
Archivum Mathematicum

Vincent Šoltés
Asymptotic properties of solutions of an n-th order nonlinear differential equation
with deviating argument

Archivum Mathematicum, Vol. 17 (1981), No. 1, 59--63

Persistent URL: http://dml.cz/dmlcz/107091

Terms of use:
© Masaryk University, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107091
http://project.dml.cz


ARCH. MATH. 1, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XVII: 59-64, 1911 

ASYMPTOTIC PROPERTIES OF SOLUTIONS 
OF AN n-TH ORDER NONLINEAR DIFFERENTIAL 

EQUATION WITH DEVIATING ARGUMENT 

VINCENT SOLTfiS, Ko§ice 
(Received May 28,1979) 

The present paper is devoted to the investigation of an n-th order nonlinear 
differential equation with deviating argument 

(1) (r.-1(0fr.-2(0(...(r2(0('i(0/)')'..)')')' + a(t)f(y(g(t))) - 6(0, 

where a(t),b(t),g(t),rt(t)9 ...,rn„t(t) are continuous on </0» oo)and/(y)on(—oo, oo). 
In [1], sufficient conditions are given for any non-oscillatory solution y(0 of (1) 
to converge to zero as t -> oo (Theorem 3). We shall demonstrate that it is possible 
to prove this theorem under weaker assumptions. In addition, there will be given 
further sufficient conditions for a non-oscillatory solution of (1) to converge to zero 
asymptotically as t -> oo. 

We shall assume throughout that the following conditions are satisfied: 

(2) (a) l img(0= oo; 
t-*ao 

(b)yf(y)>0 for^^O; 
(c) a(t) = 0, rt(t) > 0 for / = 1 » - -• 

Let us introduce the following notation: 

(3) ( ) ^ ) = J - ^ ) - d 5 , . = l,...,«-l,G.o(0=l): 

o,) tf(.)=i r^
Us),ds, u - i . . . . .» - - • 

to rn-l-J + l\s) 

2&i+Jgn, (tf,0 s 0; 
(c) Go(0 - Mr), G4(0 = rt(t) G\_i(t), * "• 1, •••• » ~ L 

We shall consider solutions of (1) existing on 0<>' «>)• 
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Theorem 1. Let 

(4) lim t-JJUO < °o for i = 1,..., n - . 1 . 
. - • 0 0 

If 

| ]b(t)dt\<co, 
to 

then every non-oscillatory solution y(t) of (I) is bounded on </0, oo). 
Proof. Let y(t) be a non-oscillatory solution of (1). Suppose that y(t) > 0 for 

every / 2> tx. Because of (2a) there exists t2 J> tx such that g(t) ;> /t for / ^ /2. 
Thus y(g(t)) > 0 for every / 2: /2 . Using (3c) and integrating (1) from t2 to / ;> /2 

we get 

(5) G . -^ ) - Gn_x(t2) + J a(s)/(y(g(5)))ds = } KOds. 
ti t2 

Since - because of (2b) and (2c) the first integral of (5) is positive and the second one 
bounded, there exists a constant K > 0 such that 

G„-i(0 = rn_t(t)G'n-2(t) £ K for every / £ /2 . 

Dividing the last inequality by r„-i(0 an<* integrating from /2 to /, we get 

G._.(0 5i c.__«-) + JC } — L d s £ GB_2(r2) + Ktf\t). 
t2

 r i f - i W 

Dividing this by rn„2(t) and integrating from t2 to /, we get — using (3b): 

G._3(0 JJ- G-sfe) + <?„-2(t2) T
(12>(0 + Kt2

l\t) for / £ /2. 

After (/i — 3) successive applications of this method we get 

G0(t) -= y(t) £ G0(t2) + G^Q^r'KO + G2(t2)x2
n~2\t) + ... + 

+ Gn„2(t2) T<1>2(0 + Kxil2t(t) for every / ^ / 2 . 

Owing to the assumption (4) this means that y(t) is bounded. 
If y(t) < 0 for every / i> /-, the proof is analogous. This completes the proof. 

Theorem 2. Let lim Qt(t) = 0, i == 1,..., n - 1, moreover, let (4) awd (6) hold, 
t-*ao 

(6) liminf | j(y)\ > 0. 

/ / 

: J Qn-1(0 A(0 df = 00, J | KO I d/ < 00, 
rd to 

/Aen euery non-oscillatory solution of (I) converges to zero for t -* oo. 
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Proof. Since the hypotheses of Theorem 1 hold, every non-oscillatory solution 
of (1) is bounded on <f0, oo). The proof can continue on the same lines as that of 
Theorem 3 of [1], 

Remark. One of the consequences of Theorem 2 is that the condition 

00 dr 
j _ ^ < QQ for i = l n - 1 

ri r£t) 

in Theorem 3 of [1] can be replaced by a more general condition Urn Q fa) -» 0, 
f-»oo 

Umt^iiO) < oo for i = 1, ...,n - 1. 
t-KX) 

Example 1. Consider the equations 
(7) (2 VK.0 V)') ') ' + t5 y/Ty\t) = - ^ - i , t > o, 

and 

(8) {2jw2y'yyy + i / ^ o - £ - * . . - £ , *>°> 

where ft is a positive constant. In this case 

Ci(0 = 4"» ff-(0 = T» ^ ( 0 = - 7 - , T(I3)(0 = — i + — t 

* t Jt t tQ 

тu)(0 = _J_i + _____ I + 1 
2 í í í ío 

Since the hypotheses of Theorem 2 are satisfied, every non-oscillatory solution 
of (7) and (8) converges to zero as t -» oo. The equations do have non-oscillatory 
solutions: y(t) = t~3 for (7), ><0 = t~2 for (8). 

Theorem 3. Suppose that (6) holds and that in addition 

(9) lim x{P(t) =oo for j = 1,..., n - 1. 
»-.<o 

If 

Jfl(0d/ = oo, | /6(f)df | .<oo, 
»o »o 

then, for every non-oscillatory solution of(\), 

liminf I K 0 I - 0 . 
f-*00 
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Proof. Let y(t) be a non-oscillatory solution of (1). Suppose e.g. thaty(#(0) > 0 
for t > tt, and that lim inf y(t) = c > 0. Then there exists t2 *> tx such that y(g(0) > 

> _ for every t *> /2. Since/(j) is continuous on ( — oo, oo) and (2b) and (6) hold, 

there exists a constant K > 0 such that f(y(g(t))) > K for every t ^ r2. For every 
' _£ *2> (1) yields 

0^^(0^6 (0 -^ (0 . 
Integrating this from t2 to t *z t2, we get 

G.-tW £ G.-jfe) + J ft«dj - X f a(s)ds. 
*2 t2 

By hypothesis there exists positive constant Ax such that, for every t ^ t3 ^ t29 

1 
G;_2(O_Š +Л. 

r.-i(0 
Integrating this from t3 to / ^ f3, we obtain the relation 

G._2(f) <; G„_2(f3) - A, J - J — d s = 

- G._2(f3) + /I,J - r - ^ - r d s - ...t^O-

Owing to (9), there exists a positive constant A2 such that for every t g> ><. ^ »>3, 

By successive integrations (and using (9)), we finally obtain 

G0(0 = y(0 < -Am%{

n

l2t(t) for every t^tn+l. 

It follows that y(t) -> — oo as f -+ oo —, a contradiction. Thus necessarily lim inf y(t) = 
--•oo 

= 0. 
For y(t) < 0 the proof is analogous. 
This completes the proof. 

Example 2. Consider the equation 

(io) (V'(VoO')' + <r(0 = ij, * > o. 

In this case x^ty) = 2^/7- 2 ^ , 

t_ł)(0 - 2 ln I + ^ Ь - 2 ln f0 - 4, 

vt 
t4ÍJ(0--í^-d__.Jт_%)dя. 

ío г l W to 
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Thus the assumption (9) is satisfied as well as the other hypotheses of Theorem 3. 
Thus lim inf | y(t) | = 0 for every non-oscillatory solution of (10), which does have 

= #~* a non-oscillatory solution, namely y(t) = t 
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