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SPECIAL SOLUTIONS OF LINEAR DIFFERENCE
EQUATIONS WITH INFINITE DELAY

MILaN MEDVED

ABSTRACT. For the difference equation (€) ©nt1 = Azn + €2 pe _ oo Rn—k %k,
where z,, € Y, Yis a Banach space,¢ is a parameter and Ais a linear, bounded
operator. A sufficient condition for the existence of a unique special solutiony =
{yn}SL _ . passing through the pointzg € Y is proved. This special solution con-
verges to the solution of the equation (0) ase — 0.

The paper [2] contains a result on the existence of so-called two-sided solutions
of linear integrodifferential equations of the form

t

(1) T Ax(t) + ¢ / R(t — s)x(s)ds,

— 00

where # € R”, A € M,, — the set of all n x n matrices,e € R is a parameter and
R(t) is a continuous matrix function satisfying the inequality

) 1) < 22T

where ¢,v,« are positive constants and 0 < a < 1. It is proven there that if
A1, Az, ..., A, are eigenvalues of A and min{Re); : 1 < j < n} > —v then there
is an €y > 0 such that for any zq € R" there exists a unique solution z(t) (so-
called two-sided solution) of (1) defined on the whole interval (—oo, co) satisfying
the initial condition #.(0) = ¢ and lime_q ||z — #||z = O0for any L > 0, where
[|ze — || = sup{||z(t) — x(t)|| : =L £t < L}, 2(t) = exp {At}xo. In the paper
[1] a generalization of this result, including the case when A = A(?) is periodic, is
proved, where the proof differs from that presented in [2].

If we substitute in (1) the difference #,411 — @, instead of dxd(tt)
the integral (more precisely, we put the natural numbers n, 4 instead of ¢ and s,

and discretize
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respectively) we obtain a difference equation with infinite delay. Let us consider
such a difference equation in a Banach space Y, 1. e. the equation

(3) g1 = Axp + e(Roxn + Ritpn_1+ -+ Rpp_p +...),

where A, R; € L(Y') —the space of continuous, linear mappings from Y into ¥ (i =
0,1,...), Ais invertible and A=! € L(Y"). We shall prove the following theorem on
the existence of special solutions of the equation (3) determined uniquely by the
initial value which is a point in Y and defined for all integers.

Theorem. Let the following conditions be satisfied:

—-n

Y
(4) 1Bl =1, [lBall £ g =1,
where v, o are constants, e < v, 0 < a < 1.
—1}]4—1
- 1A
(5) [|A™Y| < 1, — < 1.
L—|[A=H]|

Then there exists an €, > 0 such that the following assertions are valid:

(a) For any € € (0, ¢p] there exists an operator solution of the equation (3) of
the form

(6) Xn(e) = D(e)",
where D(¢) is independent of n and

li_{% D(e)=A, i e 1% [|D(e) — Al| = 0.

(b) For any € € (0,¢0] and any xg € Y there exists a unique solution x =
{en(6)}5L_ ., of the equation (3) satisfying the condition xq(€) = xq¢ such
that x € B :={z = {zn 122 _ oo : 2n € Y sup{|za| : —o0 < n £ 0} < o0},
where |.| is the norm on Y. Moreover, sup{|zp(e) — A%zg| : =L S n <
L} —0ase¢—0 forany L > 0.

Proof. The operator sequence {D"}S2 ___ is a solution of the equation (3) if and
only if

(7) D" = AD™ 4 (R, D" + RyD" ™ 4 Ry D TR 4 ).

Let us look the matrix D in the form D = A4 @, where @ € L(Y) is an unknown
operator such that D is invertible. The equation (7) is obviously equivalent to the
equation

(8) Q=F(Q) = e[Ro+ Ri(A+ Q)"+ + Rp(A+ Q)" +...].
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Define the mapping F. : V. — L(Y) via the formula (8), where V = {Q €
LY) 1@ £ 11 1@ := sup{||Qz|| : [|z[| £ 1}. If @1, Q2 € L(Y) then

IF(Q1) = Fe(@Q2)]] = el |[Ri[(A+ Q)™ — (A +Q2) 7'+
FR[(A+ Q)= (A4 Q)+ + RJ(A+ Q) —(A+ Q) ]+ ...
Since (A+Q;) = A(I+A7'Q;),j = 1,2 where I is the identity operator, we have
(9) NIFQ1) = F(@)II £ e{lIRNATHI + AT Q)™ = (T + AT Q2) M|+

HIRANATHPN +ATIQ) ™ = (T + AT' Q) P [ + -+
HIRENATF T + AT IQ) ™ = (T + AT Q) |+ ...}

We have the following estimation:
NI +ATQ) ™ = (I +AT'Q2) | = I+ A7 Q)™ — [(1+ 4-1Q2) ') £

SHUI+AT'Q)™ = (T+ A7) NI+ A~' Q)™+
HI+ATQ) ™I+ A7'Qo) ™ -+ [T+ A71Q) 'Y
SIT+A7'Q) ™ = (T+ A7) I+ A7 Q)™ IF '+
T+ AT QU2+ A7 Qo) I+ -+ (T + A7'Qa) 1)
If Q1,Q5 € V then

NI +A7Q) T == (AT Q) +(A71Q:) =[S 1+v+v - =

1—v’

i=1,2, where v = ||[A71]].
Therefore using the above estimation we obtain the inequality:

(10) I +A71Q) ™" = (I +A7Q2) 7" <

R
(1— )1

Now applying this inequality to the estimation (9) we obtain the estimation:

SINT+ATIQY) ™ = (T +A71Q) 7]

(11) 1Fe(@1) = F(@2)]] =

- _ 2
< lIRIATH + R AT = + -+

n

+||Rn||||A_1||nm

+. HIT+AS@Qn) ™ = (T + A7Qo) 7|

For all @1,Q, € V.
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We need the following estimation:
(12) I+ A7Q) ™ = (I +A471Q2) 7| =

=T =47+ (AT'Q1)* =) (I = AT+ (A71Q2)* — . )| =
SATQI = AT QI+ I(ATIQ)* = (ATI Q)[4+ (A1 Q)" = (A71Q2)" |+
+.o..

The mean value theorem yields
(13) I(ATHQ1)" = (AT Qo) I S IATHFI1Q — @5l £

AT sup{[[E[(1=6)@Q1+tQ2)"""] : 0 £ ¢ £ Q1 —Qa| £ il| A7 |Q1—Q2]|-
From (11), (12) and (13) it follows that

(14) [|[Fe(Q1) = Fe(Q2)[] = €51.9:]|Q1 — Q2|
for all @1,Q2 € V, where

n

=

- - 2 “1n
Su=IRAAT T+ R ATHP = + -+ [[Ral AT

Sy = AT+ 2 AP+l AT+
o e e AT
L= (=) Y /IR =T

n=1

So = ||ATH| Y mllATH

n=1

One can show using the condition (4) and the D’Alambert convergence criterion
that the series Sy is convergent. Since |JA71|| < 1 the series S5 is also convergent.
Therefore the inequality (14) implies that if € € (0, 511—52) then the mapping F.|V
is contractive and thus there exists a unique fixed point of F, in V | i. e. the
assertion (a) is proved. It remains to prove the assertion (b). We shall prove that
for any y, € Y there exists a unique solution = {z, }oL of (3) satisfying the
condition zg = yo and sup{|z,|: —co <n L0} < co.

Define the space

— 00

B={r={e,}°___ x, €Y sup{|z,|: —0co <n <0} < o0}

which is a Banach space with the norm ||z|| = sup{|z,|: —co <n £ 0}.
From the equation (3) it follows that

r_1 = A_ll‘o - EA_l(Rol‘_l + Rll‘_z + -4 Rkl‘_(1+k) + .. .),
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voo=ATlo - EA_l(Rol‘_z +Rix 3+ . Rpr_(oqpy+..) =
— A7 %py — EAZ(RQl‘_z + Riz 34 .. Rpx_(oqp) + ... )—
—eA" N (Roz—o + Riw_s+ -+ R_(aqypy+-..),
etc.

T_p = A_pl‘o - EA_p(Rol‘_l + Rll‘_z + -+ Rkl‘_(1+k) + .. .)—

—EA_p+1(R0x_2—|—R11‘_3—|—"'+Rkl‘_(2+k)+...)—"'—
—EA_l(Rol‘_p + R11°—(p+1) + -4 ka—(p+k) + .. )
Therefore we define the mapping

GE :B— {l‘ ‘= {xn}gz—oo’xn € Y}a

(Gel‘)_p = —EA_p(Rol‘_l + Rll‘_z + -4 ka—l—k + .. ) —
—EA_l(Rol‘_p + R11°—(p+1) + -4 ka—(p+1) + .. )

for all pe N,p > 0.

If e ={x,}0__. € Band v = |47} then

(Gex)—p| < ellel HTATHP (Rl + [[Ru][ + -+ [[Rel | + )+

HIATHPT Rl TR+ Rl 4 )+ -+

AT AR+ R+ -+ 1Rl + ) £
—k

e|l]| -1 g
< 1 )<
ST ]S
6||96||/°o -1 €||]|
< —thtetat = U r(a).
S (exp{~t}) T, (@)

This means that |[(Gez)_p| < E”xHF(Oz) forallpe N,p>0,i.e. Gex € B. Since

1—v
G 1s linear, we have

(o)

1—v

[|Gexr — Geas|| = ||Ge(x1 — 22)|] S €

|21 — 22|

for all z1,22 € B. This implies that if ¢ € (0, %) then the mapping G, is
contractive and thus it has a unique fixed point z € B. Since G, is linear, we
conclude that z = 0.

Let ¢1 = {xn 2% oo, é2 = {yn 52 _ be two solutions of (3) satisfying the
condition g = yo,supi|z,| : —oco < n < 0} < oo,supf{|ys| : —c0o < n £ 0} <
and let ¢ = ¢1 — ¢2 = {&n — Yo }22_ . Then ||¢|| = sup{|zn, — yn] : —0 <
n < 0} < oo. The sequence ® = {z, — y, }0___, is the fixed point of G, and
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therefore ® = 0. Thus if there exists a solution = {&,}oL_, of (3) such that
{z,}2__ . € B then it is uniquely defined for all n < 0. We shall prove that such
a solution exists and it is uniquely defined also for all n = 0.

The sequence ¥ = {U, 122 = {(D(€))"x0}2L_., is a solution of (3) sat-
isfying the condition ¥y = zg. From the condition (5) and the assertion (a) it
follows that there exists an ¢; > 0 such that [|[D(e)7?|] < ||D(e)7 P < 1 for all
p € N,p>0,e€ (0,¢) and this implies that sup{|¢,,| : —co < n L0} < |z,| < oo,
i.e. {W,}°___ € B.Itsuffices to prove the uniqueness of solutions of (3) for n > 0.

Let ¢1 = {2n 0% ooy $2 = {yn 1S _ o be two solutions of (3) such that

{xn}gz—oo’ {yn}gz—oo € B and zp = Yo.

Since for n 2 0 we have

n—1

|Zn—Yn| = € Z AP T Ry (v —yi )+ Ra(ic1—gim1) 4+ -+ Rie(vicr—gime)+. .|

i=0
and o = y for all k € N, k £ 0, what we have proved above, we obtain

=yl S {lIAI" ™ |20 = yol + [JAI"~*ller = ] + 97 |zo — v+

7—(77,—2)

ot llenor = ot |+ ense — gna + o+ o — wol]}-
(n—2)t-«

From this inequality we obtain
|1 — y1] = €eleo —yo| =0,

22 — y2| < e{l[A[lllzo — wol| + |21 — wa[]} = 0,

etc. By induction one can show thatz, = y,for alln € N, n 2 0. From the
assertion (a) it follows that if #,(¢) = D(¢e)" g then

sup{|en(€) — A%xg|: =L Sn < L} =sup{|[D(e)" — A™ag| : =L En <L} S

Ssup{||D(e) — Al|*|zo] : =L £En< L} —0ase—0 forany L > 0.
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