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REGULATED BUILDUPS OF 3-CONFIGURATIONS

ABSTRACT

A (3)-configuration is defined as a triple (V, &, 1), where V is a finite non-empty
set (of vertices), € is a non-empty set (of edges) disjoint to V and [ is a binary
relation (of adjacency) in V U & such that x | y implies either z € V, y € £ or
y €V, & € £. Moreover, the number of edges adjacent to the same vertex is at
most 3 and any two distinct vertices are simultaneously adjacent to one edge at
most. If, especially, every edge is adjacent to at least two vertices and every vertex
is adjacent to just three edges; then € is said to be a 3-configuration.

A (3)-configuration is said to be connected if to any two distinct vertices v, w
there exists a finite sequence (eq, ..., ¢;) of edges such that e; = v, ¢, = w a that
any two consecutive edges are distinct and simultaneously adjacent to the same
vertex.

Further notions: Two vertices are neighboring if they are different and simulta-
neously adjacent to the same edge. Two edges are neighboring if they are different
and simultaneously adjacent to the same vertex. Three mutually distinct edges
adjacent to the same vertex are said to be concurrent.



In the sequel every 3-configuration under consideration is assumed to be con-
nected whereas by (3)-configurations this assumption will not be made.

Let € = (V,&, I ) be a (3)-configuration. We shall denote every ordering of
the set VU & as a buildup of €. Under a relative degree of an element © € VU E
we mean the number of all preceding elements adjacent to &. Under a socle of a
vertex v we shall understand the set of all preceding edges adjacent to v. Let €
= (V,&, 1 ) be a 3-configuration. A non-void vertex set X' C V will be denoted as
penetrable if for every & € X there exists an edge e, (the turning edge) adjacent
to & but to no further vertex from A'.

We describe the construction of every penetrable set X' C V. Start with arbi-
trary couple of adjacent elements (of a vertex v1) and an edge e; [ vy. Choose a

vertex vy | e

further { edge e2 b and, after then, a further { with

vertex s I el edge es | vg

edge e3 I vy, U

€9 I v1. The third step consists of the choice of a further
vertex vs I €1, €3

vertex wz | es

and, after then, of a further with ez } vy, vs. Further steps are

edge es | vs
obvious. We proceed as far as possible. After finitely many steps, we finish and
find a maximal penetrable set of vertices vy, va,... with turning edges e; = e,,,
€2 = €y,,... . As it is easily seen, this procedure enables to obtain all maxi-
mal penetrable vertex sets. Minimal penetrable vertex sets are, of course, just all
one-vertex sets (turning edges are at the same time arbitrary adjacent edges).

Let € = (V,&, 1 ) be a 3-configuration. For every non-empty set X' C V), or
X C &, respectively, define the envelope [X] as the set of just all edges such that
each of them is adjacent to at least one vertex from A, or as the set of just all
vertices such that each of them is adjacent to at least two edges from .

Now we restrict ourselves onto a starting set X C £ and construct successive

envelopes Xy 1= X, Xy 1= [X], X := [X1], A5 :=[AXs],... . Then U Xo; is called
i= 0

the edge cover of X' (denotation :(X')). If (X) = & (which implies U Xojp1 =V)
then we shall say that the set X' generates the given 3- conﬁguratlon C. To the

sequence (A;)52, a buildup of € can be associated (a generating buildup over X)
such that instead of each A we insert an arbitrary ordering of all new elements
(which are added in the present step). If A’ is a minimal generating edge set of €,

then X is said to be an edge basis of C.

Example 1. Let € = (V,&, | ) be a Desargues’ 3-configuration on Fig. 1. The
set X' = {ey, eq,e3,ea} is generating because of [[X]] = £.



Fig. 1

As (X\{e;}) # & for all i = {1,2,3,4}, X is an edge basis of C.

Let € = (V,&, 1 ) be a 3-configuration and A a penetrable vertex set. For
every a € A denote by e, the turning edge at a. Vertices from A and edges from
Gy = [A\{eq]a € A} will be denoted as initial; all remaining vertices will be called
proper. Proper vertices will be ordered onto a finite sequence (wy, wa, ..., we)
as follows: w; is some of proper vertices adjacent to «j edges from [A] with
a1 € {1,2,3} to be maximal; ws is some of remaining proper vertices adjacent to
g edges from [A]U[wq] with as € {1,2,3} to be maximal, w3 is some of remaining
proper vertices adjacent to ag edges from [A]U [wq] U[ws] with az € {1,2,3} to be
maximal. In this way we proceed so long as all proper vertices will be exhausted.

With this procedure an buildup (called regulated) of € over A is associated (cf.
[1], Lemma 2.6 on p. 47): We start with initial vertices (in an arbitrary order), on
the further place we give the vertex wi, after then we input new edges adjacent
to wy (in an arbitrary order) and the same act will be repeated with ws and new
edges adjacent to ws and so forth, till to w; and to new edges adjacent to w;. The
numbers aq, as, ..., a; are relative degrees of vertices wi, ws, ..., w; with respect
to the buildup just described.

Under distinguished edges we shall first understand all initial edges. Secondly,
each proper vertex w with relative degree 1 gives rise to one distinguished edge as
one of both subsequent edges adjacent to w. Other edges will be not distinguished.

Theorem 1. Let €= (V,&, [ ) be a 3-configuration with a regulated buildup Z
over a penetrating set .4. Then the set of all distinguished edges is a generating

edge set of €.

Proof. Let & be the set of all initial edges. As every turning edge forms together
with two further edges from & a concurrent triple, it must belong to & = [[£:0]].
Now we shall investigate the edges adjacent to proper vertices wy, ..., w; (ordered
within the framework of .Z) and proceed by induction according to i € {1,...,{}.
Let 6(11), 6(12), 6(13) be the edges adjacent to wy. If @y = 1, then just one of them lies
in & . One of remaining edges, which we denote by g1, is distinguished and the last
edge belongs to [[£1U{g1}]]. Tf a2 = 2, then just two of the edges 6(11), 6(12), 6(13) lie in
&1 and the remaining one belongs to [[£1]]. Tf oy = 3, then 6(11), 6(12), 6(13) lie already
in £. An analogous investigation will be made for every j € {2,...,1 — 1} under
assumption that every edge adjacent to some of vertices wi, ..., w;_1 belongs to

(1) () )

the edge socle §; of w; with respect to .Z. Let €, €5 be edges adjacent to



w;. If a; = 1, then just one of them belongs to §;, one of two remaining edges

(which we denote by g;) is distinguished and the last one belongs to [[S; U {g;}].
1) @ O
J 0% 0%

If a; = 3, then all the egl),egz),e§3) belong already to &;. As the sets V, & are
finite, the socle 8; of w; must contain all edges of €. Let us note that there must
exist at least two initial edges and at least one further distinguished edge. O

Theorem 2 (folklore — cf. also [1], Lemma 2.8 on pp. 50-51). Let G be the set of
all distinguished edges and T the set of all vertices of relative degree 3 according to
a regulated buildup of a given 3-configuration €= (V, &, 1). Thenm+p=n+v,
wherem= V,v= G n= & v= T.
Proof. Denote by Vy, G, respectively V; (i € {1,2,3}) the set of all initial
vertices, of all initial edges, respectively of all vertices of relative degree ¢ and put
Go=vy, Vi=my; (i€{0,1,2,3}). Thus V =V, UV; UVs U V3 with mutually
disjoint sets Vg, V1, V2, Vs, and consequently m = mg + my + my + ms. Further,
we have [Vo]= Go+ Vo=po+moand p= G = Go+ Vo= po+ mo,
sothat n= &= Wo]+2- Vi+1- Vo= (puo+mo)+2-my+1-mo. Thus
m4+pu = (mg+my+ma+mz)+ (o +m), n+p =n+msg = (o +mg+
2my 4+ ma) + mz. We see that both left sides m + p, n 4+ v are equal to the same
expression mg + 2my + ms 4+ m3 + pg so that m4+pu =n+v. |

Corollary. As p < 3, it follows that n > m—v+3. Forv = lwe have n > m+2.

If o; = 2, then two of edges e lie in §; and the remaining one in [[S;]].

Example 2a Example 2b
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Example 3

where are initial edges, = === are further distinguished edges and ()
are relative degrees.

Theorem 3. Every edge basis B of a 3-configuration €= (V, &, 1) is the set of
all distinguished edges according to some requlated buildup of €.

Proof. Let By is the set B without isolated edges (i.e. such which have not an
adjacent edge in B). As A = [By] is a penetrating vertex set, we can use it as
the starting set of regulated buildups over A. One of these buildups must be such
that its non-initial distinguished edges are just all isolated edges of B. This can
be verified if we follow proper vertices in their order under considered buildups. If
there are few possibilities for the choice of the consecutive proper vertex of relative
degree 1 then at least one from vertices under consideration must be adjacent to
an isolated edge from B. In fact, if no of such vertices is adjacent to an isolated
edge from B, then we have a contradiction: in this case namely B cannot be an

edge basis. O

Remark. We return to an arbitrary generating set G of edges of a 3-configuration
C= (V,&, ). If we investigate the corresponding generating buildup 4 over G
then we may denote vertices of relative degree 3 and edges of relative degree
> 2 as terminal elements according to 9. The number of terminal elements (if a
terminal edge has the relative degree o > 2 then we count its “terminality” with
multiplicity & — 1) agrees with the number of proper vertices of relative degree 3
under each regulated buildup over G. We omit the details.

A bridge of a 3-configuration €= (V, &, 1) is defined as an edge e adjacent to
just two vertices and having the property that the (3)-configuration (V, &\ {e}, I)
is not connected.

Theorem 4. No bridge of a 3-configuration € can belong to an edge basis of €.

Proof. Let B be an edge basis of a given 3-configuration €= (V, &, 1) and let
there exists a bridge eg € B. Then the (3)-configuration € = (V, €\ {eo}, 1)
splits onto connected (3)-configurations e, = V1, &, 1), e, = (Va,&, 1). Put
B = BnNné&, By = BNé&s. Let vy be a vertex from Vy, adjacent to eq and
let eq, ¢} be both further edges adjacent to vy. These two edges cannot belong



simultaneously to (By) (if both are in (1) then ey € (By), contrary to eg € B) but
they cannot simultaneously lie out of (B1) (if both are out of (B;), then (B) #V,
a contradiction). Thus one of both edges must belong to (B1) and the remaining,
for example e, must be out of (B1). Choose one of further vertices, vy, adjacent
to e; and denote by es, e}, both further edges adjacent to v,. For similar reasons
as in the preceding, one of them lies in (1) and the remaining, for example es, is
out of (B1). We proceed similarly as long as possible. After finitely many steps
we finish at an edge ¢; & (B31) such that for all remaining vertices v adjacent to ¢
the further edges adjacent to v either both belong to (B1) or both are out of (B;).
In any case we get a contradiction. (Cf. Fig. 2.) O

A

eg— a bridge of €
both I.I’€ (B1) or both & (B)
both I1IT’€ (B;) or both ¢ (B1)
both TITIIT’€ (B;) or both ¢ (B1)

Fig. 2

Example 4
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the valuation ¢ € {0,1,2,3,4,5} means that the edges
belongs to every set Xa;, j > ¢



Example 5
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Example 8

{b1,ba, b3, ba, b5, b5} is an edge basis
m=14, yo =4, u=6,n=19, v =1



Example 9

where are initial edges, = === are further distinguished edges and ()
are relative degrees.
Questions:

(1) If € is a 3-configuration without bridges, does every one-element pene-
trable set {v} lead to an edge basis (as the set of all distinguished edges
according to a regulated buildup of € over {v})?

(2) Under which conditions do all edge bases of a given 3-configuration €
= (V, &, I) have the same number of edges? (If € is a graph then every
edge basis is the edge complement to a cycle-free connected factor of € so
that & — [ 4+ 1 is the constant number of edges of every edge basis of

C)
Appendix (folklore):

Let m be the number of all vertices and n the number of all edges of a 3-

6
Proof. Let a be the number of all unordered couples of adjacent elements. As
every vertex is adjacent to exactly three edges, we have o« = 3m. As every edge is
adjacent to at least two vertices, we get o > 2n. Thus 3m > 2n.

Further let 8 be the number of all unordered couples of neighboring edges.
Every vertex v determines just three couples of neighboring edges (adjacent to
v) so that 7 = 3m. The total numbers of unordered couples of distinct edges is

(g) = ”22_”. Thus 8 < "22_" and consequently 3m < "QT_" O

configuration. Then %n <
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