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REGULAR AND NORMAL QUANTALES 

JAN PASEKA 
(Received October 8, 1985) 

Abstract. Quantales can be viewed as a framework for a non—commutative topology. Basic 
properties of quantales are given. There are considered regular and normal quantales. The main, 
result asserts that regular quantales are frames. 

Key words. Residuated lattice, multiplicative lattice, quantale, regular quantale, normal quantale, 
Gelfand ring. 

The idea of considering complete lattices equipped with an additional binary 
operation . goes back to Ward and Dilworth [10]. Their motivating examples 
were lattices of ring ideals. In 1983, C. J. Mulvey suggested to consider multi­
plicative lattices as a framework for a non-commutative topology and proposed 
to call them quantales. His approach was followed by Borceux [3], [4] who found 
some basic topological properties of quantales. The present paper contributes to 
this direction. The main result is that regular quantales are frames (i.e. the multipli­
cation . coincides with the meet A ; concerning frames see Johnstone [5]). The 
consequence is that cogroups in the category of idempotent quantales are localic, 
i.e. they are frames. Further results generalize some topological properties of 
frames to quantales. As an application, there are considered Gelfand rings (in the 
sense of [5]). It is connected with results of B. Banaschewski and R. Harting 
communicated in 1984. The author would like to express his thanks to J. Rosicky 
for his valuable assistence in this work. 

§ 1. m-semilattices 

1.1. Definition. An m-semilattice is a v -semilattice S with the top element 1 and 
the bottom element 0 equipped with an associative binary operation . so that 

i « l i=-l 

(Vx. ) .x = V(*..x), 
i » l 1=1 
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1 . X = X 

for all x, xl9 ..., xne S. 
A morphism f:St->S2 of m-semilattices is a mapping /such that 

(1) /preserves finite joins, 
(2) / (D = 1, 
(3) f(a) . f(b) ^ f(a . b) for each a,beSt. 
The category of m-semilattices will be denoted by Jt. 

An ideal of an m-semilattice S will be just an ideal of a v -semilattice. An ideal / 
is called m-prime if x . y e I implies x e I or y e J for all x,yeS. 

An element a of an m-semilattice S is called 
(1) 2-sidedifa.l £ a, 
(2) idempotent if a . a = a. 

An m-semilattice is called 2-sided (idempotent) if any its element is 2-sided 
(idempotent). An m-semilattice S is called a q-semilattice if a. b = 1 implies 
a = 1 = b for all a, b e S. 

1.2. Definition. Let S be an m-semilattice, a,beS. We say that b is well inside a 
if there exists ce S with c .6 = 0, c v a = l . We write b < a ([5] uses the notation 
b 5 a). 

1.3. Lemma. Let S be an m-semilattice, a, b, c,de S. Then 
(i) a ^ b < c £ d implies a < d, 

(ii) a <b,c <d implies a. cv c . a <b . d and u <b . d for all ue S, u g a, 
u £ c. 

(in) If S is idempotent or a q-semilattice then a < b, c <b implies av c < b. 
Proof, (i) It is trivial. 
(ii) Let e . a = 0 = / . c, cv b = 1 = / v d. We put z = (b .f)v (e . d)v (e./). 

Then z . u = 0, zv (b . d) = 1,0 = z . (a . cv c . a). 
(iii) Letc. a = 0 = / . c, cv 6 = 1 = / v 6. We define z = c ./. Thenz. (av c)=-

= 0, zv 6 = (c. 1) v 6 ^ (e. e)v b. If S is idempotent we are ready. If S is 
a q-semilattice then cv 6 = 1 implies (c. 1)v 6 = 1. Namely, 1 = (cv b). I =-
= (6. 1) v (c. 1 . 1) = (c. 1 v 6) . 1 and from the definition of a q-semilattice 
it follows (c . 1) v 6 = 1. 

An element p ^ 1 of an m-semilattice S is called pr/wc i if a.b ^ p implies 
a < p ox b <L p for all a, b e 5. 

1.4. Lemma. Let S be an idempotent m-semilattice or a q-semilattice, pe S a dual 
atom. Then p is prime. 

Proof. If a. 6 ^ p, b ^pthen6v p = 1. Therefore a . a g a . 1 = a . (bv p)= 
= a . bv a .p ^ p. If Sis idempotent we are ready. Let S be a q-semilattice. Then 
a v p = 1 implies a. 1 v p = 1 and this is a contradiction. 
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1.5. Definition. An m-semilattice 5 is said to be normal if, given a9be S with 
a v b = 1, we can find d9ce S with d. c = 0, dv a = 1 = 6 v c. 

The next proposition generalizes the well known result (see [5] II.3.7) that in 
a normal distributive lattice every prime ideal is contained in a unique maximal 
ideal. 

1.6. Proposition. Let S be an normal m-semilattice. Then every prime element 
in S is contained in at most one dual atom. 

Proof. Let p e S be prime, a ^ b dual atoms, p ^ a9b. Clearly av b = 1, 
i.e. there exist c, de S so that d. c = 0, dv a = 1 = cv b. Then d ^ p or c ^ p. 
Hence pv a = \ or bv p = 1, which is a contradiction. 

The next result generalizes [5] IV. 1.6 and it is due to Banaschewski and Harting. 
The proof follows [5]. 

1.7. Proposition. In a normal m-semilattice S a<b implies that there exists 
ce Sso that a < c <b. If moreover a ^ b then there exists de S so that a £ d £ b9 

a < d < b. 

§ 2. Regularity in quantales 

2.1. Definition. A quantale Kis a complete m-semilattice in which . distributes 
over arbitrary joins. 

A morphism f\K->L of quantales is a morphism of m-semilattices which 
preserves arbitrary joins. The category of quantales will be denoted by Jf. 

2.2. Definition. Let Kbe a quantale. We say that an element aeKis re gular i 
there exists D g Ia, where Ia = {b e K; b < a}, so that a = \/D. Let RK be the 
set of all regular elements of K. 

2.3. Lemma. Let K be a quantale. Then RK is an idempotent quantale. 
Proof. Let a e RK i.e. a = V^ for / £ /«. If 6 e / then there exists c e K so 

that c . b = 0, cv a = 1. Thus b = 1 . b = (cv a). b = a . b and therefore 
a = yj = a. \fJ=a .a. 

2.4. Definition. We say that a quantale K is regular if K =-= RK. 

2.5. Theorem. Any regular quantale is a frame. 
Proof. From 2.3 we know that Kis an idempotent quantale. Let ae K9 a = \JJ9 

J g Ia. If b e J then there exists c e Kso that c . i = 0, c v c = l . Following [4], 
c. b = 0 implies b. c =0 . Hence b . 1 = 6. (a v c) = 6 . a i.e. a. 1 = a . a = a. 
We proved that Kis 2-sided and idempotent. Consequently, K is a frame (see [3]). 

It is easy to check that RK is a frame if K is an idempotent quantale. 
For a quantale K put R°(K) = K, #a+1(K) -=* R(R*(K)) for any ordinal a, 

R\K) = fl * W for any limit ordinal a and Reg(K) = ft 1*W -&#(-*-) is 
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a regular quantale (i.e. a regular frame) and Reg is the coreflection functor of 
quantales into regular frames. 

Borceux (see [4]) proved that the category of idempotent quantales has arbitrary 
sums. If K, L are idempotent quantales then their sum K + L is the V"sub-
semilattice of the tensor product K ® L of V-semilattices (see [6]) generated by 
elements a ® b such that at least one of elements a, b is 2-sided. 

2.6. Definition. A quantic group L (briefly K-group) is a cogroup in the category 
of idempotent quantales, i.e. a K-group L is equipped with morphisms 

\i:L->L + L (multiplication) 
i:L->L (inversion) 
s :L->2 (unit) 

satisfying 
(H + 1) o n = (1 + /i) o \x, 
(e + 1) o fi = l2+L, 
(1 + e) o ii = lL+2 

and 
Vo( j + l ) o / i = a o 6 = V o ( l T i ) o / i . 

Here V : Z, + L -> L is a codiagonal i.e. V(x (g) y) = JC. >> and a : 2 -+L is 
a unique morphism from the initial quantale 2. 

We define v = (i + 1) o ft and for ueL, e(u) = 1 we put 2?(w) = {* . y; x ® y e 
eL + L, x®y^ v(w)}, aBiu) = \/{z e JS(n); z . a # 0}. 

The next result extends the reasoning of [8] and shows that any K-group is 
a localic group. 

2.7. Theorem. Let L be a K-group. Then L is a regular frame. 
Proof. It first, we will prove 

(*) If u,x,ye L, e(y) = 1 and at least one of the elements x, y is 2-sided then 
x ® y g p.(u) implies xB(y) < u. 

Namely, let p . q e B(y). Then p®p.qSp®q^ v(y) i.e. i(p) ® p .q i n(y). 
Hence x ® i(p) ® p . q ^ x ® fi(y) = (1 + p) o (x ® y) ^ (1 + p) o p(u) = 
= 0*+ l )o n(u)and(x.p)®p.q g (V( l+ i )+- )o (n + l)o [t(u)=(ao e+l)o 
o p(u) = 1 ® u. Therefore x . p # 0 implies p . q ^ u. If p .q . x ^ 0 then 
q . p . x # 0 by [4], i.e. p . x # 0. Hence x . p ^ 0 and we have JCB(y) S u. 

Let a e L. Then /i(<0 = V*} ® oj. Since a ® 1 = (1 + e) o j*(a), it holds 

a = V{a); « « ) = 1}. Hence (afoitrj) S a. We put c = V{* e *(<$); *• *J * 0}. 
Then c . a) = 0, cv a *> cv (a})̂ *";) = 1, i.e. a)< a, a) ^ a and a is a regular 
element. Since every a e L is regular L is a regular frame. 

At the end of this chapter we will characterize regular elements in the quantale 
Lid(A) of all left ideals of a ring A with a unit. Recall (cf. [5]) that a 2-sided ideal 
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is called neat if for all as I there exists an element eel so that a = e. a. Let 
Nid(A) denote the set of all neat ideals. 

2.8. Proposition. Let A be a ring, JeLid(A). Then the following conditions are 
equivalent: 

(i) / is regular. 
(ii) For all ae J there exists an element ee J so that b = e .b for all be <a>, 

where <a> is a left ideal generated by an element a. 
Proof, (i) => (ii) Let a e / , / = V A D g J}. Then a = ax + ... + an for 

some a{ eL i 9 Lt e D i.e. there exist Kt eLid(A) so that Kt. Lt = {0}, Kt v / = A. 
Then for some fc4 e K( and d(e Jit holds A:, + rff = 1 and * 6 <a,> implies kt. x -= 0. 
We put fc = fcx kn. Then for all j e <a> it is fc. y = 0. Further 1 = dt + 
+ k± . {d2 + k2 . [d3 + k3. (...)]} = dl+kl.d2 + ki.k2.d3 + ... + kt  

./:„_!• dn + k i.e. 1 = k + d, de /. Hence y = l.<y = (fc + d).<y = d.<y. 
(ii) => (i) Clearly / = V <«>• We will show that <a> < / for all a e /. We 

ae/ 

consider a left ideal <(1 — e)} such that ee J and JC = e . x for all x e <a>. Then 
<(1 - e)> . <a> = {0}, <(1 - e)> v / = X 

The following result is due to Banaschewski and Harting [1]. 

2.9. Corollary. Let A be a commutative ring, J e Id(A), where Id(A) is the quantale 
of all ideals of A. Then the following conditions are equivalent: 

(i) / is regular. 
(ii) / is neat. 

§ 3. Normal quantales 

Recall that a lattice is compact if 1 is compact. 

3.1. Proposition. Let K be a compact normal quantale. Then every prime element 
in K is contained in a unique dual atom. 

Proof. It follows from 1.5 and from the fact that in a compact complete lattice 
any element is contained in a dual atom. 

Let Kbe a quantale, aeK. We define 

h(a) = V{x £ a;xeRK} 

i.e. A(a) is the greatest regular element lying under a; 

r(a) = V{* -5 a\ x < a}. 

It is trivial to check that h(a) g r(a). The next proposition is due to Banaschewski 
and Harting (see [1]). 

3.2. Proposition. Let K be a normal quantale, ae K. Then r(a) == h(a) and more­
over R2K = RK i.e. Reg(K) = RK. 

207 



J .PASEKA 

Proof. If x ^ a9 x < a then there exists z e K so that JC g z <; <?, x < z < a* 
Hence z ^ r(fl). Clearly JC « r(a)9 x £ a. Then r(d) e RK9 r(a) ^ a i.e. r(a) ^ A(a). 

To prove RK = jR2K we shall need to check that 

a = \/{r(x); x ^ a9 x < a} 

for any a e RK Ifu< a, u ^ a then there exists w e K so that u ^ w ^ a, u < w < a 
i.e. a g r(w). 

Let Kbe a quantale. We say that Kis a q-quantale if K is a q-semilattice. 

3.3. Lemma. Let K be a normal q-quantale. Given two elements a9be K9 then 
av b = 1 implies 

r(a)v b = 1 i.e. h(a)v 6 = 1 . 

Proof. Let a, beK, av b = 1. Then there exist c, de K so that d. c = 0, 
dv a = I = cv b i.e. c < 0, cv 6 = 1. Obviously 1 = c . l v b = c . dv c. av 
v b = c . d. 1 v c.flv b = c . d. cv c . d. bv c .av b = c . av b and c . a £ a9 

c . a < a. Then r(a) v 6 = 1 . 

3.4. Theorem. Let K be a compact q-quantale. Then the following conditions are 
equivalent: 

(i) K is normal. 
(ii) h(a)v h(b) = h(av b) for all a9beK. 
Proof, (i) => (ii) Clearly h(a)v h(b) ^ h(av b). Conversely, let h(x) g h(av b)9 

h(x) < h(av b). Then there exists ee K so that e. h(x) = 0, ev h(av b) = I. 
Hence ev av b = I. Applying 3.3 we become h(e)v h(a)v h(b) = 1. Then 
h(av b) = h(av b) . 1 = W{h(x); h(x) ^ h(av b)9 h(x) < h(av b)} . 1 = V{h(x) . 
. (h(a)v h(b)v h(e))} = h(av b). (h(a)v h(b)) ^ h(a)v h(b). 

(ii) => (i) Conversely, let a9 beK9 av b = 1. Then h(a)v h(b) = 1 i.e. r(tf)v 
v r(b) = 1 and by compactness there exist x9yeK so that 1 = xv y9 x ^ a9 

x < a, y g b9 y < b. Hence there exists e e K so that e . x = 0, e v a = 1 = x v b. 
We recall that a ring A is called Gelfand if for all I, J e Lid(A) it holds (Iv J)c = 

c= Icv Jc; here Ic is the greatest neat ideal contained in I (see [5]). Equivalently, 
a ring A is Gelfand if for any distinct maximal left ideals M9 N of A there exist 
elements a $ M9 b $ N of the ring A for which a . A . b = {0} (see [2]). 

It is well known that Nid(A) is a compact regular frame for a Gelfand ring A 
(see [2]). The following result was proved by Banaschewski and Harting for 
commutative rings. 

3.5. Theorem. Let A be a ring. The following conditions are equivalent: 
(i) Lid(A) is a normal quantale. 

(ii) A is a Gelfand ring. 
Proof, (i) -> (ii) Let M ^ N be maximal left ideals. Then there exist D9 Ce 

eLid(A) so that D. C = {0}, DvM==A[ = C v N i.e. there exist a e D9 beC, 
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me M9 neN such that a . A . b = {0}, a + m = l=b + n i.e. a . A .b = {0}, 
a<£M, &<£N. 

(ii) => (i) Let Jv / = A then Jcv Jc = 4̂ and from the normality of Nid(A) 
there exist K, J, e N/d(A) so that K. J, = {0}, Kv Ic = A = Lv Jc. 

§ 4. Coherent quantales 

Let Id(S) be the quantale of all ideals of an m-semilattice S (I. /being generated 
by {x . y; x e J, y e /}). 

4.1. Definition. A quantale K is called coherent if it is a compact algebraic 
quantale and x. j e c(K) for all x, j e c(K); here c(K) is the set of all compact 
elements of K. 

It is well known (cf. [5], II.3.2) that coherent frames are just frames of ideals 
of a distributive lattice. The following result is due to Keimel (see [7]). 

4.2. Proposition. For a quantale K the following conditions are equivalent: 
(i) K is coherent quantale. 
(ii) K is isomorphic to the quantale of all ideals of an m-semilattice. 

4.3. Proposition. The functor Id : M -> K is left adjoint to the forgetful functor 
Q.K-^M. 

Proof. Let r\:M -> Qld(M) be defined by the prescription rj(a) = \(a). Then r\ 
is a morphism of m-semilattices and the same holds for rj° : Qld(M) -> My 

rj°(J) = V^- Having a morphismf: M -> Q(K)9 thenf. r\° is a unique factorization 
off through r\. 

4.4. Proposition. Let S be an m-semilattice. Then the prime elements of Id(S) are 
precisely the m-prime ideals of S. 

Proof. Analogous to [5], II.3.4. 
The following result is well known for distributive lattices (see [5]). 

4.5. Theorem. Let S be an m-semilattice. Then the following conditions are equi­
valent: 

(i) S is normal. 
(ii) Id(S) is normal. 
Proof, (i) => (ii) Let S be normal, A9BeId(S)9 Av B = S. Then there exist 

xeA9 yeB so that xv y = 1 and from normality it follows that there exist 
c, de 5 such that d. c = 0, dv x = 1 = c v y. Hence [(d) . |(c) = {0}, \(d) v A = 
= S = |(c) v B. 

(ii) => (i) Conversely, let Id(S) be normal, a, be S9av b = 1. Then \(a) v \(b) = 
= S i.e. there exist C, D e Id(S) so that D . C = {0}, Dv |(a) = 5 = Cv j(fe). 
Hence there exist c, de 5 so that d. c = 0, dv a = 1, cv 6 = 1. 
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4.6. Corollary. Let S be a normal m-Semilattke. Then every m»prime ideal in S 
is contained in a unique maximal ideal. 

4.7. Corollary. Let A be a ring. Then the following conditions are equivalent: 
(i) c(Lid(A)) is a normal m-semilattice. 

(ii) A is a Gelfand ring. 
Proof. Follows immediately from 3.5 and 4.5. 

REFERENCES 

11] B.. Banaschewski and R. Har t ing : Уf-rings and locales, communication atthe Category 
Theory Confeгence in Murten (1984). 

[2] F. Borceux, H. Simmons, G. Van den Bossche: A sheaf representйtion for modules 
with application to Gelfand rings, preprint. 

[3] F. Borceaux: About quantales and quantic spaces, Sydney Categогy Seminar Repогts 
1984. 

[4] F. Bоrceux, G. Van dert Bоssche: Quantales and their sheaves, Rapp. Sém. Math. 
Pure Nо. 63, Université Lоцvain (1985). 

[5] P. T. J о h n s t о n e : Stone Spaces, Cambгidge University Pгess, Cambгidge 1982. 
[6] А. Jоyal, M. Tierney: A generalization of the descent theory of Grothendick, Memоiгs 

оftheА. M.S. (1984). 
[7] K. Keime l : A unified theory of minimal prime ideals, Аcta Math. Аcad. Sci. Hung. 23 

(1972), 51-69. 
[8] I. Kříž, А. Pu ltr, J. Rоsický: Localic groups, manuscript (1985). 
[9] C. J. Mulvey: A Generalization of Gelfand duality, J. Аlgebгa 56 (1979), 499-505. 

[ІÔJ M. Ward, R. P. Di lwогth : Residuáted lattices, frans. Аmer. Math. Sоc., 45 (1939), 
335-354. 

J. Paseka 
Department of Mathematics 
Faculty of Science, J. E. Purkyně University, 
Janáčkovo nám. 2a, 662 95 Brno, 
Czechosîovakia 

210 


		webmaster@dml.cz
	2012-05-09T19:31:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




