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ABSTRACT. Characterizations of quasi-continuous modules and continuous modules
are given. A non-trivial generalization of injectivity (distinct from p-injectivity) is
considered.

INTRODUCTION

Various generalizations of injective modules are extensively studied since several
years. Y. Utumi introduced continuous rings as a generalization of self-injective
rings. The concepts of continuity and quasi-continuity was extended to modules
by L. Jeremy, S. Mohamed and T. Bouhy, V. Goel and S. K. Jain. According
to [6], the notion of quasi-continuous modules, which effectively extends that of
continuous modules; appers now to be more fundamental. We here give new char-
acteristic properties of continuous and quasi-continuous modules. A generalization
of injectivity, distinct from p-injectivity, is also studied.

Throughout, A denotes an associative ring with identity and A-modules are
unital. J, Z will stand respectively for the Jacobson radical and the left singular
ideal of A. Recall that (1) 4M is injective iff for any left ideal I of A, every
left A-homomorphism of I into M extends to A; (2) aM is defined as quasi-
injective if for any left submodule N of M, every left A-homomorphism of N
onto M extends to an endomorphism of 4 M; (3) 4 M is continuous iff (a) every
complement left submodule of M is a direct summand of 4 M and (b) every left
submodule of M isomorphic to a direct summand of 4 M is a direct summand
of AM; (4) aM is quasi-continuous if every complement left submodule of M
is a direct summand of 4 M and for any direct summands P, N of 4 M such that
PNAN =0, P&N is also a direct summand of 4 M. It is well-known that injectivity
= quasi-injectivity=-continuity= quasi-continuity (cf. for example [6]).

In [6, Theorem 2.8], three characteristic properties of quasi-continuous mod-
ules are listed. We here give another characterization of quasi-continuous modules
motivated by the definition of quasi-injective modules.
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Theorem 1. The following conditions are equivalent for a left A-module M :

(1) aM is quasi-continuous;

(2) For any complement left submodule K of M, any relative complement C'
of K in M, any submodule N of M containing K &', every left A-homomorphism
of N into M extends to an endomorphism of 4 M.

Proof. Assume (1). Let K be a complement left submodule of M, C' a relative
complement of K in M. Then K ¢ (' is essential in 4 M. Let N be a submodule of
M containing K & C'. Since 4 M is quasi-continuous, K @ (' 1s a direct summand
of AM. Therefore K § C = N = M (1) implies (2).

Assume (2). Let K be a non-zero complement left submodule of M. If C is
a relative complement of K in 4M (C exists by Zorn’s Lemma), let £ = K &
C,p: EF — K the natural projection. The set of submodules S of M containing
E such that p extends to a left A-homomorphism of S into K has, by Zorn’s
Lemma, a maximal member L. Let ¢ : L — K be the extension of p to L. If
j : K — M is the inclusion map, then jq : L — M and by hypothesis, j¢ extends
to an endomorphism h of 4 M. Suppose that h(M) € K. Since K is a relative
complement of 4C' in 4 M, then (h(M)+ K)NC #o.lfo#ce (h(M)+ K)NC,
c=h(m)+k, me M,k € K, we see that F' = {u € M\h(u) € E'} is a submodule
of 4 M which strictly contains L (because m€ F,m ¢ L). If s : F' — FE is defined
by s(u) = h(u) for all u € F', then ps: F — K extends p to F', which contradicts
the maximality of L. Thus h(M) C K which implies that A(M) = K. Now KN
ker h=oand if b € M, b= h(b) + (b — h(b)) € K+ ker h which yields M = K&
ker h. Since C'is a relative complement of K in 4 M, h(C) = 0 and then C' = ker
h. Thus M = K & (', proving that any complement submodule of M is a direct
summand. Now let D be a direct summand of 4 M such that KX N D = o. The
set of submodules of 4 M containing D and having zero intersection with A has
a maximal member V which is a relative complement of K in 4 M. We have, as
above, M = K@ V. Since D C V, D is a direct summand of 4 M, then V = DU
which yields M = K @ D & U. This proves that (2) implies (1). O

Theorem 2. The following conditions are equivalent for a left A-module M :

(1) aM is continuous;

(2) For any isomorphic image K of a complement left submodule of M, any
relative complement C' of K in M, any submodule N of M containing C' ¢ K,
every left A~-homomorphism of N into M extends to an endomorphism of 4 M ;

(3) aM is quasi-continuous such that for any left submodule N of M which
is isomorphic to a direct summand of 4 M, every left A~-homomorphism of N into
M extends to an endomorphism of 4 M.

Proof. Assume (1). Let K be a non-zero isomorphic image of a complement left
submodule of M, C' a relative complement of K in M, N a submodule of M
containing C'@ K. Since 4 M is continuous, K and C are direct summands of 4 M
and since K N C' = o, then K ¢ C' is a direct summand of 4 M. But K & (' is
essential in 4 M which implies that K & C' = M and hence N = M. Thus (1)
implies (2).
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Assume (2). By Theorem 1, 4 M is quasi-continuous. Now let N be a submodule
of 4 M isomorphic to a direct summand of 4 M. Let 4@ be a relative complement
of AN in s,M.If f: N — M is aleft A-homomorphism, ¢ : Q@ & N — N the
natural projection, then fg : @ ® N — M and by hypothesis, fg extends to an
endomorphism h of 4 M. Clearly, h is an extension of f and hence (2) implies (3).

Assume (3). Let N be a submodule of 4 M which is isomorphic to @, where
M=Q®D.If j: N — M is the inclusion map, ¢ : N — @ an isomorphism,
1 : Q — M the natural injection, p : M — @ the natural projection, then 79 : N —
M extends to an endomorphism h : M — M. For every n € N, hj(n) = ig(n) and
g~ phj(n) = ¢~ tpig(n) = g~'g(n) = n. This shows that k = ¢='ph : M — N
such that kj = identity map on N. This proves that IV is a direct summand of 4 M.
Since 4 M is quasi-continuous, then 4M is continuous and therefore (3) implies

(1). O

Since a left continuous left natural Noetherian ring is left Artinian, applying [10,
Theorem 7.10] to Theorem 2, we get a new characteristic property of commutative
quasi-Frobeniusean rings.

Corollary 3. The following conditions are equivalent for a commutative ring A:
(1) A is quasi-Frobeniusean;
(2) A is a Noetherian ring such that for any ideal I containing a non-zero
isomorphic image of a complement ideal of A, every A-homomorphism of I into A
extends to an endomorphism of A.

Recall that A is a left V-ring iff every simple left A-module is injective. V-rings,
von Neumann regular rings and their generalizations have drawn the attention of
many authors (cf. [2],[3], [5], [7], [9], [11]-[14]). We note that if A is semi-prime,
then any simple left A-module N has the following property (x): for any left ideal
I of A, any left A-monomorphism of I into N extends to a left A-homomorphism
of A into N. We call a left A-module M m-injective (mono-injective) if M has
property (). A is called left m-injective if 4 A is m-injective.

It is clear that m-injectivity does not imply injectivity (otherwise, any semi-
prime ring would be a left (and right) V-ring !). Note that continuous modules
need not be m-injective.

Recall that a left A-module M is p-injective if, for any principal left ideal P of A,
any left A-homomorphism of P into M extends to A. A 1is called left p-injective if
A A is p-injective. Without the terminology, a theorem of M. Ikeda — T. Nakayama
asserts that A is left p-injective if, and only if, every principal right ideal of A is
a right annihilator. P-injective modules have been studied in connection with von
Neumann regular rings, continuous and self-injective regular rings (cf. for example,
31, 17, [12] - [19]).

Note that m-injectivity does not imply p-injectivity (otherwise, any commuta-
tive semi-prime ring would always be regular ). Since any m-injective left ideal
of A is a direct summand of 4 A, then p-injectivity does not imply m-injectivity
either (otherwise, any von Neumann regular ring would always be Artinian !).

Remark 1. If A is left m-injective | then Z = J and A/J is von Neumann regular
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(cf. [2, Corollary 19.28]).

Remark 2. A left m-injective left Noetherian ring is left Artinian. Following [5],
aM 1s called semi-simple if the intersection of all maximal left submodules of M
18 zero.

Remark 3. A is semi-simple Artinian iff every semi-simple left A-module is flat
and m-injective.

Remark 4. A commutative ring A is semi-simple Artinian iff A is a semi-prime
ring whose m-injective modules coincide with p-injectivity modules.
We now consider a particular case when m-injectivity implies injectivity.

Proposition 4. Let A be a left m-injective ring containing an injective maximal
left ideal K. Then A is left self-injective.

Proof. A = K @ U, where K = Ae, ¢ = ¢? € A, U = Au, u = 1 —e. Then
uA = r(K). We show that uA is a minimal right ideal of A. Let 0 # v € uA.
Then vA C uA and {(u) Cl(v). If f: Au — Av is the map defined by f(au) = av
for each a € A, then f is an isomorphism (since Aw is a minimal left ideal), and
if j : Au — A is the inclusion map, we have a monomorphism jf~' : Av — A.
Since 4 A is m-injective , there exists y € A such that jf~!(v) = vy. Therefore
u = vy € vA which yields uA C vA, whence ud = vA, proving that uA is a
minimal right ideal of A. In the paper presented to the AMS meeting at OHIO (cf.
Abstract American Mathematical Society, August 1990, Vol. 11 no 4 and Notices
AMS 37(1990), no 6 (p. 707)), we proved that if A contains an injective maximal
left ideal K such that r(K) is a minimal right ideal, then A must be left self-
injective. a

Applying [2, Theorem 24.20], [4, Theorem] to Proposition 4, we get

Corollary 5. If A contains an injective maximal left ideal, the following condi-
tions are equivalent:

(a) A is quasi-Frobeniusean;

(b) A is left m-injective satisfying the maximum condition on left annihilators;

(¢) A is left m-injective satisfying the maximum condition on right annihila-
tors;

(d) A is left m-injective satisfying the ascending chain condition on essential
left ideals;

(e) A is left m-injective satisfying the ascending chain condition on essential
right ideals.

Corollary 6. If A contains an injective maximal left ideal, then A is left pseudo-
Frobeniusean if, and only if, A is a left m-injective left Kasch ring.

Corollary 7. A is left self-injective regular with non-zero socle iff A is a left
m-injective ring containing a non-singular injective maximal left ideal.

Question. Is A semi-simple Artinian if A contains an injective maximal left ideal
and every maximal left ideal of A is projective 7

We now give a nice result on annihilators.
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Proposition 8. Let A be a left and right m-injective ring. Then any minimal left
(or right) ideal of A is an annihilator.

Proof. Let U = Au,u € A, be a minimal left ideal of A. The proof of Proposition
4 shows that uA is a minimal right ideal of A. Let o # d € [(r(Au)). Then
r(u) = r(Au) = r({(r(Aw))) C r(d)andif f : uA — dAis defined by f(ua) = da for
all a € A, then f is an isomorphism (because uA is minimal). If j : dA — A is the
inclusion map, then jf : uA — A is a monomorphism and since A4 is m-injective,
there exists z € A such that d = jf(u) = zu € Au. Since Au C l(r(Au)) , we have
Au = I(r(Au)). Similarly, any minimal right ideal of A is a right annihilator. O

Theorem 9. The following conditions are equivalent:

(1) A is quasi-Frobeniusean;

(2) A is a left Noetherian, left p-injective, right m-injective ring;

(3) A is a left Noetherian, left m-injective, right p-injective ring;

(4) A is a left Noetherian, left and right m-injective ring;

(5) A is a left Noetherian, left m-injective ring whose minimal left ideals are
left annihilators;

(6) A satisfies the maximum condition on left annihilators and for every left
(right) ideal I of A containing a non-zero isomorphic image of a complement left
(right) ideal of A, every left (right) A-homomorphism of I into A extends to an
endomorphism of 4 A(A4);

(7) A is a left and right p-injective ring whose left and right socles coincide
and A satisfies the maximum condition on left annihilators and complement right
ideals.

Proof. It is obvious that (1) implies (2), (4) and (6). O

Assume (2). Let U = Au,u € A, be a minimalleft ideal of A. Then M = Il(u)isa
maximal left ideal. Let 0 # v € uA. Since vA C uA, M = l(v). Now uA = r(l(uA)),
vA = r(l(vA)) which yield ud = (M) = r({(vA)) = vA, showing that uA is
a minimal right ideal. The proof of Proposition 8 then shows that Au is a left
annihilator. Since A satisfies the descending chain condition on right annihilators
and A is left p-injective, then A is left perfect, whence A is left Artinian (in so far
as A is left Noetherian). By [8, Proposition 1], (2) implies (3).

(3) implies (5) by Tkeda-Nakayama’s theorem.

(4) implies (5) by [8, Proposition 1], Remark 1 and Proposition 8.

Assume (5). By Remark 2, A is left Artinian. Let U = uA, v € A, be a minimal
right ideal of A . Since A is left Artinian, Au contains a minimal left ideal V = Awv,
v € A. Since M = r(u) is a maximal right ideal of A | then M = r(v). Now
Au Cl(r(Au)) = (M) = I(r(Av)) = Av, which implies that Au = Av is a minimal
left 1deal. The proof of Proposition 8 then shows that uA is a right annihilator.
Thus (5) implies (1) by [8, Proposition 1].

(6) implies (7) by [1, Theorem 1] and Theorem 2.

Assume (7). Since A satisfies the minimum condition on right annihilators and
every principal right ideal i1s a right annihilator, then A is left perfect. Since A
satisfies the maximum condition on left annihilators, then 7 is nilpotent. Since A
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is left p-injective ; Z = J which implies that A is semi-primary. By [1, Lemma 6],
A is right Artinian. Then (7) implies (1 by [8, Proposition 1].

Corollary 10. If A is commutative, the following are equivalent:
(a) A is quasi-Frobeniusean;
(b) A is a p-injective Goldie ring;
(¢c) A is a m-injective Noetherian ring.

We conclude with a connection between m-injective and continuity.

Remark 5. If A is a left m-injective left uniform ring, then A is a local left
continuous ring.
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