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COMPLEMENTED ORDERED SETS

Ivan Chajda

Dedicated to Professor M. Novotný on the occasion of his seventieth birthday

Abstract. We introduce the concept of complementary elements in ordered sets.

If an ordered set S is a lattice, this concept coincides with that for lattices. The con-
nections between distributivity and the uniqueness of complements are shown and
it is also shown that modular complemented ordered sets represents “geometries”
which are more general than projective planes.

It was shown in [2], [4] and [6] that some of lattice properties like distributivity
or modularity can be generalized also for ordered sets. We can generalize also
the concept of lattice complement. The aim of this paper is to show some basic
properties of complements in ordered sets and to determine connections between
complementarity and distributivity.

Let A be an ordered set, denote by ≤ its ordering. For M ⊆ A, put

U(M) = {x ∈ A; m ≤ x for each m ∈ M}

L(M) = {y ∈ A; y ≤ m for each m ∈ M} .

If M is a finite set, e.g. M = {a1, . . . , an}, we write briefly U(a1, . . . , an) and
L(a1, . . . , an) instead of U(M) and L(M), respectively, and for any P, Q ⊆ A we
write L(P, Q) = L(P ∪ Q) and U(P, Q) = U(P ∪ Q). If P ⊆ M ⊆ A, then clearly
U(P ) ⊇ U(M) and L(P ) ⊇ L(M). Therefore, U(∅) = L(∅) = A. If A has the
greatest element 1 (the least element 0), then L(1) = A, U(A) = {1} (U(0) =
A, L(A) = {0}, respectively). If A has not the greatest (the least) element, then
U(A) = ∅ (L(A) = ∅ respectively).

Definition 1. Let S be an ordered set and A ⊆ S, B ⊆ S. We say that A, B are
complementary if

L(U(A, B)) = S and U(L(A, B)) = S .
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26 IVAN CHAJDA

Elements a, b of S are complementary (or a is a complement of b) if the sets {a}, {b}
are complementary. An ordered set S is complemented if each a ∈ S has at least
one complement in S.

The following assertions are evident:

(1) If S is an ordered set, then the subsets ∅ and S are complementary;
(2) If A, B ⊆ S are complementary and B ⊆ C ⊆ S, then also A, C are

complementary;
(3) If S has the greatest element 1 and the least element 0, then a, b of S are

complementary if and only if U(a, b) = {1} and L(a, b) = {0}, i.e. there
exist sup(a, b) = 1 and inf(a, b) = 0.

Remark 1. If an ordered set S is a lattice with 0 and 1, then a, b ∈ S are
complementary by Definition 1 if and only if a, b are complementary in the lattice
sence.

Remark 2. If S is at least two element antichain, then any two different elements
of S are complementary.

By Remark 2, there exist complemented ordered sets which are not lattices.

Example 1. An ordered set S in Fig. 1 is not a lattice but it is complemented (it is
immedietely clear that S is not a lattice and elements 0 and 1 are complementary;
moreover, y is a complement of a and d; v is a complement of a; x is a complement
of c).

1

Example 2. An ordered set S in Fig 2 is a complemented set without the greatest
and the least element (therefore, it is not a lattice). The element a is a complement
of c; b is a complement of d; x is a complement of r, q, y is a complement of r, q;
z is a complement of p.
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Proposition 1. Let S be a complemented ordered set. S has the greatest element

1 if and only if it has the least element 0.

Proof. Suppose e.g. 0 ∈ S. If x is a complement of 0, then 0 ≤ x implies S =
L(U(0, x)) = L(U(x)) = L(x), hence x is the greatest element of S. Dually for the
case 1 ∈ S. �

It follows directly from Remark 2 that in the two element antichain, every
element has the unique complement. If S is an ordered set in which each a ∈ S has
the unique complement, S is called uniquely complemented; in this case, denote
by a′ the complement of a ∈ S Evidently, (a′)′ = a for each a ∈ S.

Example 3. Ordered sets in Fig. 3 and Fig. 4 are uniquely complemented (and
are not lattices).

It is well-known (see e.g. [1], [3], [7]) that there is a close connection between
distributivity and unique complementness in lattices. We proceed to show that
similar relationship is valid also for ordered sets. At first we recall the definition
of distributive and modular ordered set from [2], [4]:

Definition 2. An ordered set S is distributive if

L(U(a, b), c) = L(U(L(a, c), L(b, c)))

holds for each elements a, b, c of S. An ordered set S is modular if for each a, b, c
of S, a ≤ c implies

L(U(a, b), c) = L(U(a, L(b, c))) .
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Clearly a lattice L is distributive (modular) in the lattice sense if and only if it
is distributive (modular) as an ordered set by Definition 2.

Sets in Fig. 3 and Fig. 4 are distributive (it can be verified by the methods of
[2]). We can prove the following:

Theorem 1. Let S be a distributive ordered set. Then each a ∈ S has at most

one complement in S.

Proof. Let a ∈ S and suppose b, c are complements of a. The distributivity of S
implies:

L(b) =S ∩ L(b) = L(U(a, c)) ∩ L(b) = L(U(a, c), b) =

=L(U(L(a, b), L(c, b))) = L(U(L(a, b)) ∩ U(L(c, b))) =

=L(S ∩ U(L(c, b))) = L(U(L(c, b))) = L(c, b) ,

L(c) =S ∩ L(c) = L(U(a, b)) ∩ L(c) = L(U(a, b), c) =

=L(U(L(a, c), L(b, c))) = L(U(L(a, c)) ∩ U(L(b, c))) =

=L(S ∩ U(L(c, b))) = L(U(L(c, b)))
.
= L(c, b)

whence L(b) = L(c) which implies b = c .

Notation. Let S be a uniquely complemented ordered set and A ⊆ S, x, y ∈ S.
Denote by A′ = {a′; a ∈ A} and (U(x, y))′ = U(x, y)′, (L(x, y))′ = L(x, y)′.

Proposition 2. Let S be a uniquely complemented set and ∅ 6= A ⊆ S. Then A
and A′ are complementary.

Proof. Let a ∈ A. Clearly {a′} ⊆ A′ thus

S = L(U(a, a′)) ⊆ L(U(A, A′)) ⊆ S .

Dually we can prove U(L(A, A′)) = S.

Definition 3. Let S be a uniquely complemented set. We say that S satisfies De
Morgan Laws if U(x, y)′ = L(x′, y′) and L(x, y)′ = U(x′, y′) for each x, y of S.

Theorem 2. Let S be a uniquely complemented ordered set. The following con-

ditions are equivalent:

(a) x ≤ y implies y′ ≤ x′;

(b) S satisfies De Morgan laws.

Proof. (a) ⇒ (b): Let q ∈ U(x, y)′. Then q = a′ for some a ∈ U(x, y), i.e. a ≥ x,
a ≥ y. By (a), we have a′ ≤ x′, a′ ≤ y′ which is equivalent to q = a′ ∈ L(x′, y′).
Clearly U(x, y)′ ⊆ L(x′, y′). The converse inclusion can be proved analogously and
the second De Morgan law can be proved dually.

(b) ⇒ (a): Let x, y ∈ S and x ≤ y. Then y ∈ U(x, y) and, by (b), y ∈ L(x′, y′)′,
thus y′ = in L(x′, y′) with respect to the unique complementarity in S. Hence,
y′ ≤ x′.
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Definition 4. An ordered set S is called boolean if it is distributive and comple-
mented.

Evidently, ordered sets in Fig. 3 and Fig. 4 are boolean sets wich are not lattices.

Theorem 3. Let S be a boolean set. Then

a ≤ b implies b′ ≤ a′

for each a, b, of S, i.e. S satisfies De Morgan laws.

Proof. Let a, b ∈ S. Clearly U(a, a′, b′) ⊆ U(a, a′), which implies

S ⊇ L(U(a, a′, b′)) ⊇ L(U(a, a′)) = S .

Hence,

(i) L(U(a, U(a′, b′))) = L(U(a, a′, b′)) = S .

Suppose now a ≤ b. Then L(a, b′) ⊆ L(b, b′) whence

U(L(a, b′)) = U(L(b, b′)) = S .

By distributivity of S, we obtain

U(L(a, U(a′, b′))) = U(L(U(L(a, a′), L(a, b′)))) = U(L(a, b′)) =

= U(L(S)) = S .(ii)

Therefore, (i) and (ii) yield that {a} and U(a′, b′) are complementary. Since a has
the unique complement a′, it gives {a′} ⊆ U(a′, b′), whence b′ ≤ a′ is evident.

Corollary 1. Let S be a boolean set and a, b ∈ S. Then

L(a, b) = ∅ if and only if U(a′, b′) = ∅ and

U(a, b) = ∅ if and only if L(a′, b′) = ∅ .

Proof. Suppose e.g. L(a, b) 6= ∅, thus x ∈ L(a, b). Then x ≤ a, x ≤ b and, by
Theorem 3, a′ ≤ x′, b′ ≤ x′ i.e. x′ ∈ U(a′, b′).

Theorem 4. Let S be a boolean set and a, b,∈ S. If U(a, b) 6= ∅, then U(a, b)
and L(a′, b′) are complementary. If L(a, b) 6= ∅, then L(a, b) and U(a′, b′) are

complementary.

Proof. Similarly as in the proof of Theorem 3, we obtain L(U(a, a′, b′)) = S and
L(U(b, a′, b′)) = S. Suppose e.g. L(a, b) 6= ∅. By Corollary 1, also U(a′, b′) 6= ∅ and
the distributivity yields:

L(U(L(a, b), U(a′, b′))) = L(U(L(U(a, U(a′, b′)), U(b, U(a′, b′)))) =

L(U(L(U(a, a′, b′), U(b, a′, b′)))) = L(U(S)) = S .
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Dually we can prove U(L(U(a′, b′), L(a, b))) = S thus L(a, b), U(a′, b′) are comple-
mentary. Similarly it can be shown for the sets U(a, b), L(a′, b′).

Remark 3. The condition U(a, b) 6= ∅ (or L(a, b) 6= ∅) in Theorem 4 is essential.
If e.g. U(a, b) = ∅, by Corollary 1 also L(a′, b′) = ∅, however, these subsets are not
complementary.

Remark 4. Boolean sets in Fig. 3 and Fig. 4 are clearly partial lattices (if we
add 0 and 1, we obtain boolean lattices). The following examples show that there
exist also boolean sets which are not partial lattices (in this sense):

Example 4.

(a) An ordered set S in Fig. 5 is a boolean set without the least and the
greatest element which is not a partial lattice (e.g. for a, d ∈ S, we have
L(a, d) 6= ∅ but there does not exists inf(a, d) );

(b) An ordered set S in Fig. 6, the so called pearl, is a boolean set with the
least and the greatest element which is not a (partial) lattice (the same
reason as in (a)).
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Other boolean sets which are not partial lattices are visualized in Fig. 7 and
Fig. 8.

Definition 5. Let A be an ordered set. An element p of A is called an atom of A
whenever:

(a) If A has the least element 0 and 0 < q ≤ p for some q ∈ A, then p = q;
(b) If A has not the least element, then p is a minimal element of A.

An ordered set A is atomic if for each a ∈ A there exists an atom p ∈ A such that
p ≤ a.

Proposition 3. Let S be a uniquely complemented set and p, q be different atoms

of S. Then p ≤ q′.

Proof. Let p � q′. Then L(p, q′) ⊆ L(p) and L(p, q′) 6= L(p), thus either L(p, q′) =
{0} if S has the least element 0 or L(p, q′) = ∅ in the opposite case, i.e. U(L(p, q′)) =
S. Suppose x ∈ U(p, q′).

(a) Suppose q � x. Then again either L(x, q) = 0 or L(x, q) = ∅ if 0 ∈ S or
0 /∈ S, respectively, thus U(L(x, q)) = S in both of these cases. Further,
U(x, q) ⊆ U(q′, q) (because x ∈ U(p, q′) implies q′ ≤ x), thus

S ⊇ L(U(x, q)) ⊇ L(U(q′, q)) = S .



32 IVAN CHAJDA

Thus we proved that x is a complement of q, i.e. x = q′. By the assumption,
x ∈ U(p, q′) which gives p ≤ q′, which is a contradiction.

(b) Suppose q ≤ x. Since x ∈ U(p, q′), also q′ ≤ x. Thus U(x) ⊆ U(q, q′),
whence

L(x) = L(U(x)) ⊇ L(U(q, q′)) = S ,

i.e. x = 1 ∈ S. It gives U(p, q′) = {1}, thus p is a complement of q′.
With respect to the uniqueness of complementation in S, p = q which is a
contradiction again.

Definition 6. We say that an ordered setS satisfies the condition (P ) if for each
elements a and x of S the following assertion is true:

(P) if A is a set of all atoms which are contained in a and p ≤ x for each
p ∈ A, then a ≤ x

Remark 5. All sets in Fig. 3, 4, 5 , 6, 7, 8 are uniquely complemented atomic
ordered sets (which are not lattices)satisfying the condition (P ). An example of as
uniquely complemented atomic ordered set which does not satisfy (P ) is visualized
in Fig. 9.

Theorem 5. Let S be a uniquely complemented atomic ordered set satisfying the

condition (P ). Then there exists a mapping h of S into a boolean lattice B such

that:

(a) h is injective and isotone;

(b) h preserves complementation;

(c) if there exists a ∨ b for some a, b of S, then

h(a ∨ b) = h(a) ∨ h(b) ,

if there exists a ∧ b for some a, b, of S, then

h(a ∧ b) = h(a) ∧ h(b) ;

(d) h(c) ≥ h(a) ∨ h(b) for each c ∈ U(a, b) and

h(d) ≤ h(a) ∧ h(b) for each d ∈ L(a, b).
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Proof. Denote by P the set of all atoms in S. Let B = 2P , i.e. B is a boolean
lattice with respect to set inclusion (i.e. ∩ is the meet, ∪ is the join and P − A is
the complement of A in B). Let h be a mapping of S into B given by

h(a) = {p; p ∈ P, p ≤ a} .

It is immediately evident that h is isotone. Prove (b): Let a ∈ S and A = h(a).
If h(a′) ∩ A 6= ∅, then y ∈ h(a′) ∩ h(a) for some y ∈ P , i.e. y ≤ a′, y ≤ a and
y 6= 0 (if 0 ∈ S) which is a contradiction with U(L(a′, a)) = S Thus h(a′)∩A = ∅,
i.e. h(a′) ⊆ P − A. Suppose h(a′) 6= P − A. Then there exists an element x ∈
(P − A) − h(a′), i.e. x is an atom. Then x 6= 0 and, by Theorem 3, x′ 6= 1. By
Proposition 3, x′ ≥ p for each p ∈ A, thus by (P ), also x′ ≥ a. Since x /∈ h(a′),
we have x′ ≥ q (by Proposition 3) for each q ∈ h(a′), thus also x′ ≥ a′ which is a
contradiction with L(U(a′, a)) = S. Thus we have

h(a′) = P − A

proving (b).

Now, we are ready to prove that h is an injection. Suppose a, b ∈ S and h(a) =
h(b) = A. With respect to (b), we have h(a′) = P −A, h(b′) = P −A. Thus L(a, b′)
does not contain any atom of S, i.e. U(L(a, b′)) = S. With respect to Proposition
3, U(a) contains complements of all atoms of P − A, U(b′) contains complements
of all atoms of A. By Theorem 3, the complement of an atom is a dual atom (it is
defined dually as the atom), thus U(a, b′) = U(a) ∩ U(b′) contains no dual atom.
hence L(U(a, b′) = S), i.e. b′ is a complement of a. With respect to the unique
complementation in S, we have b = a.

Prove (c): Let a ∨ b exists in S. Then clearly h(a ∨ b) = h(a) ∪ h(b), since a ∨ b
must contain all atoms of h(a) and all atoms of h(b). Dually we obtain the second
assertion provided a ∧ b exists in S.

The assertion (d) is evident directly from (a).

Corollary 2. Let S be a finite uniquely complemented ordered set satisfying (P ).
Then there exists an embedding h of S into a finite boolean lattice such that h is

monotone, h preserver complements and suprema or infima provided they exist.

It is well-known (see e.g. [1]) or [3]) that every modular complemented lattice
represents a projective geometry; if it is of the lenght 3, it represents a projective
plane. It is a natural question what “geometry” or what “plane” is represented by
a complemented ordered set. Clearly, it can satisfy usual axioms of projective plane
but two different lines can meet in more than one point and two different points
can lie on more than one line. For example, the set S in Fig. 10 is a complemented
ordered set and it represent a “projective quasiplane” with 3 points x, y, z and
with 4 lines a, b, c, d (visualized in Fig. 11). If instead of a plane the sphere is
considered and lines are substituted by circles in this sphere, such “geometry” is
easy to imagine.
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Hence the theory of complemented sets is meaningfull and enables us to in-
vestigate geometrical systems (the so called incidence structures) which are more
general than the projective geometries.
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