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REGULAR AND NORMAL QUANTALES

JAN PASEKA
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Abstract. Quantales can be viewed as a framework for a non—commutative topology. Basic
properties of quantales are given. There are considered regular and normal quantales. The main.
result asserts that regular quantales are frames.

Key words. Residuated lattice, multiplicative lattice, quantale, regular quantale, normal quantale,
Gelfand ring.

The idea of considering complete lattices equipped with an additional binary
operation . goes back to Ward and Dilworth [10]. Their motivating examples
were lattices of ring ideals. In 1983, C. J. Mulvey suggested to consider multi-
plicative lattices as a framework for a non-commutative topology and proposed
to call them quantales. His approach was followed by Borceux [3], [4] who found
some basic topological properties of quantales. The present paper contributes to
this direction. The main result is that regular quantales are frames (i.e. the multipli-
cation . coincides with the meet A ; concerning frames see Johnstone [5]). The
consequence is that cogroups in the category of idempotent quantales are localic,
i.e. they are frames. Further results generalize some topological properties of
frames to quantales. As an application, there are considered Gelfand rings (in the
sense of [5]). It is connected with results of B. Banaschewski and R. Harting
communicated in 1984. The author would like to express his thanks to J. Rosicky
for his valuable assistence in this work.

§ 1. m-semilattices

1.1. Definition. An m-semilattice is a v -semilattice S with the top element 1 and
the bottom element 0 equipped with an associative binary operation . so that

x.(Vx) = V(. x)

i=1

(O X).x = gl(xi . X),

i=1
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l.x=x
for all x, x;, ..., X, € S.
A morphism f: S, — S, of m-semilattices is a mapping f such that

(1) fpreserves finite joins,
@ =1,
(3) f(a).f(b) = f(a.b)foreacha,beS,.
The category of m-semilattices will be denoted by .#.

An ideal of an m-semilattice S will be just an ideal of a v -semilattice. An ideal 1
is called m-prime if x . y e I implies xe I or ye I for all x, ye S.

An element a of an m-semilattice S is called
(1) 2-sidedifa.1 £ a,
(2) idempotent if a. a = a.

An m-semilattice is called 2-sided (idempotent) if any its element is 2-sided
(idempotent). An m-semilattice S is called a g-semilattice if a.b = 1 implies
a=1=bforalla,bes.

1.2. Definition. Let S be an m-semilattice, a, b € S. We say that b is well inside a
'if there exists ce Swithc. b =0, cv a = 1. We write b « a ([5] uses the notation
b 2 a).

1.3. Lemma. Let S be an m-semilattice, a, b, c, d € S. Then
(i) a £ b<c = dimplies a«d, '

(ii) @a<b,cad implies a.cv c.a<b.d and u<b.d for all ueS, u =< a,
u=sec

(iii) If S is idempotent or a q-semilattice then a « b, ¢ <« b implies av ¢ < b.

Proof. (i) It is trivial.

(ii) Lete.a=0=f.c,evb=1=fv d Weputz—(b v (e d)v (e.f).
Thenz.u=0,zv (b.d)y=10=z.(a.cv c.a).

(iii) Lete.a=0=f.c,ev b=1=fv b. Wedefinez=e. f. Thenz. (av ¢)=
=0, zvb=(.l)vb=(e.e)v b. If S is idempotent we are ready. If S is
a g-semilattice then ev b = 1 implies (e. 1)v b = 1. Namely, 1 = (ev b).1 =
=(b.1)v(e.1.1)=(e.lv b).1 and from the definition of a g-semilattice
it follows (e. 1)v b= 1.

An element p # 1 of an m-semilattice S is called przme1 ifa.b=<p tmphes
as<porb=pforallabes. ~

1.4. Lemma. Let S be an idempotent m-semilattice or a q-semilattice, p € S a dual
atom. Then p is prime.

Proof.Ifa.b < p,b £ pthenbv p = 1. Thereforea.a < a.1=a.(bv p)=
=a.bv a.p < p. If Sisidempotent we are ready. Let S be a q-semilattice. Then
av p =1 implies a. 1v p = 1 and this is a contradiction.

204



REGULAR AND NORMAL QUANTALES

1.5. Definition. An m-semilattice S is said to be normal if, given a, be S with
avb=1,wecanfindd,ceSwithd.c=0,dva=1=bvec.

The next proposition generalizes the well known result (see [5] 11.3.7) that in
a normal distributive lattice every prime ideal is contained in a unique maximal
ideal.

1.6. Proposition. Let S be an normal m-semilattice. Then every prime element
in S is contained in at most ane dual atom.

Proof. Let pe S be prime, a # b dual atoms, p < a,b. Clearly av b =1,
i.e. there exist c,de Ssothatd.c=0,dva=1=cv b. Thend S por c £ p.
Hence pv a =1 or bv p = 1, which is a contradiction.

The next result generalizes [5] IV.1.6 and it is due to Banaschewski and Harting.
The proof follows [5].

1.7. Proposition. /n a normal m-semilattice S a «b implies that there exists
ce€ S so that a « ¢ «b. If moreover a < b then there exists de S so thata £ d £ b,
aadab.

§ 2. Regularity in quantales

2.1. Definition. A quantale K is a complete m-semilattice in which . distributes
over arbitrary joins.

A morphism f. K — L of quantales is a morphism of m-semilattices which
preserves arbitrary joins. The category of quantales will be denoted by .

2.2. Definition. Let K be a quantale. We say that an element a € K is re gular i
there exists D < I,, where I, = {b€ K; b <« a}, so that a = Y D. Let RK be the
set of all regular elements of K.

2.3. Lemma, Let K be a quantale. Then RK is an idempotent quantale.

Proof. Let ae RK i.e. a= VJ for J < I,. If be J then there exists ce K so
that ¢.b =0, cva=1. Thus b=1.b=(cva).b=a.b and therefore
a=VJ=a.\VJ=a.a.

2.4. Definition. We say that a quantale K is regular if K = RK.

2.5. Theorem. Any regular quantale is a frame.

Proof. From 2.3 we know that KX is an idempotent quantale Letae K, a=VJ,
J < I,.If b e J then there exists ce Kso that ¢c. b = 0, ¢ v a = 1. Following [4],
¢c.b=0impliesb.c =0. Hence b. 1 =b.(avc)=b.aie.a.l = a.a=a.
We proved that K is 2-sided and idempotent. Consequently, K is a frame (see [3])

It is easy to check that RK is a frame if K is an idempotent quantale.

For a quantale K put R%K) = K, R**1(K) = R(R’(K)) for any ordinal a,
RY(K) = N R(K) for any limit ordinal ¢ and Reg(K)= ﬁ R*(K). Reg(K) is

y<a acO,
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a regular quantale (i.e. a regular frame) and Reg is the coreflection functor of
quantales into regular frames.. ‘

Borceux (see [4]) proved that the category of idempotent quantales has arbitrary
sums. If K, L are idempotent quantales then their sum K + L is the V-sub-
semilattice of the tensor product K ® L of V-semilattices (see [6]) generated by
elements a ® b such that at least one of elements a, b is 2-sided.

2.6. Definition. A quantic group L (briefly K-group) is a cogroup in the category
of idempotent quantales, i.e. a K-group L is equipped with morphisms

pu: L — L+ L (multiplication)
1: L — L (inversion)
: ¢ : L — 2 (unit)
satisfying

w+NDopu=~A+poup
e+ 1Dop=1zy,
I+eopu=1.4,

and

Vo@+Dopu=0co0e=Vo(l+1)opu

Here V:L 4+ L —L is a codiagonal ie. V(x ® y) =x.y and 6:2—>L is
a unique morphism from the initial quantale 2.

We definev=(+ 1) ouandforueL,eu) =1l weput Bu) ={x.y; x®@ye
eL+ L, x®y = v}, ag,, = V{ze B(u); z.a # 0}.

The next result extends the reasoning of [8] and shows that any K-group is
a localic group.

2.7. Theorem. Let L be a K-group. Then L is a regular frame.

Proof. It first, we will prove
(*) If u,x,yeL, (y) =1 and at least one of the elements x, y is 2-sided then
x ® y £ u(u) implies xp,, < u.

Namely, let p. g€ B(y). Thenp® p. g < p® g = v(»)ie. (p) ® p. 9 £ u(y).
Hence x@ () ®pP. a2 xQ@uy) =1 +mox®y) = (1 + pouw)=
=@+Dopwand(x.p)®p.g = (VUl+)+ Do+ Douuw=(coet+1)o
ouw) =1®@ u. Therefore x.p # 0 implies p.gqSu. If p.q.x # 0 then
g.p.x #0by[4],ie. p.x # 0. Hence x.p # 0 and we have xp,) < u.

Let aeL. Then u(a) = Va;® a}. Since a ® 1 = (1 + ¢) o pu(a), it holds

J
a = V{aj}; e(a}) = 1}. Hence (@)pu;) < a. We put ¢ = V{ze B(@)); z.a; = 0}.
Then c.aj=0, cv a 2 cv (@)p,j = 1, i.e. aj<a, aj < a and a is a regular
element. Since every a € L is regular L is a regular frame.
At the end of this chapter we will characterize regular elements in the quantale
Lid(A) of all left.ideals of a ring A with a unit. Recall (cf. [5]) that a 2-sided ideal
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is called neat if for all a € I there exists an clement ee ] so that a = e.a. Let
Nid(A) denote the set of all neat ideals.

2.8. Proposition. Let A be a ring, J e Lid(A). Then the following conditions are
equivalent:

(i) J is regular.

(ii) For all ae J there exists an element e J so that b = e . b for all b e {a),
where {a) is a left ideal generated by an element a.

Proof. (i) = (ii) Let aeJ, J=VD,D< I,. Then a=a; + ... + a, for
some a;€ L;, L; e D i.e. there exist K, € Lid(A4) so that X;. L, = {0}, K;,v J = A.
Then for some k; € K;and d; € Jitholds k; + d; = 1 and x € {a;) implies k, . x=0.
We put k =k, .....k,. Then for all ye<a) it is k.y = 0. Further 1 =d, +
+ky {dy+ky. [dy+ ks . ()]} =dy + Ky dy+ kg kydy kg
.ky_y.d,+kie.l=k+d deJ Hencey=1.y=(k+d).y=d.y.

(ii) = (i) Clearly J = V <a). We will show that {a) «J for all aeJ. We

aeJ

consider a left ideal {(1 — €)) such that ee J and x = e. x for all x € {(a). Then

(A =e).<a)={0}, (1 —e)dv J=A.
The following result is due to Banaschewski and Harting [1].

2.9. Corollary. Let A be a commutative ring, J € Id(A), where Id(A) is the quantale
of all ideals of A. Then the following conditions are equivalent:

(1) Jis regular.

(ii) J is neat.

§ 3. Normal quantales

Recall that a lattice is compact if 1 is compact.

3.1. Proposition. Let K be a compact normal quantale. Then every prime element
in K is contained in a unique dual atom.

Proof. It follows from 1.5 and from the fact that in a compact complete lattice
any element is contained in a dual atom.

Let K be a quantale, a € K. We define

h(@) = V{x = a; xe RK}
i.e. h(a) is the greatest regular element lying under a;
r(@) = V{x S a;x<a}.

It is trivial to check that #(a) < r(a). The next proposition is due to Banaschewski
and Harting (see [1]).

3.2. Proposition. Let K be a normal quantale, a € K. Then r(a) = h(a) and more-
over R’K = RK i.e. Reg(K) = RK.
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Proof. If x < a, x < a then there exists ze K so that x £z < a, x<zaa-
Hence z £ r(a). Clearly x <« r(a), x £ a. Then r(a) e RK, r(a) £ ai.e. r(@) £ h(a).
To prove RK = R2K we shall need to check that

a=V{r(x); x £ a, x <a}

foranyae RK. If u <« a, u < athen there exists we Ksothatu S w £ a,uawa<a
ie. u £ r(w).
Let K be a quantale. We say that K is a q-quantale if K is a q-semilattice.

3.3. Lemma. Let K be a normal g-quantale. Given two elements a, b € K, then
av b =1 implies
' r(@v b=1 ie. h(@v b=1.

Proof. Let a,be K, av b= 1. Then there exist ¢,de K so that d.c =0,
dva=1=cvbie cea, cvb=1 Obviously l =c.lvb=c.dvc.av
vb=c.d.lvc.avb=c.d.cvc.d.bvc.avb=c.avbandc.a £ a,
c.a<a. Then r(a)v b= 1. '

3.4. Theorem. Let K be a compact q-quantale. Then the following conditions are
equivalent:

(1) K is normal.

@ii) h(a)v h(b) = h(av b)  forall a,be K.

Proof. (i) = (ii) Clearly h(a)v h(b) < h(av b). Conversely, let A(x) < h(av b),
h(x) « h(av b). Then there exists e€ K so that e.h(x) =0, ev h(av b) = 1.
Hence ev av b = 1. Applying 3.3 we become h(e)v h(a)v h(b) = 1. Then
h(av b) = h(av b).1 = V{h(x); h(x) £ h(av b), h(x) <h(av b)}.1 = V{h(x).
.(h(a@)v h(b)v h(e))} = h(av b).(h(@)Vv h(b)) < h(a)v h(b).

(i) = (i) Conversely, let a,be K, av b = 1. Then h(a)v h(b) =1 ie. r(@v
v r(b) =1 -and by compactness there exist x, ye K so that 1 =xv y, x < q,
x<a,y < b, y<b. Hence there exists ee Ksothate.x =0,eva=1=xv b.

‘We recall that a ring A is called Gelfand if for all I, J € Lid(4) it holds (Iv J)* =
== I°v J¢; here I° is the greatest neat ideal contained in I (see [5]). Equivalently,
a ring A4 is Gelfand if for any distinct maximal left ideals M, N of A4 there exist
elements a¢ M, b ¢ N of the ring A for which a. 4. b = {0} (see [2]).

It is well known that Nid(4) is a compact regular frame for a Gelfand ring 4
(see [2]). The following result was proved by Banaschewski and Harting for
commutative rings.

.-3.5. Theorem. Let A be a ring. The following conditions are equivalent:
(i) Lid(A) is a normal quantale.
(ii) A is a Gelfand ring. '
- Proof. (i) = (ii) Let M # N be maximal left ideals. Then there exist D, Ce
€ Lid(A) so that D.C = {0}, Dv M = 4 = Cv N i.e. there exist ae D, be C,
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me M, neN such that a. 4. b = {0}, a+m—l—b+n1e a.A. b—-{O}
a¢ M, bé¢ N.

(i) = (i) Let Iv J = A then I°v J°= A and from the normahty of Nid(A)
there exist K, L € Nid(A) so that K. L = {0}, Kv I°=A = Lv J*.

§ 4. Coherent quantales

Let Id(S) be the quantale of all ideals of an m-semilattice S (Z. J being generated
by {x.y; xel,yeJ}).

4.1. Definition. A quantale K is called coherent if it is a compact algebraic
quantale and x.ye ¢(K) for all x,ye «(K); here ¢(K) is the set of all compact
elements of K. :

It is well known (cf. [5], 11.3.2) that coherent frames are just frames of ideals
of a distributive lattice. The following result is due to Keimel (see [7]).

4.2. Proposition. For a quantale K the following conditions are equivalent:
(i) K is coherent quantale.
_(ii) K is isomorphic to the quantale of all ideals of an m-semilattice.

4.3. Proposition. The functor Id : M — K is left adjoint to the forgetful functor
Q:K—~ M.

Proof. Let n : M — QId(M) be defined by the prescription n(a) = |(a). Then 7
is a morphism of m-semilattices and the same holds for #°: QId(M) — M,
7°(J) = VJ. Having a morphism f: M — Q(K), then f. n° is a unique factorization
of f through #.

4.4. Proposition. Let S be an m-semilattice. Then the prime elements of 1d(S) are
precisely the m-prime ideals of S.

Proof. Analogous to [5], I1.3.4.

The following result is well known for distributive lattices (see [5]).

4.5. Theorem. Let S be an m-semilattice. Then the following conditions are equi-
valent:

(i) S is normal.

(ii) 1d(S) is normal.

Proof. (i) = (ii) Let S be normal, 4, Be Id(S), Av B = S. Then there exist
x€ A, yeB so that xv y =1 and from normality it follows that there exist
c,de Ssuchthatd.c =0,dv x =1 = cv y. Hence [(d) . |(c) = {0}, |(d)v 4 =
=8= (v B :

(ii) = (i) Conversely, let Id(S) be normal, a, b€ S,av b = 1. Then |(a)v {(b)=
= S i.e. there exist C, D € Id(S) so that D.C = {0}, Dv [(a) = S = Cv [(b).
Hence there exist c,de Ssothatd.c =0,dva=1,cvb=1. _

209



J. PASEKA

4.6. Corollary. Let S be a normal m-semilattice. Then every m-prime ideal in S
is contained in a unique maximal ideal.

4.7. Corollary. Let A be a ring. Then the following conditions are equivalent:
(i) c(Lid(A)) is a normal m-semilattice.

(ii) A is a Gelfand ring.

Proof. Follows immediately from 3.5 and 4.5.

REFERENCES

{1] B.. Banaschewski and R. Harting: V-rings and locales, communication at the Category
Theory Conference in Murten (1984).

[2] F. Borceux, H. Simmons, G. Yan den Bossche: 4 sheaf representation for modules
with application to Gelfand rings, preprint. .

[3] F. Borceaux: About quantales and quantic spaces, Sydney Category Seéminar Reports
1984.

[4] F. Borceux, G. Van den Bossche: Quantales and their sheaves, Rapp. Sém. Math.
Pure No. 63, Université Louvain (1985).

[5] P. T. Johnstone: Stone Spaces, Cambridge University Press, Cambridge 1982.

[6] A. Joyal, M. Tierney: A generalization of the descent theory of Grothendick, Memoirs
of the A. M. S. (1984).

[7) K. Keimel: A unified theory of minimal prime ideals, Acta Math. Acad. Sci. Hung. 23
(1972), 51 -69.

8] I. KtiZ, A. Pultr, J. Rosicky: Localic groups, manuscript (1985).

[9] C. J. Mulvey: A Generalization of Gelfand duality, J. Algebra 56 (1979), 499 — 505.

{10) M. Ward, R. P. Dilworth: Residudted lattices, Trans. Amer. Math. Soc., 45 (1939),

335-1354.

J. Paseka

Department of Mathematics

Faculty of Science, J. E. Purkyné University,
Jandékovo ndm. 2a, 662 95 Brno,
Czechoslovakia

210



		webmaster@dml.cz
	2012-05-09T19:31:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




