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LANDESMAN — LAZER TYPE PROBLEMS AT
AN EIGENVALUE OF ODD MULTIPLICITY

LubpoviT PINDA

ABSTRACT. The aim of this paper is to establish some a priori bounds for solutions
of Landesman-Lazer problem. We show the application for the solution structure
of the nonlinear differential equation of the fourth order

1. THE GENERAL THEORY

Let X be a real Banach space with the norm || - || and let D(L) C X be the
domain of the closed Fredholm operator

L:D(L)— X

with index zero. We shall suppose that 0 is an isolated eigenvalue of odd multiplic-
ity of L, hence there exists such a 8y > 0 that for A € (=8p,80), A # 0, (L—A-1)~!
exists on X and that mapping is continuous.

Let there exists a continuous positive definite bilinear form

(LY XxX =R

such that z € R(L) (range of L) iff (z, u) = 0 for all w € NS(L) (nullspace of the
operator L).
Let Py: X — X be a continuous linear projection onto NS(L). We denote the
operator
Lp

8]

. D(L) N NS(Py) — R(L)
defined by
Lp, = Llp()nnNs(py)-
The operator Lp, is one-to-one on D(L) N NS(Fy) and therefore there exists an
inverse operator which we denote by L;[Jl = Kp,. We suppose that Kp, be a

completely continuous. Let
F:X—-=X
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be a L-completely continuous mapping i.e. Py o F and Kp, o (I — Py) o F' are
completely continuous, where P; : X — X is a continuous linear projection with

NS(P) = R(L)

and [ : X — X is the identity mapping. Let F' satisfy

Pl
1) e gl
Let

(2) R(L) = NS(P)

be true. Then we can take Py = P;.

Let h € X. We assume that there exists a number d > 0 sufficiently small
which has following property :

For each y € NS(L), ||y|| = 1 each sequence {y,} C NS(L), |lynll=1, yn — ¥
as n — 00, each sequence {t,}, {, — oo as n — oo and for each sequence {z,} C

NS(Po), [[znll < d

(3) (', y) > liminf(F(tays + taza) , 9)

or

(4) (e, y) <Iimsup(F(tnyn +1n2n) , 9)
1s valid.

In [3] instead of (1) the assumption is considered
F ()] < exflul]* + dy

for constants ¢; > 0, d; <0, @ €< 0,1) and all u € X and instead of (3), (4) the
hypotheses are considered

(h, vy > iminf(F(tay, +152n), ¥)

or
(h, yy < limsup{F(tnyn +1t5zn), ¥)

n—oo
where the sequences {t,}, {y,} have the same meaning as above and {z,} is any

bounded sequence in N.S(Py).
We now considere the equation

(5) L(u)— Au+ F(u)=h

where A is a real parameter. First we shall introduce the modification of Theorem
3.6.2 [2] p.99 which we use in the proof of next theorem.

Denote Lg(z) = L(z) — A« the operator which maps D onto B. Then for
I\ < b, L3t € L(B, D).
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Lemma 1. Let B be a Banach space and D C B be the subspace (it need not
be closed). Let L, Ly : D — B be such operators that the inverse operators
L= Lyt € L(B, D). If A= A|||[L7Y| < 1, then ||[L7Y = LY < (1 — A)7tA .
LI

Let 0 <AL % Then we calculate the norm of the operator Lal.

L < L+ 1 Lg T = L < LI+ (127 =2

Kp,|-

Theorem 1. Let all assumptions given above be satisfied. Let condition (3) and

1

Kp,||

be satisfied. Then for all A such that 0 < XA < ¢ there exists an Ry > 0 for which
any solution u of (5) satisfies ||u]| < Ry.

Proof. Let u be a solution of (5) and write « = uy + ug, u; € NS(L), us €
NS(Py). We can write the equation in the following form

(8) L(Uz) - A(Ul + Uz) + F(U1 + Uz) —h=0
Then
(9) (—Aus + F(ur +u2) —h,v) =0, veNS(L).

Applying I — Py to the equation (8) we have

(10) L(uz) —Aus+ (I — P)o Fuy +uz) — (I — P)h = 0.

Since NS(Py) = NS(Py) = R(L) it follows that
L—X1:D(L)NANS(Py) — NS(Py)

is invertible for |A| < 6. By Lemma 1 and (7) we get that

1
L—XxDY <2 ||K it (A € ==
=A< 2Kl i IS 5
By (10) we have
(11) ol <L =A-D7H| ([T = Pl |Jh = Fui + uz)|

<2

Kp|l - |1 = PrlI(I[A]]+ [ F/(wr + uz)][)
Take ¢ such that 0 < ¢ < d, where d is given in the assumption (3). There exists
such an €; > 0 that

e
Kp|| - [1 = Py

12
( ) €1<8|
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and moreover

. 1
(13) 2IEpR|l - = Prffrer = er < 5
Denote by
(14) 2||Kp, || [T = Pl - [|A]] = ez

From the property (1) it follows that for e; > 0 there exists such an R(g1) > 0
that for each u with the norm ||u|| > R

1F@)| < =1 [lul
is valid. By (11) and (14) we have
(15) [lua|| < e2 + e ||ur + us||, for w with the norm ||u|| > R
In the case that the solution u of (5) fulfils the astimate ||u|| < R is nothing to

prove. We suppose that this astimate is not fulfilled.
1. Let R < ||u]| and 0 < [|u1]| £ R. By (15) it follows that

[l < [l + [ual| < [lual[+ ez + er [Jur + usl]
S R4 ca+ e ||ull

Then
C2 —|— R

1—61
2. Let R < ||ul|| and ||u1]] > R > 0. By (15) it follows

[lull <

|[ua]] €2 1 c1 s 1

(16) —|—261

llurl] = T—er Jfwl]  T—er = L—er |lud]]

We suppose that the set of all solution of the equation (5) for 0 < A < § is not
bounded. Therefore there exists a sequence of {u,} of equation (5) corresponding

to values A = A, € [0, 8] such that ||u,|| — oo. From (16) it follows that necessarily
u
lur, || = 00 Let wy, = tnyn, o = [lur, ||, yn = ||U—1n||’ yn € NS(L), lyall =
1n
1. Then there exists a subsequence {y,, } in the finite-dimensional space N.S(L)
which converges to y € NS(L), |ly|| = 1. By rewriting yn, to y, we have u, =
2n
| s .
[lu1, || — oo it follows that for chosen ¢ > 0 there exists such an ny € N that for

each n > ng

tyn - Yn + tn - 2 Where z, = is the sequence from NS(P;). By divergence

Co 1 9
L—ecr Jug,|l 2
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is valid. By (12) and (13) we have
5 €
c1 < 9
Therefore
||z, |

[, |l

[lznll = <e<d

(9) implies that
<_/\ntnyn ) y> + <F(tnyn +tnzn)a y> = <h, y>
Because y, — y as n — o0
(n )=, )+ -y, 9 >0
for n large. For such n
(Ftpyn +tnz0), y) 2 (h, y)

and

B inf(F(t, yn +tn 2n), y) > (h, y)
which contradicts with (3). This completes the proof of theorem. |

Using a similar argument we can prove the next theorem.

Theorem 2. Let all conditions of Theorem 1 be satisfied and let instead of the
condition (3) the assumption (4) be satisfied. Then for all A such —6 < A < 0
there exists an Ry > 0 such that any solution u of (5) satisfies ||ul|| < Ry.

2. APPLICATION TO THE FOURTH ORDER DIFFERENTIAL EQUATION

Let the space X = L*([0,27]) be provided with the norm [|z||s and let the

scalar product
2T

(o0) = [ alt) - ute)dy

0
Let the linear differential operator L be defined by

L(x) = PASY S (m? + n?) 2"
where 0 < m < n, m,n € N and the domain of the operator L is
D(L) = {x(t) € C*([0,27]), «* € L7([0,27]) :
#D(0) = 2D (21),i=0,1,2,3}
Therefore the operator L maps D(L) C X into X. A fundamental system of
solutions of the equation L(z) = 0is y1(¢) = 1, y2(¢) = ¢, y3(t) = cosvVm? + n?t,

ya(t) = sinvm? + n?¢ and so A = 0 is the eigenvalue of the operator L. If is
m?+n?=k% ke 7, k#0 holds then

NS(L)y={ye D(L) : y(t) = c1 + ca coskt + czsinkt,
GER, i=0,1,2,3).

Now we consider this case.
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Lemma 2. Let the operator L be defined on D(L). Then
NS(L)YNR(L) ={0}.

Proof. The problem L(z) = 0, 2()(0) = 2)(27), i = 0, 1,2, 3 is self-adjoint and

therefore the assertion of the lemma is true. O

For A < —%(n2 — m?)? — m?n? there exists the inverse operator (L — A-1)~!
(Lemma 1 [4] p. ) and this operator is completely continuous, (Lemma 4.4, [1]
p. 145). The conditions of Theorem 1 [5] p. 555 hold and we have that L is a
Fredholm operator of index zero and it is a closed operator.

Now we take continuous projectors

Pp:X—X, P:X—X

such that R(Py) = NS(L), NS(Py) = R(L). Let NS(Py) = R(L). Then we
can take Py = P;. The operator L|D(L)0N5(p1) 1s one-to-one and therefore there
exists the inverse operator Kp, : R(L) — D(L) N NS(Py). Now we construct the
operator Kp,. The Cauchy function for the equation L(z) = 0 is

Ki(t,s) = k™2[k(t — s) +sink(s —t)], for 0<s<t<2rm.

Let « € D(L) N NS(P;) be the solution of the equation L(x) = y, y € R(Ls).
Then it has the form

t

(17) z(t) = c1 + ¢2 coskt + ¢z sinkt —|—/K1(t, s)y(s)ds.
0

The function x(t) € D(L) N NS(Fy) and it follows that x is orthogonal to all
functions belonging to NS(L) and therefore we have

27t

0={(x(t), 1 _27Tcl+//[x1ts s)dsdt,

27t

(18) 0 =(x(t), cos kt) _wcz—i—//lxlts s)dsdt,

27

0 ={x(t), sin kt) //Al (t,s)y(s)dsdt.

From periodic conditions it follows that y € R(L) if and only if

27
L IR

0
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is true. By Fubini’s theorem in (18) as well as by putting the constants ¢;, ¢ = 1,2, 3
in (17) we get that

27
2
z(t) =— %/ [47(7—222 =3 + 2;];5(sink5 —cosks — 2)
0
~ 5 sinks — 7 - K(t, 5)] y(s)ds,
where ;
K(t,s) = { Ki(t,s), 0<s<t<2m,
0, 0<t<s<2nm
Then the operator Kp, is
27
2
Kp,(9)(t) = —%/ [47(7 —ZZZ 35 + 2; kSS(sin ks — cos ks — 2)
(19) 0
~ gpasin ks —m- K(t, 5)] y(s) ds
We have the following estimate for the norm of the operator Kp,
2 2
R[] < 4 [Qkiz 4 mt 2 23” + %] < 400

and the operator Kp, is Hilbert-Schmidt operator. By (19) it follows that Kp,
has the continuous kernel on [0, 27] x [0, 27] and by Lemma 4.4, [1], p.145 we have
that the operator Kp, is completely continuous operator on R(Lsz).

Now we calculate the algebraic multiplicity of the eigenvalue A = 0. To the first
corresponding eigenfunction uj(t) = 1 we look for such a function ui(t) that the
equality

L(uj) = ug
is valid. From the assertion of Lemma 1 it follows that such a function from D(L)
does not exists. Therefore the length of the chain determined by the eigenfunction

u} is equal to one. A similar results holds for the eigenfunctions u2(¢) = cos kt,

u3(t) = sinkt. And hence the algebraic multiplicity of the eigenvalue A = 0 is
equal to three.
We shall assume that the function F': R — R is continuous and 1s such that

£ ()]

llull—co |||

and h € X 1s 2#-periodic function.
We now consider the equation

(20) L(z) = A m?n? z(t)+ F(x)(t) = h(?)

on D(Ls). The verification of the conditions (3) a (4) may, in general be very
difficult. In what follows two theorems we shall show that these conditions can be
replased by other two conditions.
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Theorem 3. Let the function F' be bounded in R and let

(21) limsup F'(s) < h(t) < liminf F'(s)

5—00 §— —00

be valid. Then the condition (3) is fulfield.

Proof. Lety € NS(L), ||y|| = 1. We take a sequence postupnos”t {y,} C NS(L),
[lyn|] = 1, with y, — y as n — oo and the real sequence {t,}52,, t, — oo as
n — oo. Let {z,}52, C NS(Py) be such a sequence that ||z,]] < d, where d is a
number sufficiently small. Choose £ > 0. There exists an ¢’ > 0, such that

d
22 11—+ — 0
(22) (E + d—|—5) >
is true. By (21) it follows that there exists an @ > 0 such that

limsup F'(s)+2a < h(t) < liminf F'(s) — 2a

is valid. Denote by
My ={t € [0,27]: (1) > d+ =)
My ={t € [0,27]: y(t) < —(d + )}

Mz ={t €[0,27] : |y(t)| < d+ ¢}

We shall show the validity of the condition (3).
1. Consider the set M; and a sequence

tn (Yn(t) + 22 (1)) 1~
t”y(t) n=1
on it. Because y, — y as n — oo, |[ys|| = [|y|| = 1 and ||z,|| < d for &’ > 0, by

(22) there exists nj, € N such that for all n > n{ the inequality

1- (e’ + dig) < (ynt(j)yz;)zn(t)) <1+ (E/ ¥ d;ig)

1s valid for each t € M. Therefore

to(d+e) [1— (6’—|— %)] <tny(t) [1_ (5/"' d;j_g)]

<t (yn (1) + 20 (1))

As n — oo t,(d +¢) [1 — (5’ + #)] — oo then t, yn(t) + +tn 2, (t) — oo uni-
formly on My, too. Under the assmption (21) it follows the existence of such

constants ki, k1 that
limsup F'(s) = k1 < hy < h(t)

§— 00
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It is true that for the above determined a > 0 there exists such an sf, that for each
s > sy and each t € [0, 27]

F(S) §k1—|—26l<h1 Sh(t)
We have that for each n sufficiently great
F(tnyn(t) +tnza(t)) < ki +2a < h(?)

for all ¢ € M;. Multiplying the last inequality by the function y(¢) on M; it follows
that

Ftnyn(t) + tnzn (1)) - y(t) < (k1 +2a) - y(t) < h(t) - y(1)
Integrating these inequality on the set M; we get that

[ sty = [ Ftun+ o) o)

> [ ayftydi 2 ald+ ) uam) 2 0
Therefore
/ h(t) y(t) dt — hnnlgf/ F(tayn(t) + 2, () y(t) dt
(24) i M

>a(d+e)p(My) >0

2. Consider the set M. The function y(¢) is negative on M;. By (23) we obtain
that for ¢’ > 0 choosen at the beginning of the proof, there exists an nfj € N such
that for all n > nj the inequality

tay(t) [1 - (6’ + %)] > tn(yn(t) + 2n(t)) >

S

holds. Therefore

~tn(d+e) [1— (€’+ dig)] 2 tay(l) [1_ <€/+ dfil—e)]

2 ta(yn(t) + 2n(1))

d+¢
uniformly on M;. By the condition (21) the existence of constants ka, ko follows
for which

d
As n — oo —t,(d+ ¢) [1 — (6/ + —)] — —00 80 tayn(t) + +tnza(t) — —o0

liminf F'(s) = ko > ha > h(t)

§——00
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It is true that for the above determined a > 0 there exists such s that for each
s > sy and each t € [0, 2m]

F(S)Zkz—?d>h22h(t>
We have that for each n sufficiently great
F(tnyn(t) +tnzn(t)) >ky—2a> h(t)

for all t € My. Multiplying this inequality by the function y(¢) on M it follows
that

F(tnyn(t) + tnzn(t)) : y(t) < (kZ -2 Cl) ’ y(t) < h(t) y(t)
By the integration on the set Ms we get that

/h(t) y(t) dt—/F(tnyn +tp20(1)) y(t) dt

>~ [aud > a(d+)u(itz) 2 0
Therefore
/ h(t) y(t) dt — hnnlgf/ F(tayn(t) + 2, () y(t) dt
(25) fYa M

>a(d+¢e) (M) >0

Adding inequalities (24) a (25) we get

/ h(t) y(t) dt — liminf / F(tayn(t) +tnzn (1)) - y(t) dt

n—oQ

(26) MiUM, MiUM
>a(d+e¢) pu(MyUM) >0

3. Consider the set Ms. Now we make following estimations. The function F' is
bounded and therefore there exists such a K > 0 that

(27) |F(r)| < K, forallreR
the function h € X and therefore there exists such a constant H > 0 that
(28) |[h(t)| < H, forallte Mz C|0,2n]

We denote dy = d+¢. The function y € NS(L) and it is true that if dlim+ u(Ms) =
—0

0 then p(M; U My) — 27. So far the proof of the theorem has not depended on
the choice of numbers ¢, d. We choose ¢, d such that

(H + K) p(Ms) < ap(My U Ms)
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Then by (27), (28) it follows that the estimations

[ F a0+ a0 00) w01 | < K (04 2u(01)

3

[ ho w0 it < 1@+ utor)

are valid. By the introduced estimates it is true that

n—oQ

3 M3

/ h(t)y(t) dt — lim inf/ F(tayn(t) +tnzn (1)) - y(t) dt

IN

n—oQ
3 3

[ O] +timsup | [ F a0+ t200) -ot0)d

< (H+ K)(d+e)p(Ms) < a(d+e)p(My U Ma).
Adding to the inequality (26) the inequality

/ h(t)y(t) dt — lim inf/ Ftayn () +tazn () y(t) dt <

M - Ms
< Cl(d—|— E)/,L(Ml U Mz)

we have that

2w 2w
/ h)yt)dt — lim [ F(tayn(t) +tnzn () y(t)dt >0
0 0
Thus the theorem is completely proved. a

Similary the next theorem can be proved.
Theorem 4. Let the function F' be bounded in R and let
(29) limsup F'(s) < h(t) < liminf F'(s)

be valid. Then the condition (4) is fulfielled.

We showed that the eigenvalue A = 0 has an odd algebraic multiplicity and it
is an isolated eigenvalue of the operator L, i. e. that exists such &3 > 0 that for
A€ (=60, b0), A # 0 there exists (L —X-I)~*. From the form of equation (20) we
have that the operator Ly and A in Lemma 1 are

Lo(z) = L(x) — Am*n’
A= m#n?| ([ Kp, .
1 1
Ifo < A < - th < |A] <

0 < < 5 en0_||_2m2n2|

1

2m?n?|

Denote by 4 = min (60,

Kp, ||’

) > 0. By Theorem 1 and Theorem 3 the next theorem follows.

Kp,||
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Theorem 5. Let the condition of Theorem 3 hold and let 0 < A < é. Then there
exists such an Ry > 0 that any solution u of the equation (20) satisfies ||u]| < Rp.

Similarly by Theorem 2 and Theorem 4 we get Theorem 6.

Theorem 6. Let the conditions of Theorem 4 hold and let —6 < A < 0. Then
there exists such an Ry > 0 that any solution u of the equation (20) satisfies
[Jul| < Ro.

If we use Theorem 9 [3] p. 144 we obtain a result about a number of solutions
of the equation (20) in a neighbourhood of 0.

Corrollary 1. Let the function F' be bounded in R. If (21) holds then there
exists such an m > 0 that

(1) for 0 < X < § exists at least one 2w-periodic solution of (20)

(2) for —m; < A < 0 exists at least two 2w-periodic solutions of (20).
If (27) holds then there exists an n2 > 0 such that

(3) for —é6 < A < 0 exists at least one 2w-periodic solution of (20)

(4) for 0 < XA < 1, exists at least two 2w- periodic solutions of (20).
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