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NOTE ON COMPATIBLE BINARY RELATIONS 
ON ALGEBRAS 

JAN CHVALINA, Brno 

(Received December 5, 1980) 

By the compatibility of a binary relation with an algebraic structure, is usually 
ment a generalization of the characteristic property of a congruence on an algebra, 
i.e. a relation should be a subalgebra of the direct square of the given algebra (see 
e.g. [2], [3] and other papers cited in the mentioned papers). This type of compatibility 
is called the Substitution Property, further briefly (SP) (in the agreement with e.g. [4]). 
Some of relation compatibility types on topological structures are transferable 
(using the notion of the algebraic closure space) to general algebras and special alge­
braic structures. The present note contains a certain comparison of some relation 
compatibility concepts on algebras in general, without the assumption of further 
special properties of relations. 

The algebraic closure space on the algebra (A, F) (in the sense of [6]) will be 
denoted by {A, CF). A mapping/: A ~> A is called a closure endomorphism of an 
algebra (A, F) if it is an endomorphism of the closure space (A, CF), i.e. for every 
subset X a Ait holds/(CFX) = CFf(X); cf. [1]. The semigroup of all endomorphisms 
of (A, F) will be denoted by End (A, F) and similarly End (A, CF) stands for the 
semigroup of all endomorphisms of (A, CF). In the agreement with the terminology 
of multivalued mappings between topological spaces (see e.g. [9]) we say that 
a relation R c A xA is upper semicontinuous in the closure space {A, CF) if for every 
CF-closed subset I c A the set R~1(X) is also CF~closed and the relation R is said 
to be image closed if R(X) is CF-closed for every CF-elosed subset X c A. (For 
Re AxA, Xc A we write as usually R(X) = { 6 ; 3 a e l , <a, 6> € R}, R~\X) = 
= {a :3beX, (a, b> e R}. A relation R cz A x A is said to be domain full if R~ l(A) = 
= A. Any mapping/is identified with its graph, i .e. / = {<#, by :f(a) = b}. The set 
of all positive integers is denoted by N. 

With respect to [6] § 8 Lemma 7 and § 9 Lemma 3 (ii) we get: 

Proposition 1. Let (A9F) be an algebra. A binary relation R on A with (SP) is 
upper semicontinuous and image closed in the algebraic closure space (A, CF). 
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The proof is straightforward and hence omitted. 

Remark 1. The opposite assertion to the above one does not hold in general, as 
it follows from this simple example: Put A = [a, b, c). Let {A, V) be an upper 
semilattice, where aV b = ac = bv c = c and R = {<tf, a>, <6, &>, <c, a}9 <fe, c>}. 
Then the relation R is upper semicontinuous and image closed in the corresponding 
closure space but it does not possess (SP) for <c, c> £ R. 

Professor Gerhard Grimeisen has introduced in [7] the notion of the continuity 
of relations between topological spaces analogical to the relational form of the 
axiom of choice. The introduced concept of the relation continuity, useful e.g. 
in the theory of general continuous systems, requires the existence of the covering 
of a relation by graphs of continuous mappings with the same domain (identical 
with the domain of the considered relation). This notion is evidently transferable 
to every concrete category. 

Definition. A binary relation R on an algebra (A, F) or a closure space (A, C) 
respectively is said to be homomorphic in the sense of Grimeisen, briefly G-homo­
morphic, if for every pair of elements a, be A with <a, b} e R there exists q> e End{A,F) 
or <[> e End (A, C) respectively such that <p c R and cp(a) — b. 

Remark 2. It is evident that a binary relation R on {A, F) (similarly for a closure 
space) is G-homomorphic iff there exists a set $ c End {A, F) such that R = (J q>. 

<pe<P 

Definition. A binary relation R on an algebra (A, F) is said to be G-closure homo­
morphic if for every pair of elements a9beA with <#, 6> e JR there exists cp e 
e End (A, CF) such that cp c R and cp(a) = b, i.e. if it is G-homomorphic on (A, CF). 

Evidently G-homomorphic and G-closure homomorphic relations are domain 
full. In what follows all considered relations are domain full. In the agreement with 
the notion of the Substitution Property we shall also use terms: the G-homo-
morphness and the G-closure homomorphness. 

Proposition 2. Every G-homomorphic relation on any algebra is G-closure homo­
morphic. 

Proof. Let R be a G-homomorphic relation on an algebra (A, F), i.e. R = \J cp, 

where <P ci End (A, F). The assertion follows from the inclusion End(,4,F)cz 
c End (Ay CF) which can be easily verified: Consider cp e End (A, F) and X c A, 
J f ^ 0 . Let a G (p(CFX) be an arbitrary element. There exist an integer n e N u {0}, 
an w-ary polynomial p over (A, F) and an w-tupple <x0, ..., *„_!>€ Xn with a = 
as (p(p(x0, . . . ,*„-i))- Suppose f is an fly-ary operational symbol and p 0 , ..., P^ - i 
H-ary polynomial symbols with p = f(p0,Pi, ..-,P»v-i). From p(/>/*0, . . . ,x r t-1)) = -
= Pj(<p(Xol • • • > <P(*n-1)). w h e r e J e (°> l • * • • > nv - i} t h e r e Allows a = 
= <p(p(X0> •••> *»- l ) = f(<P(Po(X0> - ' *n-l)X •••> <p(pny-l(x0fl . . . , X„-i))) = 
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= P(p(x0),..., (p(xH- j)) e CF<p(X). Since X <= CFX, thus <p(*) c <p(CFX) and 
C>(JO c CF<p(CFX) = (p(Cf.X)9 we have </?(CFJT) = CFcp{X), i.e. <p € End (A, CF). 

» Remark 3. The G-closure homomorphness implies neither (SP) nor the G-homo­
morphness, (SP) implies neither the G-homomorphness nor the G-closure homo­
morphness and the G-homomorphness does not imply (SP) in general. Indeed, let 
us consider a 1-unary algebra ( N , / ) , where f(n) = n -f 1 for each « e N . Define 
mappings <p, ij/ of the set N into itself by putting (p(l) = 1, cp(n) = n — 1 for n ^ 2, 
\j/(l) = \l/(2) = 1 and \l/(n) = n - 2 for n ^ 3. Put R = <p u ^. Then # is evidently 
a G-homomorphic relation on (N, C7), where CfX = (J /^A") for every subset 

Ogfc<a> 

X c N, i.e. R is G-closure homomorphic on ( N ? / ) . It holds <1, 1> e R but 
< / 0 ) , / 0 ) > = <2, 2}$R, thus 7? does not possess (SP). Since for any mapping 
g : N -+ N with the property g c: R there is g(i) = g(2) = 1, consequently g £ 
£ End (N , / ) , the relation i? is not G-homomorphic. 

For the proof of the second assertion put G = {a, b, c} and denote by © 
a commutative groupoid (a semigroup in fact) (G, o), where the binary operation o 
is given by this rule: For x, y e G we put xoy = bitTx = y = a and x o y = c 
otherwise. Let P be a reflexive relation on G such that {b^a} eP and <c, 6> 6 P. 
Then P has (SP) with respect to ©, but any mapping cp a P with <p(fe) = a is not 
an endomorphism of © for (p{a) = a, cp(a o a) — a ^ b — cp(a) o <p(a). Further 
(denoting by C the corresponding algebraic closure operation on ©) we have C{a) = G, 
C{6} = [fr, c}, C{c} = {c}, hence the considered mapping cp is not a closure homo-
morphism of the space (G, C), as well. 

Finally, consider the additive semigroup of positive integers (N, + ) and a reflexive 

relation R = Urn, n} : m, n e N, — e { l , 2 , 3 } l . Denoting by (p! the identity 

mapping idN and by cpk : N -• N, A: = 2, 3 mappings defined by <?*(>/) — k . n for 
3 

/c = 2, 3 and each « e N , we have R = [j <pk and simultaneously (pk, k = 1, 2, 3 

are endomorphisms of (N, + ), thus 7? is G-homomorphic. On the other hand, 
< 1 , 2 > 6 J R , <l,3>ejR but <2, 5> $ R. It is to be noted that the finiteness of © 
in the first part of the above proof is not essential for the given counterexample. 
It can be replaced by the groupoid ©x = (Gi9 o) defined as follows: Let (Gl9 S) 
be a chain of the type a>* with the greatest element s and for a,beGx we put a o b = 
= min {x : max {a,b} < x} if a ^ s ^ b and a o b = s in the opposite case. 
Further, (a, by e R if a = b or a is a. predecessor of the element b. 

If we restrict ourselves to unary algebras (with arbitrary many unary operations) 
we get: 

Proposition 3. Every G-homomorphic relation on a unary algebra has (SP). 
Proof. Let R be a G-homomorphic relation on a unary algebra (A,F). For 
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a, be A such that (a,b)eR there exists cp c R, (peEnd(A,F) with <p(a) = b. 
Then for any operat ion/e F we have q>(f(a)) = f(q>(a)) = /(ft), i-e- </(#)>/(£)> 6 ^ 
for each / e F . 

Remark 4. The opposite assertion is not valid as it follows from this example 
of a 1-unary algebra 04, / ) , where A = {a, ft, c},/(#) = ft, f(b) = f(c) = c and R = 
= {<a, A>, <ft, ft>, <c, c>, <ft, a>, <c, ft>}. 

In Remark 3 it has been shown that the G-closure homomorphness does not 
imply the Substitution Property even in the case of 1-unary algebras. Now, we are 
going to prove that the implication G-closure homomorphness => (SP) enforces 
very simple form of the corresponding 1-unary algebra. Using Theorems 3.2 and 4.1 
from [5], we get the below stated results. 

The notions, the component of a 1-unary algebra, the one-way infinite chain, 
the two-way infinite chain are taken from [10]; see also [5]. If 04,,/,) is a component 
of 04, / ) , we put as usually A® = {xe A :f~l(x) = 0}, A?1 is the set of all elements 
x e A{ with this property: There exists an infinite sequence {an}0<n<oy<^ At such 
that an ^ am whenever n ^ m,f(an+ {) = f(an) and a0 — x. Finally, by A™1 we denote 
the cycle (called also a core — cf. [8], section 3.1) of the component 04,,/,). An 
algebra 04, /) is called involutory if/2 = idA. 

Theorem 1. Let 04, / ) be a 1-unary algebra, {(Al9f) ; i e /} the system of all its-
components. The following conditions are equivalent: 

1° i e / implies 04,,/ ,) is either idempotent or involutory. 
2° Every G-closure homomorphic relation on 04, / ) has (SP). 
Proof. 1°=>2°: Let R be a G-closure homomorphic relation on a 1-unary 

algebra 0 4 , / ) which satisfies the condition 1°. Suppose a, be A, {a, ft> e R. There 
exists # e End 04, Cf) with g c R9 g(a) = ft. Since {g(a),gf(a)} = g(Cf{a}) = 
= Cf{g(a)} = {g(a)9fg(a)}9 we have gf(a) = fg(a) = /(ft), thus </(a),/(ft)> e R. 

2° => 1°: We have End (A, Cf) c End 04, / ) . Admit there exists i e I such that 
04,,/,) has at least three-element cycle A™2. Let aeA™2 be an arbitrary element. 
Define a mapping g : A -> A by: g(a) = / (a) , g(f(a)) = a and g(x) = x for each 
x e 4̂ \ (a,/(a)}. Then evidently g e End (A, Cf) but g e End 04 , / ) . Consequently 
card^®2 g 2 for every * e / . Suppose Ax \A?2 ^ 0 and simultaneously A™2 = 
= {a, ft} for some * e I. Using the mapping g defined above, i.e. g(a) = ft, g(ft) = a 
and g(x) = x for xe A\{a, ft}, we get a contradiction again. Thus card A™2 = 2 
implies A™2 = ^4,. Now we are going to verify that A™2 ^ 0 for each i e L Consider 
the congruence £, on components 04,,/,) with card A,°°2 ^ 1 defined in this way: 
<*> y} e £» for JC, y e At if from the equality /"(*) = /TOO w ^ h the least m,neN u 
u {0} there follows n = m. Now admit there is x e / with ^^ x = 0. Let a 6 4̂X \ A° 
be an arbitrary element. Define a selfmap <pa of A as follows: For each xe Ax\ 
\ U Qx(f\a)) w e P u t <P«(*) = /(*) a n d ftW = * f o r e v e r y element x e (J Ax u 

» # x 
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u U <?*(/*(*))• Then for every xeA we have <pa(Cf{x}) = {>«/*(*): £ = 

= 0 ,1 , 2,...} = {/^.(x): fc * 0 ,1 , 2,...} = Cf{<pa(x)} thus <p,e End 04, Cf). But 
for Z> e Ax such that /(6) = a there holds <pa(f(b)) = (p«(a) = a 7*/0) « f(<t>a(b% 
hence 4>fl £ End 04 , / ) , which is a contradiction. It remains to show that tel, 
ft ^ idXi implies/,2 = / . Admit, similarly as above, that for some x e / the compon­
ent (Ax, fx) contains different elements a, b, c such tha t /^6) = a,fH(a) = /„(c) = c. 
Considering the above defined mapping q>a; A -+ ,4, we get a contradiction again. 
Therefore for an arbitrary component (Anf) e i ther/ 2 = / o r / 2 = idA(. 

Theorem 2. L*tf 04, /) be a 1-unary algebra, {(A„fg); i e /} the system of all its 
components, I0 = {iel; card A, > 1, F = {/2»/3}. Suppose that there is satisfied 
exactly one of these conditions: 

1° IE I implies either f2 = / or f2 = id^, 
2° i e / 0 implies A t = ^f1, 
3° i e / 0 implies At = ,4J01 n y44° w/iere (i44

ool,/i) is a two-way infinite chain and 
A* * 0, 

4° i e l0 implies either (Anft) is a two-way infinite chain or At = Btn D% where 
(£>,,/, | jDf) is a one-way infinite chain with the first element d, Bt = A°t andf(x) = d 
for each x e Bt. 

7%en euery G-closure homomorphic relation on the 2-unary algebra (A, F) has (SP) 
with respect to (A9f) and (A, F). 

Proof. Let a, be A be a pair of elements with the property <a, b}eR. There 
exists an endomorphism g of (A, CF) such that g(a) = b and <x, g(*)> € R for every 
x e A. Since for each ae A it holds CF{a} = {/*(a): fc = 0, 2, 3,...} and CFX= 
= (J CF{JC} for 0 # X c A9 we have by Theorems 3.2,4.1 from [5] ge End 04 , / ) , 

thus g(/(a)) = /(^(a)) = f(b). Hence <fk(a),fk(b)) e * for * « 1, 2, 3, q.e.d. 
From the above theorem we can obtain some corollaries as e.g. the following 

one: 

Corollary. Let 51 = (A, {/i,/2}) be a 2-unary algebra such that fu f2 are permut­
ations of the set A and 

1 ° fty T* hfkfor each n e N, any constant selfmap h of A and k = 1,2, 

2 ° / l / 2 = / 2 / l , 
3 ° / i 3 = / 2

2 . 
Then every G-closure homomorphic relation on the algebra 91 has (SF). 

Proof. Let aeA be an arbitrary element. There exists be A with fx(b) = a. 
Put g(a) =f2(b)< Evidently g is a selfmap of the set A. For each xe A there exists 
ye A such that/jOy) = x and there exists z 6 A such that / x (z) = /20>). Then g2(x) = 
= g(g(*)) = *(/200) = /2(*) and /?(*) - f\(y) - / 2 ( j ) = / , / ^ z ) - / / a ( r ) -
===/i(£2(*))> i - e - / i -fig2- Since the mapp ing^ is one-to-one, we have/A = g2. 
Further, g\x) = g2g(x) ~ fxf2(y) = / 2 / i O ) = A W , i.e. / 2 = g3. Consequently 
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every component (Angt) of the 1-unary algebra (A,g) is a two-way infinite chain 
and the assertion follows from Theorem 2. 

Remark 5. It is to be noted that every congruence on arbitrary algebra is by 
Proposition 1 upper semicontinuous and image closed and every G-homomor-
phic congruence is G-closure homomorphic by Proposition 2. But quite trivial 
examples show that algebras with G-homomorphic congruences have very simple 
forms. Put e.g. A = {a, b9 c, d, *}, f(a) = b, f(b) = f(c) = f(d) = d, f(e) = e. Then 
the congruence on (A,f) given by the decomposition of (A,f) into components is 
not G-homomorphic. 

In this connection there arises a lot of questions concerning e.g. characterizations 
of algebras and relations for which the above mentioned compatibility types are 
comparable, questions of the description of algebras with the prescribed semigroups 
of G-compatible relations with further additional properties, etc. 
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