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PARAMETRIZED RELAXATION FOR EVOLUTION
INCLUSIONS OF THE SUBDIFFERENTIAL TYPE

NIKoLAOS S. PAPAGEORGIOU

ABSTRACT. In this paper we consider parametric nonlinear evolution inclusions
driven by time-dependent subdifferentials. First we prove some continuous depen-
dence results for the solution set (of both the convex and nonconvex problems)
and for the set of solution-selector pairs (of the convex problem). Then we derive a
continuous version of the “Filippov-Gronwall” inequality and using it, we prove the
parametric relaxation theorem. An example of a parabolic distributed parameter
system is also worked out in detail.

1. INTRODUCTION

It is well known that if the orientor field (set-valued vector field) of a differen-
tial inclusion is Lipschitz continuous in the state variable, then the solution set
of the differential inclusion is dense in that of the convexified problem (i.e. the
differential inclusion obtained by replacing the orientor field by its closed, convex
hull). We refer to the book of Aubin-Cellina [2] (theorem 2, p. 124) for differential
inclusions in RY and to Papageorgiou [21], Zhu [32] for differential inclusions in
Banach spaces, for further details on this issue. Such a density result is known
in the literature as “relaxation theorem” and plays an important role in control
theory, in connection with the study of the relaxed system and in the deriva-
tion of “bang-bang principles”. Recently, the relaxation theorem was extended by
Frankowska [12] (theorem 2.5 and corollary 2.6) to semilinear evolution inclusions
and by Papageorgiou [23], [24] to nonlinear, nonautonomous evolution inclusions of
the subdifferential type (in fact in [24] a stronger result was obtained; namely that
the set of “extremal solutions”-i.e. solutions moving through the extreme points
of the orientor field - is dense in the solution set of the convexified problem). In a
recent paper, Fryszkowski-Rzezuchowski [13], considered parametrized differential
inclusions, and proved a continuous analog of the relaxation result. Their proof was
based on a parametric version of the well known Filippov approximation result,
which was obtained by Colombo et al. [6]. Recall (see Aubin-Cellina [2], theorem
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1, p. 120 and Filippov [10]), that according to Filippov’s result, given the multival-
ued Cauchy problem #(t) € F(t,2(t)) a.e. , (0) = 2o in which the orientor field
F(t,x) is h — Lipschitz continuous in x, with closed but not necessarily convex
values and y(-) an absolutely continuous function on 7" = [0, b] such that y(0) = xq
and t — d(y(t), F(t,y(1)) is mtegrable then there eXlsts a solution #(-) of the dif-

ferential inclusion such that f||y s) — &(s)||ds < fp exp [fk ] ds, with
0

k(t) € L}|_ being the Lipschitz constant for F(¢,-). Thls estimate is a very useful
tool in the study of differential inclusions and among other things, shows that the
solution set S(xp) of the multivalued Cauchy problem, as a multifunction of the
initial condition g, is h — Lipschitz continuous. The original result of Filippov
[10], was extended to Caratheodory-type orientor fields by Himmelberg-Van Vleck
[15] and to semilinear evolution inclusions by Frankowska [12] and Papageorgiou
[26]. When dealing with parametrized differential inclusions, due to the lack of
uniqueness of a solution to obtain a continuous version of the above “Filippov-
Gronwall inequality”, we need to slightly relax the estimate by allowing for an
arbitrarily small error € > 0 (see Colombo et al. [6]).

The purpose of this paper is to extend the parametric relaxation result of
Fryszkowski-Rzezuchowski [13], to nonlinear evolution inclusions of the subdif-
ferential type. Such inclusions are important in the study of infinite dimensional
systems, because they model differential inclusions with multivalued terms; see
for example Flytzanis-Papageorgiou [11], Papageorgiou [22] and Tiba [27]. Our
approach follows that of Fryszkowski-Rzezuchowski [13], and so we also prove a
continuous version of the “Filippov-Gronwall inequality”, extending this way to
a class of nonlinear parametric evolution inclusions the corresponding result in
Frankowska [12] and Papageorgiou [26].

2. PRELIMINARIES

Let (2, X) be a measurable space and X a separable Banach space. Throughout
this paper, we will be using the following notations:

Pey(X) ={A C X : nonempty, closed (convex)}
and  Puye(e)(X) ={A4 C X : nonempty, (weakly-) compact, (convex) }

A multifunction (set-valued function) F : @ — P;(X) is said to be “measurable”
if and only if for all # € X, the Ry — valued function w — d(z, F'(w)) = inf{||z —
z|| + z € F(w)} is measurable. We will say that F'(-) is “graph measurable” if
and only if GrF = {(w,2) € @ x X 1z € F(w)} € ¥ x B(X), with B(X) being
the Borel o-field. Recall that measurability implies graph measurability, but the
converse 1s not in general true. It is true if ¥ is a Souslin family and this is the
case if there is a finite measure p(-) defined on (€2, X) with respect to which ¥ is
complete. For details we refer to the survey paper of Wagner [28]. Next let p(-) be
a finite measure defined on (£2,X). By S5(1 < p < oo) we will denote the set of
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measurable selectors of F'(-), that belong in the Lebesgue-Bochner space LF(X);
le. Sh ={f € LP(X) : f(w) € F(w)pu — a.e.}. In general, this set may be empty.
A straightforward application of Aumann’s selection theorem (see Wagner [28],
theorem 5.10) shows that for a graph measurable multifunction, S% is nonempty
if and only if w — inf{||z]] : € F(w)} € L. A set K C LF(X) is said to be
decomposable if for all (f,g,4) € K x K x X, we have that xaf + xa-¢9 € K.
Clearly the set S% is decomposable in the space LF(X).

On P;(X) we can define a generalized metric, known in the literature as Haus-
dorff metric, by setting for A, B € P;(X)

h(A, B) = max [sup d(a, B),sup d(b, A)
acA i€eB

where d(a, B) = inf{|la—b|| : b € B} and d(b, A) = inf{||b—al| : @« € A} . Tt is well-
known (see for example Klein-Thompson [16]), that the metric space (P(X), h)
is complete. A multifunction F : X — P¢(X) is said to be Hausdorff continuous
(h-continuous), if it is continuous from X into the metric space (P;(X), h).

If Y, Z are Hausdorff topological spaces and G : Y — 2% < {0}, we say that
G(+) is lower semicontinuous (l.s.c.), if for every C' C Z closed G*(C) = {y €
Y 1 G(y) C C} is closed (or equivalently for every U C Z open, G=(U) = {y €
Y : G(y)NU # 0} is open). If Y, Z are metric spaces, then lower semicontinuity
is equivalent to saying that if y, — y in Y, then G(y) C limG(y,) = {z € 7 :
limd(z,G(y,)) = 0} = {z € 7 : z = limzy, 2, € G(yn)n > 1}. Also in this
case lower semicontinuity of G(-) is equivalent to the upper semicontinuity of the
distance function y — d(z, G(y)) for every z € 7 (see DeBlasi-Myjak [8]).

Let ¢ : X — R = RU {+co}. We will say that ¢(-) is proper, if it is not
identically +oo. Assume that ¢(-) is proper, convex and lower semicontinuous
(I.s.c.) (usually this family of R-valued functions is denoted by I'o(X)). By dom
¢, we will denote the effective domain of ¢(+); i.e. domy = {x € X : p(x) < +o0}.
The subdifferential of ¢(-) at x, is the set dp(x) = {z* € X* : (¢*,y —2) <
o(y) — () for all y € dom ¢} (here (-, -) stands for the duality brackets for the
pair (X, X*)). If () is Gateaux differentiable, then dp(z) = {¢'(x)}. We will say
that ¢ € T'o(X) is of compact type, if for every A € R, the level set {z € X :
|z[|? + ¢(z) < A} is compact.

Our mathematical setting is the following: T' = [0,b], H is a separable Hilbert
space (the state space) and A a complete metric space (the parameter space). We
will be considering the following two multivalued Cauchy problems:

{ (1) € Bp(t,z(t)) + F(t,z(t), A) a.e. }

(1) 2(0) = v(})

and its convexified counterpart

{ —&(t) € dp(t,x(t)) +cOnv I (t, x(t), ) a.e. }

(2) 2(0) = v(})
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By a “strong solution” of (1) (resp. of (2)), we mean a function z € WH*(T, H)
such that z(0) = zo and there exists fi € L%*(H) with fi(t) € F(t,z(t), )
a.e. (resp. fa(t) € conv F(¢,z(t),A) a.e.), such that —z(¢) € dp(t,z(1)) + fr(t)

e. Recall (see theorem 2.2 of Barbu [3]), that Wh2(T, H) can be identified
with ACH2(T, H) the space of all absolutely continuous functions from 7' into
H with strong derivative in L?(H). So for every y € WH2(T, H) we can find a
y1 € ACY(T, H) such that y = y; a.e. on (0,b) (i.e. every equivalence class in
WLH2(T, H) has an absolutely continuous representative, whose strong derivative
#(-) € L*(T, H)). We know that if Y is a Banach space with the RNP (Radon-
Nikodym property), then every absolutely continuous function z : 7' — VY is
strongly differentiable a.e. and & € L*(Y). The class of RNP-spaces, includes re-
flexive Banach spaces and separable dual spaces. For details we refer to Diestel-Uhl
[9].

Following Yotsutani [31], we will make the following hypothesis on ¢(¢, #) which
will be valid throughout this work.

H(p): ¢ : T x H—TR=RU{+c0} is a function such that

(1) for every t € T, (2, ) is proper, convex, l.s.c. (i.e. ¢(t,-) € To(H))
and 1is also of compact type,

(2) for any o € [0,1] and B =2if a« €[0,1/2] or 8 = = if & € [1/2,1]
and for any positive integer r, there exists a constant K, > 0, an abso-
lutely continuous function g, : T'— R with g, € LP(T) and a function
of bounded variation A, : T — IR such that if ¢ € T, # € dom (¢, -)
with ||z]] < r and s € [t, ], then there exists Z € dom ¢ (s, -) satisfying

7 = 21l < I90(5) = g0 (DIt ) + )
and (s, 3) < plt,2) + he(s) — e (DI(p(t,2) + Ky).

Remarks. (a) This hypothesis is more general than the ones used by Watanabe
[29] and Yamada [30].

(b) If o(t, ) = o(-) € To(H) (i.e. there is no t-dependence) and ¢(+) is of
compact type, then clearly H(y) is satisfied. Also assume that K : T — Py.(H)

is a multifunction such that A(K(t'), K(¢ f s)ds for all 0 <t < ¥ < b

and with v(-) € L?l_ and let (¢, z) = 6K(t)( ) where g (1)(x) is the indicator
function of K'(t);i.e. ég(s)(x) = 0if x € K(t), 400 otherwise. Then it is clear that
hypothesis H(¢p) is satisfied with o = 0, K, = 1, §, = v and h, = 0. Recall that
Op(t, x) = Ng(y(x) forall (t,x) € GrK, where Nk (4)(x) is the normal cone to K(t)
at z. Evolution inclusions of the form —2(t) € Ng(1)(®(t)) + F(t, x(t)) a.e. arise in
mechanics (see Moreau [17], where F' = 0) and can be useful in the optimal control
of variational inequalities. In fact, when K(t) = K (i.e. no t — dependence), they
are called “Differential Variational Inequalities” and they are equivalent to the
projected differential inclusion #(¢) € proj(F (¢, z(1)); Tx (z(1))) a.e. This was first
proved by Cornet [7] (see also Aubin-Cellina [2], chapter 5, section 6). Projected
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differential inclusions arise in mathematical economics, in the study of planning
procedures, as well as in other applied problems with state constraints.

In what follows by S(A) C C(T, H), we will denote the solution set of (1) and
by S,(X) C C(T, H) the solution set of (2). Also if h € L%(T, H), by qx(h)(:) €
C(T, H) we will denote the unique solution of the Cauchy problem —z(t) €
Jo(t,z(t)) + h(t) a.e. 2(0) = v(A) € domep(0,-) (its existence and uniqueness
follows from the theorem of Yotsutani [31]). Let P(A) C C(T, H)x L*(T,H) be
defined by P(A) = {(z,h) : © = ¢qa(h) and h € S%(,yx(,))}. Similarly P.(A) =
{(z,h): 2 =qx(h) and h € SCZOHVF(.J(,))} CC(T,H) x L*(T, H).

3. CONTINUOUS DEPENDENCE RESULT

In this section we establish the continuity properties of the multifunction A —
P,(A) and from that result, we deduce the continuity properties of A — S,(A) and
A — S(A). For this we will need the following hypotheses:

H(F): F:TxHxA— P;(H) is a multifunction such that
(1) t— F(t,x, ) is measurable,
(2) WPz, X)), Ft,y,A) <kp@t)lt —y|| a.e. forallxe BCA
compact and with kg(-) € L2,
(3) P2, 0] =supdllel] 0 € F(t, 2, A)} < an(t) + en(t)]z]
a.e. for all A € B C A compact and with ag,cp € L?I_,
(4) A —vconvF(t,z,A)is Ls.c.

Hy : v: A — dom (0, -) is continuous.

From Papageorgiou [23] (theorems 3.1 and 3.2) we know that with hypotheses
H(p), H(F) and Hy valid, for all A € A, the sets S(A) and S,(A) are nonempty
and in fact S,(A) is compact in C(T, H) (see [23], theorem 4.1). Also P,(}) is
a compact subset of C(T, H) x L*(T, H),, where L*(T, H),, denotes the Hilbert
space L?(T, H) furnished with the weak topology. In fact, it is easy to see that
P.(X) € P;(C(T,H) x L*(T, H)) for all X € A.

Theorem 3.1. If hypotheses H(yp), H(F')1, and Hy hold, then

A — P.(\) isls.c. from Ainto Py(C(T,H)x L*(T, H)).

Proof. We need to show that if A, — A, then P.(A) C lim P,(\,). To this end,
let [x, f] € P-(A). By definition we have

—&(t) € dp(t, () + ft)a.e.,z(0) = v(A)

with f(t) € conv F'(t,z(t), A) a.e. Because of hypothesis H(F); (4) and theorem
4.1 of Papageorgiou [20], we know that A — SZ__ Fa(-),n) 18 Ls.c. So we can find

fn € SCZ()TF(W(,)VM) such that f,, = fin L?(T, H). Let y,(-) be the unique strong
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solution of the Cauchy problem
_yn (t) € a@(ta Yn (t)) + fn (t) a.e.
yn(0) = v(}) '
Exploiting the monotonicity of the subdifferential operator, we get that
(=gn (1) + 2(t), (1) = yn (1)) < (fa(t) = F(1), 2(t) —yn(t)) a.e.
1d
sl () = 2@ < [1£2() = SOl - lyn () — @] a.e.
Integrating the above inequality from 0 to ¢, we get

thus

[lya (1) — 2(D)II* < 2/ 1/ (8) = Sl - Iy () — z(s)]| ds

Applying lemma A.5, p. 157 of Brezis [5], we get
lyn(®) — x| < 2||fn — fll1 forall teT

and so  y, — 2 in C(T,H) as n— .

Next let m(t, Ap) = proj(f(t);conv F'(¢, x(t), An)) and u(t, z, A,) = proj(m(t, Ap);
conv il (t,z,Ap)).

Here proj(-;conv F'(¢, z, A)) denotes the metric projection on the set F(t,z, A)
for all (¢,2z,A) € T'x H x A . Note that because of hypotheses H(F'); (1) and
(2) and theorem 3.3 of [19] we know that (¢,2) — F(t,z,A,) is measurable, so
t — F(t,z(t), \n) is measurable thus t — Tonv F(t, (), Ap) measurable = ¢ —
d(f(t),conv F(t,2(t), A\n)) = || f(t)—m(t, An)|| is Borel measurable = t — m(t, Ap)
is Borel measurable. Similarly we can establish that ¢ — (¢, z, A,) is Borel mea-
surable, while from hypothesis H(F'); (2) and theorem 3.33, p. 322 of Attouch [1],
we have that z — u(t, z, A,) n > 1 is continuous.

Let 2, (-) € WH2(T, H) be a solution of the evolution inclusion

{ —&n (1) € Jo(t, 2 (1)) + u(t, xn(t), /\n)a.e.}
2n(0) = v(Ap)

(see theorem 3.1 of Papageorgiou [23]). Exploiting once again the monotonicity of
the subdifferential operator, we get

(—nlt) + (1), 9 (1) = 20(8)) < (ult 20(0). An) = i (8), 3 (8) = (D))
thus 3 len) = 31 < o) = o) + [ Iluts. 200 )
—La) - llgn(s) = 2a(s)] ds

hence  [|lan (1) — ya (D] < IIU(An)—v(A)IIJr/IIU(S,%(S),M)—fn(S)IIdS
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(see lemma A5, p. 157 of Brezis [5]).
Note that

t
/ [|t(s, 2n(s), An) — fn(s)|| ds

t
/|| (s,2n(8), An) —u(s,z(s), Ap ||d5—|—/||u5x5 An) — fa(s)]| ds

/ h(F(5,20(5), Ay), F ds—l—/ lu(s, z( — f(s)||ds
/||f Sl ds
/kB< in(s) — (s ||ds+/ lu(s, 2(5), A ||ds+/ 1(5) — fals)] ds

< [ knolens >—yn<s>||ds+/b b)) — ()]s
/|| s, ||ds+/ 1F() = Falo)ll s, with B = {Ay M
We know that

/b E(3)lyn(s) — 2(s)]|ds — 0 as m — oo,

/||f (s)||ds — 0 asn— oo

and jz||u(5, z(s), An) — f(8)||ds = jld(f(s), conv F'(s, z(s), An))ds. Because of hy-

0 0
pothesis H(F'); (4), we know that A — d(f(s),conv F'(s, z(s), A)) is u.s.c. So from
Fatou’s lemma we have

E/o ||u(5,x(5),/\n)—f(5)||ds§/0 limd(f(s),conv F(s,2(s),A\,))ds
§/0 d(f(s),conv F(s,z(s),A))ds =0.

So given € > 0, we can find ng(e) > 1 such that for n > ng(e), we have

IIJL‘n(lt)—yn(lt)ll§€+/0 kp(s)llzn(s) = yn(s)llds, t€T

thus ||zn(t) — yn (t)|| < eexp |lkpl|l1  forall t €T and all n > ng(e)
hence x, — 2« in C(T,H).
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Also note that

[ lattsza@,00) = 501 a
< 2/0 ||u(t,xn<tmn)—u(t,x(t),An)lldez/o llu(t, 2(t), \n) — F())? dt

<2 [ kpllan(t) = 2O di+ 2 [ llu(e. (0,0 = FOIF dt 0

as n — oo.

Set hn() = u(-, 2n(+), An). Then [z,, hy] € P-(An) and we have just seen that
]in C(T, H) x L*(T, H). Therefore we have

Pr(N) Clim P.(A,) in C(T, H) x L*(T, H)
and so A — P.(A) s ls.c.

d

From the above proof we also get:

Theorem 3.2. If hypotheses H(p), H(F'); and Hy hold, then A — S, () is Ls.c.
from A into P, (C(T, H)).

Since for every A € A, Sp(A) = S(X), the closure taken in C(T, H) (see [23],

theorem 5.1), we also have:

Theorem 3.3. If hypotheses H(p), H(F)1 and Hy hold, then A — S(}A) is Ls.c.
from A into 26TH) {0}.

Proof. We know that S.(A) = S(A) and that A — S.(A) is Ls.c. (see theorem
3.2). Then the lower semicontinuity of A — S(A) follows from proposition 7.3.3, p.
85 of Klein-Thompson [16]. O

Remark. Our results extend theorem 1 of Colombo et al. [6] and theorem 4.2 of
Zhu [32], who considered differential inclusions in separable Banach spaces, but
with no subdifferential operators present. Furthermore, here we have a continuous
dependence result for the multifunction A — P.(A) too. Note that Colombo et
al. [6] assume that (¢,2,A) — F(¢, 2, ) is measurable. However it is enough to
assume that ¢ — F(¢,2,A) is measurable. Then because of the h-continuity of
z — F(t,z,A) (see hypothesis H(F'); (2) and theorem 3.3 of Papageorgiou [22],
we know that (¢,2) — F(t, 2, ) is jointly measurable. Furthermore, we should
point out that in both [6] and [32], it is assumed that A — F(¢,z,) is Ls.c.,
while here we only require that A — tonv F'(¢, 2, A) is .s.c. From Klein-Thompson
[16] (theorem 7.2.7, p. 82), we know that our hypothesis is less restrictive. Finally,
additional continuous dependence results for evolution inclusions in which the
parameter appears in the subdifferential operator too, can be found in [25].
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4. FILIPPOV-(GRONWALL INEQUALITY

In this section, we prove a continuous version of the “Filippov-Gronwall” esti-
mate. With the help of this result, in section 5, we will prove the desired continuous
version of the relaxation theorem. Our result extends theorem 2 of Colombo et al.
[6], which is about differential inclusions in Banach spaces with no subdifferential
operator present and theorem 1.2 of Frankowska [12] and theorem 4.1 of Papa-
georgiou [26], which deal with semilinear evolution inclusions and no parameter
A € A is present.

We will need the following hypothesis on the orientor field F(¢, z, A):
H(F)y: F:TxHxA— P;(H) is a multifunction such that
(1) t— F(t,x, ) is measurable,
(2) h(F(t,2,)), F(t,y,\) < k(t)||x — y|| a.c. for all (1, A) €T x A
and with k(-) € LY,
(3) |F(t,z, M) < a(t)+c(t)]|z|| a.e for all X € A, with a,c € L%,
(4) A=F(t,z,A)is Ls.c.
Note that if A — [y(}), g(A)] is a continuous map from A into C(T', H) x L*(H),
then there exists p; : A — L}I— a continuous map such that for all A € A

3) dgN)(0). F (1. y(N(0), 1)) < p(A)(D)ac. on T

For example, we can take p,(A)(t) = [|g(A)(@)]] + a(t) + c(@)||y(A)(@)]].
In what follows, given h € L*(H), by qA(h)(-) € C(T, H), we will denote the
unique strong solutlon of

—2(t) € Jp(t, z(t)) + h(t) ae onT
z(0) = v(A)

Theorem 4.1. If hypotheses H(p), H(F)a, Ho hold, A — [y(A), ¢(X)] is a con-
tinuous map from A into C(T,H) x L*(T, H), with y( ) = qalg ( )), € > 0 and
Pyt A — L1 is a continuous map satisfying (3), then there exists A — [x(}), r(A)]
a continuous map from A into C(T, H)x L*(T, H) with [z(X),r())] € P(\) and
for all A € A we have

(A1) — y(M) ()] < bee® ) + /Pg(/\)(s) exp[0(t) — 0(s)]ds, te€T
with 6(t) = /t k(s)ds.

Proof. Let To(A)(t) = {v € F(t,y(A)(), ) : lv—g(XN)@)|| < pg(A)(t)+e}. Clearly
To(A) (1) # 0 a.e. and by modifying it on a Lebesgue null set, we may assume
without any loss of generality that To(A)(¢) # 0 for all¢ € T. Because of hypotheses
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H(F)2 (1) and (2) and theorem 3.3. of [22], we know that (¢,2) — F({, 2, ) is
measurable. So GrT'y() € L£(T) x B(H), with £(T) being the Lebesgue o-field
of T and B(H) the Borel o-field of H. Applying Aumann’s selection theorem, we
deduce that there exists z : T — H a Lebesgue measurable selector of T'g(A)(-).
Then define Ry : A — 28" (T H) by

Ro(N) = {= € She_you0 * 120 = gD < pg(V(®) +eae.}

We have just seen that for all A € A, Ro(A) # 0. Furthermore, from proposition
4 of Bressan-Colombo [4], we know that A — Rg(A) is l.s.c. with decomposable

values. Hence A — Rg(A) is Ls.c. with decomposable values. Then apply theorem
3 of Bressan-Colombo [4], to get ro : A — LY(T, H) a continuous map such that
ro(A) € Ro(A) for all A € A. Then we have [|g(A)(t) — ro(A) ()] < pg(A)(t) + € a.e.
for all A € A. Let x1(A)(-) € WH2(T, H) be the unique strong solution of

{ —&(t) € dp(t, x(1)) + ro(/\)(t)a.e.}
2(0) = v(})

We claim that by induction, we get two sequences {z,(A)(-)}n>1 € WHA(T, H)
and {r,(A)(")}n>0 C L*(T, H) satisfying
() 20(}) = a1 (V).
(il) A — 2, () is continuous from A into C(7T', H) and A — rp(A) is continuous
from A into L*(T, H),

(iii) ro(A)() € F(t, xn(t),A) a.e.

(iv) ||Tn(A)(t)'— - L) < k()8 (A1) a.e.

where 5, (A)( fp w ds+b (an: 2k+1) e((n) T with 0(¢) =
bfk(s) ds.

Suppose we were able to produce {zy(A)(-)}7—; and {rp(A)(-)}i-, satisfying
properties (i) — (iv) above. Let ,41(A) = ga(rn(A)). As before, because of the
monotonicity of the subdifferential operator, we get

i1 (A0 = 2a(A H</Hm )= raa(A / (>

' ’ (0(s) — 0(7)) -
S(Z;k(ﬁb/ Pﬂ))()———r;jffT—_—deS*‘b( 2k+1) ) ds
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Also from hypothesis H(F')2 (2), we have

d(ra(N)(1), F'(1, xn+1( )(),A)) < k(@O)]Jen (A1) = 201 (DO
<k(O)Prra (M) ae

Define Rp41 : A — oL (H) by

Rosi) = {2 € Shi oo £ 120 = )OI < KOFws V(O e}

As we did with Rg(-), we can verify using Aumann’s selection theorem that
Ro+1(A) # 0 for all A € A, while proposition 4 of Bressan-Colombo [4], tells
us that A — Rpy1(A) is lLs.c. with decomposable values. Hence A — R, 41(A)
is [.s.c. with decomposable values. Therefore theorem 3 of Bressan-Colombo [4],
gives us rp41 : A — LY(H) a continuous map such that r,41(A) € Ryy1(A) for
all A € A So rpp1(A)(@E) € F(t, 2n41(A) (), A) ace. and ||rpp1(A)(@) — r (M) (@)]] <
k(1)Bnt1(A)(t) a.e. So by induction we have established the existence of two se-
quences {z,(A)(-)}n>1 and {r,(A)(-)}n>0 satisfying (i) — (iv) above. Then we
have:

| 1m0 = raa @l < [ BO8 000t < Braa(0)
—0(s & o)
N TR e AT

k=0
o(b)" H9H"
n!

<b llpg (M1 + be

Note that since A — py(A) is continuous from A into LY = X — ||py(A)|| is
continuous, hence locally bounded. Therefore from the above inequality, and since
ln410) — 2aWllee < lFa0)= ra 1V, we get that {2, (A st € C(T, H)
and {r,(A)(:)}n>0 C L'(T, H) are Cauchy sequences, locally uniformly in A € A.
So we get that

zp(A) — x(A) in C(T, H)

and r,(A) — r(A) in LY(T,H) as n — oo, locally uniformly in A. Therefore
A — z(A) is continuous from A into C(7, H) and A — r(A) is continuous from A
into LY(T, H). Furthermore, because of hypothesis H(F"), (3), we actually have
that A — r(}) is continuous from A into L*(T, H). In addition from hypothesis
H(F)2 (2) we get that r(A)(2) € F(t,2(A)(1),A) a.e.

Let w(A)(-) € WL2(T, H) be defined by w(A) = qA(r())). As before, from the

monotonicity of the subdifferential operator, we have

|zn(A)(t) — Gl </ [|7n (A —r(N)@)||dt =0 asn—

so xp(A) —w(d) in C(T,H) as n—
thus  w(A) = z(})
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So we have that A — [z()),r(\)] is continuous from A into C(T, H) x L*(T, H)
and for all A € A we have [z(A), 7(A)] € P(}A).

Finally from the triangle inequality, we have

ly(A)(@) = 2o (MO < Nly(A) (@) — 21 (D) @)]] + Z_: lze(A)(#) = zr2 (A)(@)]] -
Recall that
llze(A)(E) = zr421(A)(O]] < /0 Ire(A)(s) = rr-1(A)(s)]| ds

sAk®mOWMs

g/o k(s)/ospg(x)(s)Mdrdee/o k(s)(gﬁ I)!ds

/0 pg(/\)(T)/T dis(ﬁ(s) — H(T))k dsdr + % %H(S)k ds

= & [ BN — 00 s+ o)

Also [[y(A) () = z1(M)(O)]] < 6Ithllg(A)(S) —ro(A)(s)llds < bIt"(Pg(A)(S) +e)ds.

Summing up with respect to k > 0 and passing to the limit as n — oo, we get

1A (@) = 2(A)(D)]] < beexp(6(1)) +/0 py(A)(s)exp(6(1) —b(s))ds, teT.

Remark. It is easy to see from the above proof, that we also have

(D)) = gD < beexp(6(1)) +/0 Ppy(A)(s) exp(6(t) — 0(s)) ds + py(A) () a.c.

5. PARAMETRIC RELAXATION THEOREM

In this section we use the parametric “Filippov-Gronwall inequality” proved in
section 4 (theorem 4.1), to establish a parametric version of the relaxation theorem.
We will need the following stronger variant of hypothesis Hy :

Hi:  v:A— domg(0,-)is continuous and bounded, and sup, ¢, ¢(0,v(A)) < co.

First note that if z(-) € S,(A), then if zy = ¢(0), we have

ww—aaMSAnﬂwMatET,
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where f € L*(H), f(t) € F(t,2(t),\) a.e. So for every t € T, we have

@)l < ilélgllellooJr/o (a(s) + c(s)l[x(s)[]) ds

Note that because of hypothesis H}, supycy ||2alloc < 00 (see Yotsutani [31]).

Hence by Gronwall’s inequality, we get that there exists M7 > 0 such that for
all t € T and all () € S(A), A € A we have ||z(t)|| < M;. Then by considering
F(t,rar (2), A) instead of F(¢,2,A) (here ryy, : H — H denotes the M;-radial
retraction on H), we may assume without any loss of generality that |F(¢, 2, A)| <
P(t) a.e. with ¥(-) € L?I_ (in fact, we can have ¥(t) = a(t) + ¢(t)M1). So in this
section we will assume that |F(¢, 2, A)| < ¢¥(t) a.e. for all (z,A) € H x A.

Also in the proof of theorem 5.1 below, we will need the following simple con-
tinuity result, concerning the solution map ¢ : L2(H) — C(T, H). Recall that ¢(-)
assigns to every h € L*(H) the unique strong solution ¢(h)(-) € C(T, H) of the

Cauchy problem
{ —2(t) € Oo(t, 2(1)) + h(t)}
2(0) = 9 € dome(0,-) |

In the sequel by || - || we will denote the (weak) norm on LY(T, H) defined by

A R

Il

Convergence in this norm will be denoted by —
Lemma. If hypothesis H(y) holds, {hn,h},>1 C L*(T, H), [[ha(0)]], ||R(@)|| <
(1) ae. with () € L2 and hy " b, then g(hn) — g(h) in C(T, H).

Proof. First we will show that h, — h in L*(T, H) Since step functions are
dense in L?(H), it is enough to show that (hn,8)r2cr iy — (b, 8)p2(r,m) for all

N

s(t) = 2 X(ta_y,t)(B)vg with 0 < tp_y <t < band vy € H (here (-, )27 m)
k=1

stands for the inner product in L?(T, H)). We have:

(P |Z/ B ) ds
Sy AR

<o = Al STl — 0 as i — oo,
k=1

So indeed h,, —— hin L*(T, H).
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Next since [[hn(t)]], [|A(t)|] < ¥(t) a.e., with ¥ € L*(T, H), invoking theorem 3.1
of Papageorgiou [23], we know that {q(hy,)(-)}n>1 C C(7, H) is relatively compact.
Hence we may assume that q(h,) — v in C(T, H) as n — oo. We have:

Sla(ha) (1) — aWOIF < / (hn(5) = h(5), q(hn)(3) — a(h)(5)) ds
= / (hu(s) = h(s), q(hn)(s) = v(s)) ds + / (ha(s) — h(5), o(s) — a(h)(s)) ds
< [ 20 Maha)(s) = ool + [ (hals) = hs) o)~ a(h))ds — 0

as n—oo andso ¢(h,)—q(h) in C(T,H) as n— .

O
Now we can state and prove our parametric relaxation theorem. For this, we
need to assume that A is also separable (i.e. A is a Polish space).

Theorem 5.1. If hypotheses H (), H(F)2, Hy hold, A — [y(}), g(A)] is a contin-
uous selector of the multifunction A — P,(\) and € > 0, then there exists A — z(})
a continuous map from A into C(T, H) such that for all A € A, z(X) € S(A) and

12(A) = y(Mloo < c.

Proof. From the lemma we know that we can find § > 0 such that if h € L?(H),
[|R@)]] < ¥(t) a.e. and ||g(A) — h|lw < &, then [|[y(A) — @a(h)]|eo < 41\543 where

M = exp(f(b)) and b= max[b, 1]. O

Partition T [0, 0] into intervals Ty = [tg,tg+1], & = 0,1,2,..., N such that
f P(s)ds < 2 (it can be done because of the absolute continuity of the Lebesgue

integral). Let (A fg s)ds. Then n(A)(-) € C(T, H) and by hypothesis

A= (M) (k1) — U(A)(tk) is a continuous selector of the parametric Aumann (set-
valued) integral [ onvF(t,y(A)(t), A)dt. From corollary 4.3 of Hiai-Umegaki [14],
Ty

we know that el [ TonvF (¢, y(A)(t), \)dt = cl [ F(t,y(A)(t), A)dt, while from the
Tk Tk
corollary on p. 188 of Papageorgiou [18], we know that ¢l [ convF (¢, y(A)(¢), A)dt =
Ty
f convl(t,y(A) (), N)dt € Pyp(H). Consider the multifunction Ry : A —

Pf(L (Ty, H)) defined by Ri(A) = llw(, YN From theorem 4.1 of [20], we
know that Ry(-) is l.s.c. and clearly has decomposable values. So apply theorem
1 of Fryszkowski-Rzezuchowski [13] and get r : A — LY(T},, H) k € {0, 1,...,N}

tht1
continuous maps such that for all A € A, r;(A) € Rp(A) and || f g(MN) () dt —

tht1

[ M@ dt]] < g Let FQA)() = éoXTk(')rk(A)(') € LX(T, H), [lfM)WI <

tr
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¥(t) a.e. and set z(A) = ¢A(f(A)). We claim that [|g(A) — f(A)||lw < 8. Indeed by
definition, we have

IMO)—fOszwm[HA(ﬂM@)—f@X@ﬁkthT

Let t € T,,, for some m € {0,1,..., N}. We have

I / (9(N)(5) — FQ)(s))ds]|

Since ¢ € T was arbitrary, we conclude that

1g(A) = F(Mlw <6

Therefore ||y(A) — 2(A)]|eo < 4;43. Note that

FNW) € F(t,y(N(1), ) ae.
so d(FN(0), F(t, (N (), V) < k(1)

€

AMb

Apply theorem 4.1 (the “Filippov-Gronwall” inequality), with pf(A)(-) =
= k(-)=—==. Then according to that result, we get a continuous map A — z(})

4
from A into C(T, H) such that for all A € A, z(X) € S(A) and

t

€ €
2(A) — 2(M)]eo < b——=M + AM/kseX —0(s)) ds
o) = 2l < b=t + =1 [ k() exp(-0()
< i-l— i(l — e M) since b> 1)
<-—+-=

€
9 .

o
o

Therefore, finally we have

12(A) = y(Mlleo < J2(A) = 2(W)[eo +1]2(A) = y(Mlloo

< € €+
= - - = €.
~ AMD 22

+5<

€
2
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6. AN APPLICATION TO CONTROL SYSTEMS

In this section we illustrate the abstract results obtained in this paper, with
an application to parabolic distributed parameter control systems. Specifically we
will prove a parametric version of the “bang-bang principle”.

Solet T'=[0,b] and Z C RY a bounded domain in RY with smooth boundary
07 = T'. We consider the following parametric control system:

N
— —a(t) > Dy(| Dy’ *Dyx) + x|z P~
(4) k=1
=flt,z,z(t,2), Mu(t,z) aeon TxZ

$|T><F:O,x(O,z):v(z,A),u(t,z)EU(t,z) a.e. p>2.

In conjunction with (4) above, we also consider its “convexified” version

P N
a—f —a(t) Y Dy(|DyalP~?Dyz) + x|z~
(5) k=1

=flt,z,2(t, z),Vu(t,z) aeonTxZ

$|T><F:O,x(O,z):v(z,)\),u(t,z)Ecoan(t,z) a.e. p>2.

Note that as always Dy = %, k=1,2,...,N.
We will need the following hypotheses on the data:
H(a):0<e<a(t) and |a(t') —a(t)] < Lt —t] with £ >0
H(f):f :TxZxRxA—Ris a function such that
- (1) (t,z) — f(t,z,2, ) is measurable,
(2) |f(t,z,2,A) = f(t,z, 2", A)| < k(t, 2)|x — 2’| a.e. for all A € A, with
k(-,)e LYT x 2),
(3) |f(t,z, 2, N)| < a(t,z) +e(t, 2)|x| a.e for all X € A, with a € L*(T x Z),
ce LT x 7),
(4) X — f(t,z,2,A) is continuous.
H(U):U : T x Z — P¢(R) is a measurable multifunction such that |U(¢,2)| < M
forall (¢,2) e T x Z.
(v) :A — v(-, A) is a continuous and bounded map from A into L*(Z) with
v(-, A) € WyP(Z) for all X € A.

As in section 5, we assume that A i1s a Polish space.

Theorem 6.1. If hypotheses H(a), H(f), H(U), H(v) hold, A — y(X) is a con-
tinuous map from A into C(T, L*(Z)), for every X € A, y()) is a solution of (5)
and € > 0, then there exists a map A — x(A) which is continuous from A into

C(T, L*(Z)), such that for every A € A, z()) is a solution of (4) and

=

sup/Z le(A)(t, 2) — yA)(t, 2)|P dz < €.

teT
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Proof. Let H = L%(Z) and let ¢ : T x H — R = RU {400} be defined by

oy = | A5 [ 205 Der@Pdz+ 3 [y el dz if = € W7(2)
oA 400 otherwise.

Note that for all t € T, ¢(t,-) € T'o(H) and dom ¢(t,-) = W, P(Z). Since
Wol’p(Z) embeds compactly into L%(Z), we get that ¢(¢,-) is of compact type.

N
Also using hypothesis H(a) and the fact that ||z|| = ([ > |Dyz(2)[Pd2)'/? is an
Z k=1

equivalent norm on Wol’p(Z), we easily check that hypothesis H(y) is satisfied.
Furthermore using Green’s identity we can see that

dp(t,r) = —a(t)Apa + alaf

N
with Apz = — 57 Dy(|Dyz[P~2Dyx) (pseudo-Laplacian) and domA, = D(A,) =
E=1

{ye WoP(Z) : Ayy € L2(2)}.
Next let F': T x H x A — P¢(H) be defined by

F(t,e,\)={v e LX(Z) :v(2) = f(t, z,2(2), Nu(z),u(z) € U(t,z) a.e. on Z}
Let v € H = L?(Z). Then using theorem 2.2 of Hiai-Umegaki [14], we get
d(v, F(t,z, X))

_mf / [o( ft, 2, 2(2), Vu(2)|dz s u € L2 (Z),u(z) € UL, 2)a.e.
:/Zinf [|v(z) — [z 2(2), Nul u e Ut 2)| dz.

Because of hypothesis H(U), we can find a sequence of measurable functions
up : T'x Z — Rsuch that U(t, z) = {un(t,2)},5, forall (¢, 2) € T'x Z (see Wagner
[28], theorem 4.2). Hence we have N

inf [Jo(z) — £(t, 2 #(2), Al - w € U1, )]
= () — 162,20, Auat,2)
=t —d(v,F(t,x,A)) is measurable

=t — F(t,x,A) is a measurable multifunction.

Also let f: T x L*(Z) x A — L*(Z) be the Nemitsky (superposition) operator
corresponding to the function f;ie. f(¢,2,A)(:) = f(t,-, (), A). We have
h(F(t, 2, \), F(t,2', \)) = h(F(t, 2, NS F(t, 2/, N)Sh, )
< IF(t 2, X) = F(t 2 M)l
< kO M]Jz — 2|2
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with k(t) = [[k(¢, )| € L}

Furthermore, note that

o~ ~

h(F(t,z,A), F(t,z, X)) < M||f(t,2,X) — f(t, 2, N)|]2

= A — F(t,z,A) is h-continuous (see hypothesis H(f)(4)), a fortiori then l.s.c.
Finally, note that because of hypotheses H(f) (3) and H(U), we have that

(¢, 2, 0] < @(0) + 2]l ae.

with a € L3, ¢> 0.
Observe that convF(t,z,\) = convf(t, x, /\)S}](t 5 = f(t, x, /\)convS}](t 5 =

~

f(t,z, A), S(%OWUO 9 (see Hiai-Umegaki [14]). So we can rewrite systems (4) and

(5) in the following equivalent subdifferential inclusion forms:

{ —&(t) € Dp(t, x(t)) + F(t,x(t),N) a.e.}
2(0) = 9(})

{ —&(t) € Dp(t, x(t)) + conv (¢, x(t),N) a.e.}
2(0) = 9(})

Here 9(A) = v(-, A) € Wol’p(Z) = dom¢(0,-) and A — ¥(A) is continuous from
A into L?(Z) (see hypothesis H(v)). So we have satisfied hypothesis HJ.

Let u(t,z) be the control generating the state y(A)(-,-). Clearly then A —
[y(M)(), f(,y(/\)())a()] (u(t)(-) = wu(t,-)) is a continuous map from A into
C(T,H) x L*(H) such that for all A € A, the pair belongs in P.()) for problem
(5"). Apply theorem 5.1 to get A — x()) continuous from A into C(T, L*(Z)) such
that for all A € A, z(A)(+, ) solves (4'), hence (4) too, and ||z(A) — y(/\)||ZC(T7H) <
e=>teT —sup [|e(A)(E, 2) — y(A) (¢, 2)|?dz < e. d

z
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