (45))
� ! z 0 � 1 � y 0 � 1 + z 1 � 0 � y 1 � 0 = 2(z 0 � 1 � y 0 � 1) � � ;

� ! � (y 0 � 0 + z 0 � 0) + y 0 z 0 d� == � (2y 0 z 0(� � z 0 � 1 + y 0 � 1) + (y 0 z 1 + z 0 y 1)� )= (z 0 y 1 � y 0 z 1) + y 0 z 0 d�;more brie
y
� ! 2(z 0 � 1 � y 0 � 1);

� !�2�y 0 z 0(z 0 � 1 � y 0 � 1)= (z 0 y 1 � y 0 z 1)modulo d�; �; � . Consequently(50) 
�4 = Ker 
�3 = fd�; �y 0 z 0 � + (z 0 y 1 � y 0 z 1)� g:Then, obviously, 
�5 = Ker 
�4 =fd� g and 
�6= Ker 
�5= fd� g = Ker 2
�4.We are done: the sequence(51) �
0 = 
�4 � �
1 = 
�3 � � � � = 
 = [�
sprovides the sought standard �ltration of 
.Comparing this result with the general one (31), we have c = 1, �
 1 = d� and theinitial form �! = �y 0 z 0 � + (z 0 y 1 � y 0 z 1)� . Note that the form d� may be replacedby any nonvanishing multiple ad� and analogously, any form of the kind b �! + cd�(b 6= 0) may be regarded for an initial form: after this change, the �ltration (51)does not change.



ON THE DARBOUX TRANSFORMATION II 1338. Determination of automorphismsEvery automorphism F of our di�ety 
 obviously preserves all terms �
s ofthe standard �ltration (51), and also the submodule Ker �
0 = fd� g � �
0 (asfollows at once from the uniqueness of these objects and the obvious fact thatautomorphisms of di�eties turn standard �ltrations into standard �ltrations). Weshall explicitly employ only the invariance of Ker �
0 and the �rst term �
0. Thisis expressed by(52) F� d� = ad�; F��! = b �! + cd�with certain coe�cients a; b; c (where a 6= 0, b 6= 0). On the other hand, we shallsystematically employ that the automorphismsF preserve the submodule 
? � T .This is expressed by F� X = g X (g 6= 0) where X is the vector �eld (40) generating
?. Note that the unknown factor g satis�es the equation(53) g = g X x = (F� X )x = G�
X F� x;which is a particular case of (13).In order to calculate such automorphisms in full generality, the followingmethodwill be examined: �rst, (521) means that F� � is a function of merely � (explicitlyF� � = h (� )), second, (522) taken only modulo d� means that F may be regardedfor a contact transformation (the form �! is multiplied by a factor b ), which permitsto specify the transformations F� u; F� v ; F� w for certain function u; v ; w closelyrelated to �! (see below), third, the rule (13) makes it possible to investigate eventhe functions(54) F� u s ; F� v s ; F� w s ; (u s � X

s
u; v s � X

s
v ; w s � X

s
w );fourth, we may expect that the crucial variables x; y 0 ; z 0 can be expressed in termsof functions u s ; v s ; w s (s = 0; 1; : : : ) and then the sought F� x; F� y 0 ; F� z 0 can beeasily found (since they are expressed in terms of functions (54) by the sameformulae), �nally, the knowledge of the last triple of the transformed functionsmay be regarded for the sought result.In reality we are however not interested in quite general automorphismsF whichare rather far from the classical Darboux transformations: we have to look onlyfor special automorphisms F which preserve the independent variable x , that is,which satisfy F� x = x . In this special case clearly g = G�

X x = G�1 = 1 by using(53), hence F� X = X and the rule (13) simpli�es as F� X f = X F� f . It followsthat the functions (54) can be easily found in terms of F� u; F� v ; F� w :F� u s � X

sF� u; F� v s � X

sF� v ; F� w s � X

sF� w :We shall moreover see that the presumed invariance of x will imply certain verystrong additional requirement for these functions.



134 VERONIKA CHRASTINOV�APassing to explicit calculations, recall that we suppose F� x = x (hence F� X f �
X F� f for every function f ) and F� � = h (� ) with a certain function h . We turnto (522) which will be considered only modulo d� and dx . Since clearly(55) �! �= �y 0 z 0(z 0 dy 0 � y 0 dz 0) + (z 0 y 1 � y 0 z 1)d (z 0 y 1 � y 0 z 1)modulo dx , we �nd it useful to introduce the functions u = y 0 z 0, v = y 0 =z 0,
w = y 0 z 1 � z 0 y 1. Then �! �= w

2f� ( u

w

)2 d ln v + d ln w g(so that the form f: : : g may be used instead of �! ) and (522) is expressed by(56) h F�( u

w

)2 d lnF� v + d lnF� w

�= b (� ( u

w

)2 d ln v + d ln w ):If x; � are kept �xed for a moment, this congruence means that two subcases shouldbe distinguished: either both lnF� v and lnF� w are functions of ln v and ln w , orthere is only one relation between these quadruple of functions (so that eitherlnF� v or lnF� w may be represented as a composed function of the remainingtriple). We shall separately deal with these subcases.9. The \point transformation" subcaseIn accordance with the above remark, we begin with the assumption(57) lnF� v = k (ln v ; ln w ; �; x ); lnF� w = l (ln v ; ln w ; �; x ):Substitution into (56) yields the identities
hk 1F�( u

w

)2 + l 1 = b� ( u

w

)2 ; hk 2F�( u

w

)2 + l 2 = b(where the lower indices denote partial derivatives with the respect to the argu-ments at the noted places, e.g., k 1 = @ k =@ ln v ). It follows easily(58) �F� wF� u

�2 = F�( w

u

)2 = h

�k 2(u=w )2 � k 1
l 1 � �l 2(u=w )2by elimination of the unimportant function b . In principle the formulae (57), (58)determine F� u; F� v ; F� w and then clearly(59) F� y 0 = (F� u F� v )1=2 ; F� z 0 = (F� u= F� v )1=2(as follows from the obvious formulae y 0 = p

uv , z 0 =pu=v ). However in realitywe are as yet dealing only with necessary conditions: all the automorphisms Fmust be of the mentioned kind but the converse need not be true.



ON THE DARBOUX TRANSFORMATION II 135In order to obtain necessary and su�cient requirements for the functions h; k ; l ,we shall proceed as follows. One can �nd that the functions(60) x; �; u 0 = u; v 0 = v ; u 1 ; v 1 ; u 2 ; u 3 ; : : :can be used for coordinates instead of the original ones (37), as well. This followsfrom the obvious formulae
y 0 = p

uv ; z 0 =r u

v

; p = y 2
y 0 = X

2p
uvp

uv

;the recurrences y s � X

s
y 0, z s � X

s
z 0, p s � X

s
p and the identity(61) X

2 ln v + X ln u:X ln v = �(identical with (61)) which permits to express v 2 in terms of u 0 ; u 1 ; u 2; v 0 ; v 1. Ingeneral, formulae for v s (s � 3) are obtained if X is repeatedly applied to (61). Itfollows that all w s (s � 0) can be expressed in terms of new coordinates. Using
X v = X (y 0 =z 0) = y 1 =z 0 � y 0 z 1 = (z 0)2, clearly(62) w = uX ln v = uv 1 =vand then w s � X

s (uX ln v ). These are all interrelations between the functions
u s ; v s ; w s. The corresponding interrelations must be satis�ed for the transformsF� u s ; F� v s ; F� w s, which provides the additional requirements for the functions
h; k ; l . It is however quite su�cient to ensure only the relations corresponding to(61), (62), that is, the relations(63) X

2 lnF� v + X lnF� u:X lnF� v = h; F� w = F� u:X lnF� v ;since the higher order ones (involving v s for s > 2 and w s for s > 0) appear if theoperator X is repeatedly applied to (63) and therefore do not bring any novelty.We shall �rst deal with (632). Using (58), (571) and the identity
X k = k 1 v 1 =v + k 2 w 1 =w + k 4 (k 4 = @ k =@ x )where v 1 =v = w =u (see (62)) and w 1 =w = �u=w (direct veri�cation), we obtainthe requirement(64) h

�k 2(u=w )2 � k 1
l 1 � �l 2(u=w )2 = (k 1 w

u

+ �k 2 u

w

+ k 4)2 :Quite analogously, using (632) and its consequence, the derived identity
X

2 lnF� v = X

�F� wF� u

� = X F� wF� u

� F� w

X F� u(F� u )2 ;



136 VERONIKA CHRASTINOV�Athe requirement (631) can be found equivalent to the equation X F� w = h F� u ,that is, to the equation(65) X lnF� w = h F�(u=w ):Using (58), this can be explicitly rewritten as(66) �k 2(u=w )2 � k 1
l 1 � �l 2(u=w )2 = (l 1 w

u

+ �l 2 u

w

+ l 4)�2 :In particular we have(k 1 w

u

+ �k 2 u

w

+ k 4)(l 1 w

u

+ �l 2 u

w

+ l 4) = h;whence easily(67) k 1 l 1 = k 2 l 2 = k 1 l 4 + l 1 k 4 = k 2 l 4 + l 2 k 4 = 0; l 4 k 4 + � (k 1 l 2 + l 1 k 2) = h:At this place note that the Jacobian k 2 l 1� l 2 k 1 of the functions k ; l with respect tothe variables ln v ; ln w should not vanish (otherwise the functions (60) cannot beused for coordinates after applying the automorphism F which is a contradiction).Moreover (64), (66) are possible only if l 4 = k 4 = 0 (otherwise the left hand sideswould not be even functions of the variable u ), hence (67) reduces to k 1 l 1 = k 2 l 2 =0, k 1 l 2 + l 1 k 2 = h=� . Altogether taken, one can �nd that this may happen if oneof the following possibilities holds true:(68) either k 1 6= 0; l 1 = k 2 = 0; k 1 l 2 = h=�;(69) or k 2 6= 0; l 2 = k 1 = 0; k 2 l 1 = h=�:We shall discuss (68), (69) separately.In the �rst subcase (68), we have h = h (� ), k = k (ln v ; � ), l = l (ln w ; � ) andthe identity (64) simpli�es into relation (683), that is,
h (� )=� = l

0(ln w ; � )k

0(ln v ; � )where the primes denote the partial derivatives with respect to the �rst argument.(The identity (66) may be omitted; it is a consequence of (64) and (67).) It follows
l = a (� ) ln w , k = b (� ) ln v with the relation h (� )=� = a (� )b (� ). So we haveF� v = v

b(�)
; F� w = w

a(�)
; F� u = 1

b

uw

a(�)�1
;where the last formula follows from (58) by direct calculation (using moreoverF� w = w

a(�) and a (� )b (� ) = h (� )=� ). Returning to the variables y s ; z s, we obtainthe �nal result(70) F� y = (uw

a�1
=b:v

b)1=2 = (y z w

a�1(y =z )b =b )1=2 = (y

1+b
z

1�b
w

a�1
=b )1=2 ;F� z = (uw

a�1
=b:v

�b)1=2 = (y

1�b
z

1+b
w

a�1
=b )1=2 :



ON THE DARBOUX TRANSFORMATION II 137This may be regarded for a mere modi�cation of the identity, which is obtainedif a = b = 1. Interesting transformation appears even if a = 1 and b = b (� )arbitrary, then the potentials of the transformed functions di�er by the value
h = a (� )b (� )� = b (� )� .In the second subcase (69), we have h = h (� ), k = k (ln w ; � ), l = l (ln v ; � ) andthe identity (64) simpli�es into the relation (693), that is,

h (� )=� = l

0(ln v ; � )k

0(ln w ; � ):(Then (66) is automatically satis�ed and may be omitted.) It follows l = a (� ) ln v ,
k = b (� ) ln w with the relation h (� )=� = a (� )b (� ). Using (58), we obtainF� v = w

b(�)
; F� w = v

a(�)
; F� u = v

a(�)
w =u�b (� )and consequently(71) F� y = (v

a
w =u�b:w

b)1=2 = (y

a�1
w

1+b
=�bz

1+a)1=2 ;F� z = (v

a
w =u�b:w

�b)1=2 = (y

a�1
w

1�b
=�bz

1+a)1=2 :The classical Darboux transformation appears if a = b = 1.We shall prove in the concluding Section 10 that the (seemingly more general)\contact transformation" subcase does not give any x -preserving automorphisms,hence (70) and (71) represent the most general automorphisms of our di�ety .Comparing this with the quadrature-free formulae (7) and (8) in Introduction, itis necessary to substitute V = w =u = w =y z , AB = a = const., A� = h (� ) = �ab(hence A = ab , B = A=a = b ) and it follows that (7) and (8) are particular casesof (70) and (71) if a = a (� ), b = b (� ) are merely constants.So we may conclude: the formulae(7)and (8)with A = A (� );

B = B (� ) 6= 0nonconstant cannot be already generalized. They providethe most general quadrature-free and x � preserving automorphismsof couples of Sturm-Liouville problems (1) with potentials p; q di�eringby a constant.10. The \contact transformation" subcaseRecalling (56), let us suppose the existence of a relation of the kind(72) lnF� w = k (lnF� v ; ln w ; ln v ; �; x ):Substitution into (56) gives immediately(73) h F�( u

w

)2 + k 1 = 0; k 2 = b; k 3 = b� ( u

v

)2 ;



138 VERONIKA CHRASTINOV�Awhence(74) k 3 = k 2 � ( u

v

)2by elimination of b . If we deal with a contact transformation, the functions F� w ,F� u , F� v can be calculated in terms of variables(75) ln w ; ln v ; �; xby virtue of equations (72), (731), (74). However the identities X ln v = �w =u and
X ln w :w = �u=w are true, hence the transformed (632) and (65) must be satis�ed,too. They ensure that the functions F� X v , F� X w can be expressed in terms ofvariables (75). Finally, applying X on the equation (74) one can calculate X u interms of F� X v and the variables (75), hence X u = u 1 would be expressible interms of (75). But this is a contradiction since the functions (60) may be chosenfor coordinates. References[1] Darboux, G., Le�cons sur la Th�eorie des Surfaces, Vol. 2, Gauthier-Villars, Paris, 2nd ed.1915, pp. 162{175.[2] Beals, R., Deift, P., Tomei, C., Direct and inverse Scattering on the Line, MathematicalSurveys and Monographs 28, AMS 1988, pp. 171{180.[3] Matveev, V. B., Salle, M. A., Darboux Transformations and Solitons, Springer Series inNonlinear Dynamics, Springer Verlag 1991.[4] Chrastina, J.,On the equivalence of variational problems II, ArchivumMathematicum(Brno)T. 29 (1993), 197{220.[5] Chrastina, J., Preprint to the theory of di�eties.[6] Vinogradov, A. M., Krasil�s�cik, I. S., Ly�cagin, V. V., Introduction into the geometry ofnonlinear di�erential equations, (Russian), Moskva 1986.[7] Chrastinová, V., On the Darboux transformation I, Georgian Mathematical Journal Vol. 2,No. 3, 1995, 237{240.Veronika Chrastinov�aMasaryk University, Faculty of ScienceDepartment of MathematicsJanáèkovo nám. 2a662 95 Brno, CZECH REPUBLIC
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