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ON s-SKEW ELEMENTS IN POLYADIC GROUPS 

JACEK MICHALSKI, Wroclaw 
(Received October 15, 1981) 

1. This note is a supplement to [2]. We introduce the notion of an s-skew 
element in a polyadic group (i.e. an w-group for some n) which is a generalization 
of that of a skew element from [1]. A 1-skew element (s = 1) is simply a skew 
element. That notion enables a simplification of notation and clears up to some 
extent the structure of creating (k -F l)-groups of a given (n + 1) group (see [2]). 

We use the same notation as in [2] and we assume also n = sk. 
2. Post in [3] stated a necessary and sufficient condition for an (n + l)-group 

to be derived from a (k + l)-group. That condition was expressed in terms of 
polyads. To put those terms into the language used in [2] suggests the following. 

Definition. Let d and c be elements of an (n + l)-group (5 = (G,f). The element 
d is called an s-skew element to the element c if the following conditions are 
fulfilled: 

s (k - 1) s 
(1) f(d9 c , x) = x for each x e G; 

k - 1 
(2) f(*i - •••» xi9 d9 c , x i + 1 , ..., xn+j _k) = 

k - 1 Jfc - 1 
= / (*! , . . . ,X|, c ,'rf,x,+1, ..^*B+i-*)=/(d, c 9xt...9xn+1^k) 

for each xlf ..., xH+i-k e G and arbitrary i = 1, ..., n + 1 — fc. 
The formerly mentioned condition of Post was given in a modified form (adopted 

to the given in [2] construction of a free covering group) in [2] as Theorem 5. 
Using the notion of an s-skew element this condition can be reformulated as 
follows: 

Proposition 1. An (n + l)-group © = (G9f) is derived from a (k + l)-group 
if and only if for some element ceG there exists an element de G which is s-skew 
to c in the (n + l)-group ®. In that case the (k + l)-ary operation g in the (k -f 1)-
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group ©(s-i) =• (G,g) can be given by the formula g(xl9 ..., xk+l) = 
s - 1 (A: - 1) (s - 1) 

= / ( * i - • ••»**+i» <f » c ) 
Examining the proof of Theorem 5 from [2] we get a little more, namely 

Corollary 1. If an (n + l)-group © = (G9f) is derived from a (A: + l)-group 
©(»--) = (G, g)9 then for every element c e G there exists an s-skew element to c 
in the (n + l)-group ©. 

Corollary 2. If an (n + l)-group © = (G9f) is derived from a (k + l)-group 
©(s-t) a (G9g)9 then the following conditions are equivalent: 

(a) the element de G is skew to the element c e G in ©(s-i); 
(b) the element de G is s-skew to the element ce G in © and g(xl5 . . . , ^ + i ) = 

s - 1 (it - 1) (s - 1) 
== / C * i - • • • > **+1 * ^ > c ) 

From this corollary we infer that if we know the skew element to some element 
from ®(4~i) = (G,g), then the (k + l)-ary operation g is already uniquely de­
termined. There exists a one-to-one correspondence between the set of the creating 
(k + l)-groups of the (n + l)-group © and the set of all s-skew elements to any 
element from the (n + l)-group © (see [3], p. 232). 

3. From Proposition 1 and the Corollaries resulting from it one can obtain some 
statements concerning homomorphisms and sub-(k + l)-groups of creating 
(k + l)-groups. 

Corollary 3. Let (n + l)-groups 21 = (A,f) and 93 = (B,f) be derived from 
(k +J)-groups 2t(s-1} = (A,g) and 93(s-1} = (B,g). If A : 21 -+ 93 and h(c(9)) = 
= h(c)i9) for some ce A, then A : 2t(s-i) -+ 93(s-i)-

Proof. Using Corollary 2 the element d = c(9) is s-skew to c in the (n + l)-group 
s - 1 (k - 1) (s - 1) 

21. Hence h(g(xl9 -..,xk+1)) = h(f(xl9 ...,x&+1, d c )) = 
s - 1 (k - 1) (s - 1) 

= /(M*i)> ..., *(** + i), h(d), h(c) ) = g(h(xj, ..., A(*fc+1)). D 

Proposition 2. Let (« + l)-groups 21 = (A,f) and S = (B,f) be derived from 
(k + l)-groups 2l(s-1} = (A,g)9 93(s-1} = (£,g) and A : « ( --1} -» 93(s-l}. If X> = 
= (D,f) is an (w + l)-group, A = A2At where ht : 21 -» D, A2 : D -> 9J and A2 is 
a monomorphism, then D is derived from a unique (k + l)-group £(s-i) =- (D, g> 
such that ht : 2l(,-1) -+ D(s-1)? A2 : D(s-i} -> «<,-,,. 

Proof. Take an element ct e .4 and an element dt e A to be skew to ct in the 
(fc + l)-group 21^-1). The element dt is s-skew to c% in the (n + l)-group 21. 
Let c =- A^Ci) and rf = h^d^. We show that the element rf is s-skew to c in D. 
Using the assumption h(ct) is s-skew to h(dx) in the (« + l)-group 93 (since 
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s (k - 1) s s (k ~ 1) s 
h : «(,--) -> ®(s-i)), whence we get h2(f(d, c , x) *» f(h2(d), h2(c) , h2(x)) = 

s (k - \)s s (k - l)s 
= / ( M M ) , A2A1(c1), A2(x)) = /(A(dO, A(cA), A2(x)) « A2(x). But the homo-

s (k- l)s 
morphism A2 is a monomorphism, whence/(d, c , x) = x. This equality shows 
that the elements d and c fulfil condition (1) of Definition. Similarly one can prove 
that the elements d and c fulfil condition (2). Thus, in view of Proposition 1 and 
Corollary 2, the (n + l)-group £> is derived from such a (k + l)-group D ( S l ) = 
= (D, g) that the element hx(d{) = d is skew to hx(c{) = c in £ ( s-i). From Co­
rollary 3 we infer that ht : 2l(,-i) -• £(S-i). Since A : 2I(s-i) -+ 23(s-i) and di is 
skew to ct in 2l(s-i), the element A2(d) = h(dx) is skew to A2(c) = h(cx). Hence, 
by Corollary 3, A2: $(s-i) -» 93^-1). The operation g in the (k + l)-group -D(s-i} 

is given by the formula g{x1, ..., xn+1) = h^x(g(h2(x1), ..., A2(xfc+1)). 

Proposition 3. Let 5 be a sub-(« + l)-group of an (/a + l)-group 21 = (A,f) 
derived from a (k + l)-group 2l(s-i} = (4,g). If for some element ceB the 
element d which is skew to c in the (k + l)-group 2l(s-X) belongs also to B, then B 
is a sub-(fc + l)-group of 2t(s-i). 

Proof. Assume that the element de B is skew to some element ce Bin 2I(s-i}. 
It follows from Corollary 2 that d is s-skew to c in the (n + l)-group 21 and the 
(k + l)-ary operation g in 2l(s-i) is described as in Corollary 2. Simultaneously, 
the element d is s-skew to c in the (n + l)-group S = (2?,/). Hence, in view of 
Proposition 1, the (n + l)-group 95 is derived from the (k + l)-group 23(s-i) = 
= (B, g) where the operation g is given by the same formula as the corresponding 
operation g in 2l(s-i). Then 23(s-i) is a sub-(fc + l)-group of the (A: + l)-group 
2l(s-i). q 

With the aid of Corollary 3, Lemma 2 from [2] can be given a slightly stronger 
form: 

Corollary 4. If 21 is an (n + l)-group derived from a (k + l)-group 2I(s-i) 
and A: 21 -• 23 is an epimorphism onto an (n + l)-group 23, then 23 is also derived 
from a certain (k + l)-group 93(s-i) such that A: 2l(s-i} -• -B(s-i}. 

Finally, Corollary 4 can be used to modify Proposition 2 from [2]. 

Proposition 4. An (n + l)-group © is derived from a (k + l)-group ©(s-i) 
if and only if there exists ^n epimorphism #<-.: ©£* -+ © such that QGXG = idc 

(where <©*s, TG> is the free covering (k + l)-group of ©). Moreover, the 
(fc 4- l)-group ©(s-i) can be chosen in such a way, that QG: ©** -• ®(s-i). 
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