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A COMMUTATIVE NEUTRIX CONVOLUTION OF
DISTRIBUTIONS AND THE EXCHANGE FORMULA

BrianN FisHER, EMIN OzgAG, AND L1 CHEN KUAN

ABSTRACT. The neutrix convolution product fg of two distributions f and g in
D’ is defined to be the neutrix limit of the sequence {(f7n) * (g7n)}, provided the
limit exists, where {7} is a certain sequence of functions 7, in D converging to 1.
The neutrix product (F f)O(Fg) in Z’, where F denotes the Fourier transform, is
defined to be the neutrix limit of the sequence {F(f7).F(g7n)}, where

F(fm)=F(f)*6n, F(gmm)=F(g)*6n, bn=F(m)

and {§,} is a sequence of functions in Z converging to the Dirac delta function. Tt
is proved that the exchange formula

F(f[x]g) = F(/)OF(9)

then holds. Some examples are given.

In the following, D denotes the space of infinitely differentiable functions with
compact support and D’ denotes the space of distributions defined on D.

The convolution product of certain pairs of distributions in D’ is usually defined
as follows, see for example Gel’'fand and Shilov [4].

Definition 1. Let f and ¢ be distributions in D’ satisfying either of the following
conditions:

(a) either f or ¢ has bounded support,

(b) the supports of f and g are bounded on the same side.

Then the convolution product f * g is defined by the equation

(1) ((f x9)(x), ¢(2)) = {g(v), (f(x), ¢(x + v)))

for arbitrary test function ¢ in D.
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188 BRIAN FISHER, EMIN OZGAG, AND LI CHEN KUAN

It follows that if the convolution product f * ¢ exists by Definition 1 then the
following equations hold:

(2) frg=g=x/,
(3) (fxg) =f*g =F =g

Definition 1 is rather restrictive and in order to define further convolution products
of distributions, Jones in [5] gave the following definition.

Definition 2. Let f and g be distributions in D’ and let 7 be an infinitely differ-
entiable function satisfying the following conditions:

() ()= ()
(i) 0<r(e)<l]
(i) r(e) =1, o] < L,
(iv) 7(x)=0,|z| > 1.

Let

falz) = f(z)r(z/n),  gn(x) = g(2)7(x/n)
for n =1,2,... . Then the convolution product f * ¢ is defined as the limit of the
sequence {f, * g}, providing the limit h exists in the sense that

T (fo* ga, 6) = (h, )

for all ¢ in D.
Note that in this definition the convolution product f, * g, exists by Definition

1 since f, and g, both have bounded supports. It is clear that if the convolution
product f*g exists by this definition, then equation (2) holds. However, equations
(3) need not necessarily hold since Jones proved that

lxsgne =2z =sgnz+*1
and

(Lxsgnz) =1, 1Ussgnz =0, 1x(sgnz) =2.

Many convolution products could still not be defined by Definition 2 and the
following modification of Definition 2 was given in [3]:

Definition 3. Let f and g be distributions in D', let

1
To(z) =< T(n"z — "t >,

r(n"r + ") < —n,

: |z < m,

where 7 is as in Definition 2 and let f, = fr., ¢» = g7. Then the neutriz
convolution product fg is defined to be the neutrix limit of the sequence {f, *
gn}, provided the limit A exists in the sense that

N—lim(f, * gn, ¢) = (h, @)

n—oQ
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for all ¢ in D, where N is the neutrix, see van der Corput [1], having domain
N'={1,2,...,n,...} and range the real numbers with negligible functions finite
linear sums of the functions

p*In" ", I A>0,r=1,2,...)

and all functions which converge to zero as n tends to infinity.

The convolution product f, # g, in this definition i1s again in the sense of Defini-
tion 1, the supports of f,, and g, being bounded. The neutrix convolution product
fg clearly satisfies equation (2) if it exists, although it does not necessarily sat-
isfy equations (3). A non-commutative neutrix convolution product, denoted by
J ® g was defined in [2].

It was proved in [3] that if the convolution product f * ¢ exists by Definition 1,
then the neutrix convolution product fg exists and

fxg=f[*]g.

As in [4], we define the Fourier transform of a function ¢ in D by
F(8)(0) = (o) = / P(2)e'™ de.

Here o = o1 +i05 1s a complex variable and it is well known that (;NS(U) is an entire
analytic function with the property

(4) j7]4|6(a)] < Cetle!

for some constants C; and @ depending on q; The set of all analytic functions Z
with property (4) is in fact the space

F(P)={¢:3¢ €D, F(¢) = v}

The Fourier transform f of a distribution f in D’ is an ultradistribution in Z’,
i.e. a continuous linear functional on Z. It is defined by Parseval’s equation

(f.0) = 2n(f,9).
The exchange formula is the equality
(5) F(f+g)=F(f)-F(g).

It is well known that the exchange formula holds for all convolution products of
distributions f and ¢ satisfying Definition 1, provided f and g both have compact
support, see for example Treves [6].
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We now consider the problem of defining multiplication in Z’. To do this we
need the Fourier transform F'(7,) of 7, and write

u(0) = 5= F(7a),

which is a function in Z. Putting ¢ = q;, we have from Parseval’s equation

1

T on

{7, 0) (F (1), F()) = (bn, 9).

Since

lim {7, ¢) = lim h To(2)e(x) de = /_00 $(x)de = (1,6)

n—00 n—oo f_

for all ¢ in D and since F'(1) = 2mé, we obtain
Tim (6, %) = (6, )

for all ¢ in Z. Thus {é,} is a sequence in Z converging to the Dirac delta function
8.

If f is an arbitrary distribution in D', then since &, is a function in Z, the
convolution product f x 8, is defined by

(6) ((f +6n)(0), () = (f(¥), (n(0), ¥(o +v)))
for arbitrary ¢ in Z. If ¢ = (;NS, we have
V(o +v) = Fle¢(x)]

and it follows from Parseval’s equation that

{6n(0), ¥(0 +v)) = %(F(Tn)(a), F(e'9)(0)) = (ra(x), " ()

(7) = /_00 T (2)e 7 ¢(x) dx
— _00 e (x) da = h(v).

Thus R R
Tim (Fx 80, 0) = (F.0)

for arbitrary + in Z and it follows that {f* 8, } is a sequence of infinitely differ-
entiable functions converging to f in Z’.
This leads us to the following definition:
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Definition 4. Let f and g be distributions in D’ having Fourier transforms f and
g respectively in Z’ and let fn = f* 6, and g, = g * 6,. Then the neutriz product
fDﬁ is defined to be the neutrix limit of the sequence {fnﬁn}, provided the limit
h exists in the sense that

n—oQ

for all ¢ in Z.

In this definition we use fDﬁ to denote the neutrix product of f and ¢ to distin-
guish it from the usual definition of the product f,.g, of two infinitely differentiable
functions f, and g,. If

im (fo .G, ¥) = (h, )

for all ¥ in Z, we simply say that the product fﬁ exists and equals h. We then of
course have

fO5=13

It is immediately obvious that if the neutrix product fDﬁ exists then the neutrix
product 1s commutative.
The product of ultradistributions in Z’ also has the following property:

Theorem 1. Let f; and g be ultradistributions in Z' and suppose that the neutriz
products fO§ and fO§" (or f'Ug) exist. Then the newiriz product f'0O§ (or f07')
exists and

(8) (fOg) = f/05 + fO7'.

Proof. Let ¢ be an arbitrary function in Z. Then

(FOg,¢) = N=lim(fo gn, ¥), (fOF,¥) = N—lim(f, 4., ¥).

Further,
((70a)' ) = ~(70g.¥') = =N —lim{fo.go, )
= =N—lim(gn, (fo-0) = f;,-¥)
= N—lim(g), fa ) + N—lim(g, Fot)
and so

N—lim(f,..gn, ) = (fOg)', ¥) = (fO5", ¥).

Hence the neutrix product f’.§ exists and equation (8) follows.
It follows similarly that if f/00g exists then fOg’ exists.

We can now prove the exchange formula.
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Theorem 2. Let f and g be distributions in D’ having Fourier transforms f and
g respectively in Z'. Then the neutrix convolution product fg exists in D', if

and only if the neutrix product fDﬁ exists in Z' and the exchange formula

F(f[¥]g) = fOj
is then satisfied.

Proof. We have from equation (7) that
{on(0), (0 +v)) = F(mn¢)
and then from equation (6) that

(F, ¥) = (F # 60,0) = (F, F(7a9)) = 27(f, 7 9)
=271(fn, 0) = (F(fn),¥)

on using Parseval’s equation twice. It follows that F'(f,) = fn Similarly, we have
F(gn) = gn. Now since the convolution product f, * g, exists by Definition 1 and
fn and g, both have compact support

F(fn *gn) = F(fn)F(gn) = fngn

and so on using Parseval’s equation again

27T<fn *gna¢> = <F(fn *gn)a1/)> = <.fn§na1/)>

Suppose the neutrix convolution product fg exists. Then

27T<fg, ¢> = Nn:liom277<fn *Gn, ¢> = N_hm<F(fn * gn)a 1/)>

for arbitrary ¢ in D and F¢ in Z, proving the existence of the neutrix product
fDﬁ and the exchange formula.

Conversely, if the neutrix product fDﬁ exists then the argument can be reversed
to prove the existence of the neutrix convolution product fg and the exchange
formula. This completes the proof of the theorem.

Theorem 3. The products (o +i0)*.(c + i0)* and (o — i0)*.(c — i0)* exist and
(9) (o +0)*.(0 + i0)* = (o 4 i0)M*

(10) (0 —i0)*.(6 — i0)* = (o — i0)M*

for all X and p .

Proof. It is well known that

(11) wh x ek = B+ 1, p 4 Dttt



A COMMUTATIVE NEUTRIX CONVOLUTION OF DISTRIBUTIONS 193

for Ay, A+ p+1#—1,-2,... where B denotes the Beta function.
Further, see Gel’fand and Shilov [4],

(12) F(z}) = ie*™2T(A + 1) (o +i0)~*~!

for A # —1,—2,.... On using the exchange formula, it follows from equations (11)

and (12) that

— OHITEL (N 4 P+ D (0 +i0) 7 (o 4i0) 74 =
= B+ 1+ Die! CHHUTEL (O 4 4 2) (0 4 0) A0

for A, pt, \-p+1# —1,-2, ..., the product (6+i0)~*~1.(0440)~#~! existing since

the convolution product J:fl‘_ * xi exists. Equation (9) now follows for A, y, A+ p #

0,1,2,....
Now suppose that A, g, A 4+ g > —1 and put

(o +30)p = (o4 10)* * 6, (0).

Then since '
o+i0)* = o + e
( " ,

see [4], it follows that {(¢ + i0)).(c + i0)#} is a sequence of locally summable
functions which converges to the locally summable function (o +370)**#. Equation
(9) follows for A, p, A+ p > —1.

Now suppose that equation (9) holds when —k — 1 < A < —k, for some positive
integer k, and A+ p = 0,%1,£2,... . This is certainly true when & = 0. Then

lim (o 4 10)}.(0 + i0)* = (o 4 10)M*,

n—oQ

by our assumption when —k — 1 < A < —k. It follows that

lim [(o 4 i0)} (o 4 i0)~] =

n—oQ

= lim [Mo +i0)p~ (0 +i0)2 + p(o +i0)p.(o 4 i0)~71]
= (A p)(o + i)+

and so
lim (0 +i0)3™ (0 +i0)y = (o +i0)* 4~

n—oQ

Equation (9) follows by induction for A # —1,-2,... and A+ g =0,+1,+2,... .
We are finally left to prove equation (9) for the case A =r = —1,-2,... and
p=s=0,1,2.... Since

In(o +40) = In|o| + inH(—0)
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and

(o +i0)* =0°
for s =0,1,2,...,see [4], are locally summable functions, it follows as above that
if

In(o +40), = In(o +90) * 6, (o),
then the sequence {In(c 4 40),.(c +1i0)2 } converges to the locally summable func-
tion (o +40)* In(o + 40). Thus
im [In(0 +i0), (o +i0);]' =
= nlln;o[(a +40); (0 4+ i0)% + sIn(o + i0)(o +0)5 7]
[(c +40)* In(c + 0)]
s(o 4+ i0)* "t n(o 4 i0) + (o +i0)* 1,

see [4], and so

lim (o +i0);'.(0 +140)5 = (o +i0)* " .

Equation (9) follows for A = —1 and 1 =0,1,2,... . Another induction argument
shows that equation (9) holds for A = —1,-2,... and ¢ = 0,1,2,... . This

completes the proof of the theorem.

Corollary 1.
(13) o "ot =0""

forr=1,2,... and s=0,1,2,... and

(r—1) s 0’ o Z r
(14) 87 o).0" = (LU sr=s=1(g), 1> s
forr=1,2,... ands=0,1,2,... .
Proof. Since

(o +i0)* =0°
for s =0,1,2,... and
cN—p _ _—7 iﬂ-(_l)r (r—1)
(c+i0)" =0 +(r—1)!6 (o)

for r =1,2,..., see [4], it follows from equation (9) that

oc+10)"".0" = o nrds
( ) { o5 4 Z(ﬂ;‘_sl_l-;y 6(7‘—5—1)(0.)’ F> s
=c "0+

the product clearly being distributive with respect to addition. Equating real and
imaginary parts, equations (13) and (14) follow.
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Corollary 2.

—-r—1/2 _—-r—1/2 _ (—1)T7T (2r)
(15) oy o = 5@ 8 (o)
forr=20,1,2,... .
Proof. It follows from equation (9) that
(o 4i0)"""2 (0 4+i0)"""Y? = (¢ 4 i0)” 2!
_ U_|—_r—1/2 _ i(—l)’“U:T_l/z] . [U-l—_r—l/Z _ i(_l)ro_—r—l/Z

__—2r—1 T (o)
= — ]
7 PO
for r = 0,1,2,... . Expanding and equating the imaginary parts gives equation
(15).

Corollary 3.

- _ —1)"(r = 1! _
1 T.(S(T 1) — ( 6(27‘ 1)

forr=1,2,....
Proof. It follows from equation (9) that
(0 +30)™" - (o +140)™" = (o +40)"*"
(1) (1)
= lo" + Zﬂ'( ) 6(7‘—1)(0.):| . |:0__r n Zﬂ'( ) 6(r—1)(0.)

(r—1)! (r—1)!
_ -2 im (2r—1)
= 5
(N Y (o)
for r =1,2,... . Expanding and equating imaginary parts gives equation (16).

Theorem 4. The neutrix product UiD(S(s)(O') exists and
(17) o308 (o) = 0

forreal A £ 0,+1,4+2,... and s =0,1,2,... .
Proof. It was proved in [3] that

J:fl‘_xs =0, xixs =0

forreal A £0,+1,+2,... and s = 0,1,2,... . Thus

(x — iO)AJ;s = (a:fl‘_ + e‘“‘”xi‘)xs =0
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for real A #0,+1,+2,... and s =0,1,2,... . On applying the exchange formula
to this equation we get

U_I__A_lﬂé(s)(a) =0
forreal A £0,+1,+2,... and s = 0,1,2,... , since

—iAm/2
Pl(a - i0)] = %U;H
for A #0,4+1,4+2,... and
F(®) = 2(—i)* w60 (o)
fors =0,1,2,..., see Gel’fand and Shilov [4]. Equation (17) follows immediately.
Corollary 1. The neutrix product ¢ 06(*)(¢) exists and
oA 06 (o) = 0
forreal A £ 0,+1,4+2,... and s =0,1,2,... .

Proof. The result follows immediately from equation (17) on replacing z by —x
in equation (17).

Theorem 5. The neutrix product (¢ — i0)*0(c + i0)* exists and
(18) (0 —i0)*0(o + i0)* = gyt 4 ellu=Mm g2 tn
forreal A, £ 0,+1,4+2,... .
Proof. It was proved in [3] that
x_?‘_lx:“_l =BA+pu+1, —u)xzk_“_l +BA+p+1, —/\)x_T_A_“_l

for real A, # 0, +1,4+2,... . Applying the exchange formula to this equation and
using equation (12) and the equation

F(z2) = —ie 2D\ + 1)(0 — i0) "1
we get
GO\ — )(o — 10)° Do + 0} =
= OFOT 2B 4 p 4 1, — )T (=X — p) (o — 0 FH 4
+eTIHITE B 4 1, =T (=A = p)(o + i0) M
and so
(7= i0)* 0o+ i0)* = ¢ sin(A) cosec [(A + p)](o — 10+
+ e~ sin(um) cosec [(A + p)7](o 4 i0) M H
_ Ufl\—-l—u + ei(u—x)waiﬂi’

proving equation (18) for real A,y # 0, +£1,+2,... .
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