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METRICS AND TOLERANCES

IVAN CHAJDA, Prerovand BOHDAN ZELINKA, Liberec
(Received June 30, 1977)

§1

A reflexive and symmetric binary relation T on a non-empty set 4 is called
a tolerance relation (or shortly tolerance) on A and the ordered pair (4, T)
is called a tolerance space. By the symbol I we denote the identity relation on A4,
i.e. such a relation that xIy if and only if x = y for any x and y from 4. De-
note T° = I,T! = T, T"*! = T. T" for each positive integer n.

Definition 1. Let (4, T) be § 1. a tolerance space. A non-empty subset B of A4 is
called T-connected in A, if for any x € B, y € B there exists a positive integer p such
that xT?y. If 4 is T-connected in (4, T), then (4, T) is called a connected tolerance
space.

Proposition 1. Let (4, T') be a tolerance space, let B be a T-connected set in A
and let 61(x, y) be an integer-valued function on B X B given by the rule

(P) or(x,y) = 0 xT%,
or(x,y) = p<xT? and -«xT%  for g <p.

Then 61(x, y) is an integer-valued metric on B.

Proposition 2. Let (A4, p) be a quasimetric space and ¢ a positive real number. The
relation T, defined on A by the rule

(Q) xTu(c)y had ﬂ(x: y) é &
is a tolerance on A and the tolerance space (A, Ty,)) is T,-connected.

Definition 2. Let (4, T) be a tolerance space, let B be a T-connected set in A.
The metric 6, on B is called induced by the tolerance T. Let ¢ > 0 and let (4, p) be

a quasimetric space. Then the tolerance T, is called induced by the quasimetric
with the unit . '
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Proposition 3. Let (4, T) be a connected tolerance space, 57 a metric induced by
the tolerance T and Ty, (1) the tolerance induced by the metric 5 with the unit ¢ = 1.
Then T = Tl’T(l)'

Proposition 4. Let (A, u) be a quasimetric space, let 0 < ¢ £ 1, let T,,, be the
tolerance induced by the quasimetric p with the unit ¢ and 1 the metric induced by the
tolerance T,,,. Then d1(x, y) = u(x, y) for any xe€ A, y € A.

Proposition 5. Let (A, n) be a metric space with an integer-valued metric w, let
Txq1y be a tolerance on A induced by the metric n with the unit ¢ = 1 and 6 the metric
induced by the tolerance T,,. Then n = dy.

Proposition 6. Let (A4, u) be a quasimetric space and ¢, , €, positive real numbers.
If &y < &y, then Ty, S Tyepy- If X€A, ye A and &, < p(x,y) < &, then Ty, #
# Tyiey)s i-6.

&y <& = Ty © Ty

Remark. Evidently each equivalence on A4 is a tolerance on 4. By Definition 1
it is evident that for an equivalence E on A4 a set Bsuch that@ # B < A is E-connected
in A4 if and only if there exists a partition class [a] € A/E such that B < [a]. There-
fore if x, y, z are elements of [a], then for 6 the triangle inequality holds. Further,
if x = y, evidently dz(x, ¥) = 0 and for x € [a], y € [a], x # y we have dg(x, y) =1,
because the transitivity of E implies 7, = T for k£ =0, 1, 2,... This implies that
if T is an equivalence on A4, xTy, yTz, x # y, y # z, then the sharp triangle inequality

(M or(x,2) < 07(x,¥) + 67(y, 2)

holds, because d,(x,z) < 1 and 8;(x,y) + d4(», z) = 2. We shall show that also
the converse assertion holds.

Proposition 7. Let (A, T) be a connected tolerance space with at least three elements
and let 31 be the metric induced by the tolerance T. If for any three elements (pairwise
distinct) x, y, z of A the sharp triangle inequality (T) holds, then T is an equivalence on A.

Proof. Let x, y, z be pairwise distinct elements of 4 and let xTy, yTz. Then by (P)
we have or(x,y) =1, 6r(y,z) = 1 and (T) implies §;(x, z) < 2, i.e. dr(x,2) < 1.
As x # z, we have dr(x, z) # 0, because dr is a metric (by Proposition 1), therefore
or(x,z) = 1 and (P) implies x7z. As x, y, z were chosen arbitrarily, T is transitive,
i.e. it is an equivalence.

§2

Definition 3. Let (4, 1) be a quasimetric space and {8.-}.21 a decreasing sequence
of positive real numbers. Denote
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Tlim = n TI‘(N)’
i=1
where T, is a tolerance on A induced by the quasimetric yu with the unit ;.

Proposition 8. Let (A, y) be a quasimetric space, let {;};2 | be a decreasing sequence
of positive real numbers and ¢ = lim ¢;. Then T, = T, and T, is a tolerance on A.
Proof. Evidently T}, is a reflexive and symmetric relation on A4, i.e. it is a tolerance.
If xT,,,», then u(x, y) < ¢, therefore pu(x, y) < ¢; for each i. Hence xT,,,,y for each
i and xT,y. We have proved T < Tn. Conversely, if xTy,y, then xT,.,y

for each i and thus u(x, y) < ¢; and u(x, y) < & = limeg;, which means XT ey )-

Hence 7, = T,

u(e):

Proposition 9. Let (A, y) be a quasimetric space and {¢;}2, a decreasing sequence
of positive real numbers such that lim g; = 0. Then the following two assertiens are

i—
equivalent:
(1) uis a metric.
@) Ty = 1.

Proof. Let u be a metric and x7};,y for some x€ 4, ye A. Then xT .,y for
each ¢;, thus u(x, y) < lime; = 0. As p is a metric, u(x, y) = 0 implies x = y and

hence Ty, < /1. Evidently I< T, therefore T, =1 Now let T, =1 and
u(x,y) = 0 for some xe A, ye A. Then u(x, y) = limeg,, i.e. xT},,y, hence by (2)

i= o .

we have x = y and u is a metric.

Proposition 10. Let (4, 1) be a quasimetric space and T, a tolerance induced
by the quasimetric p with the unit g. Then for ¢ = O the relation T, is an equivalence
on A and A|T,, is a metric space.

Proof. If xT,o)p, ¥Ty0y%> then p(x,y) =0, ‘u(y,z) =0 and this implies 0 <
< u(x, 2) £ plx,y) + p(y,z) =0, hence u(x,z) =0 and xT,q)z. The second
assertion is evident.

§3

Lemma 1. Let L be a lattice with the least element 0, let T be a compatible tolerance
on L (see for example [3]). If ae L, be L and aT" 0, bT". 0 for some non-negative
integers r, s, then (a Vv b) T™ "9 0, (a A b) T™""9 0,

Proof. If T is a compatible relation on L, then (by Theorem 3 in [1]) T* is also
a compatible relation on L for each non-negative integer k. If a7 0, bT°0, then by
Corollary 5 in [1] we have aT?0, bT?0 for ¢ = max (r, s) and the compatibility
of T7 implies (a V b) T?0. Further let p = min (r, 5); without less of generality let
p=r.Then aT"0=> (@ Ab) T"(0 A b) = 0 and thus (@ A b) T?0. .
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Definition 3. Let L be a lattice with the least element 0. A tolerance 7T on L is
called disjunctive, if (a A b) T*0 implies aT* 0 or bT* 0.

In [2] the concept of a valuation on a lattice is introduced. A real-valued funcuon v
on L is called a valuation, if for any two elements a, b of L '

v(a@) + v(d) = v(a Ab) + v(aV b).

A valuation is called order-preserving, if -a < b implies v(a) < v(b) and positive,
if a < b implies v(a) < v(b) for any a and b. If there exists an order-preserving (or
positive) valuation on L, then L is called a quasimetric (or metric respectively)
lattice. (see [2], p. 108).

Theorem 1. Let L be a lattice with the least element O and let T be a compatible
disjunctive tolerance on L such that (L, T') is a connected tolerance space. Then L is
a quasimetric lattice.

Proof. Let v be an integer-valued function on L defined so that v(a) = 0 for each
a € L such that aT 0 and v(a) = p for each a € L such that aT?*! 0 and "1aT? 0 for
all ¢ < p. As (L, T) is connected, v is defined for all elements of L. If ¢ < b, then
avb=>b, aANb = a and thus v(a A b) + v(a Vv b) = v(a) + v(b). Now let a, b be
two incomparable elements of L, let v(a) = p, v(b) = q; without loss of generality
let ¢ < p. Then aT?*1 0, bT9*1 0 and by Lemma 1 we have a v bT7*! 0. Suppose
aV bT?0. From this and from aT”a we obtain a =aA(@Vb)T°0Aa =0 and
v(a@) < p, which is a contradiction. Therefore v(a V b) = p. Further from Lemma 1
we have (a A b) T?+1 0. Let j £ g; then ~1a7Y 0, 71677 0 and the disjunctivity of T
implies T)(a A b) T/ 0, therefore v(@aAb) =q. We have v(@Ab) + v(aVbd) =
=p + q = v(a) + v(b). We have proved that v is a valuation on L. Now let x < y,
v(y) = q. Then yT2*1 0 and —JyT"0 for r < g. We have x Ay = x and from the
compatibility of T?*! we obtain

xT9%* 1y, YT 0=>x =AY T (xA0) =0
and thus v(x) < ¢ = v(y) and v is order-preserving. This means that L is quasi-
metric.

Remark. We shall show that in the case when T'is not disjunctive the function v defined
in this proof is not a valuation. If T is not disjunctive, then there exist elements a, b
of L and a non-negative integer s such that @75+ 0, 716T**1 0, a A bT*+10. Then
v(@aAb) < 5. Let v(a) = p, v(b) = q; then p > 5 + 1, ¢ = s + 1. Without loss of

generality let p = g. We have aT?*10, bT*1 (), thus by Lemma 1 (aV b) T?*10
and v(a v b) < p. Then

W@ +oB)=p+a>p s+l
v(aAb)+u(aVb)§p+S
and thus v(a) + v(0) # v(@ A b) + v(q V b).
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We have proved that the valuation v defined in the proof of Theorem 1 is order-
preserving. The following proposition shows, when it is positive.

Proposition 11. Let L and T be given as in Theorem 1, let v be the valuation defined
in the proof of Theorem 1. The valuation v is positive, only if L is a chain embeddable
into the chain of all non-negative integers (naturally ordered).

Proof. Suppose that L is not a chain. Then there exist two elements x, y of L
which are incomparable. Let v(x) = p, v(y) = q and without loss of generality
P = ¢q. In the proof of Theorem 1 it is proved that then v(x A y) = ¢q, v(x V y) = p.
But then x A y <y, v(x A y) = v(y) and v is not positive. Therefore L is a chain.
If v is a positive valuation on a chain, it is evidently an embedding of this chain into
the chain of all non-negative integers.

Now it seems to be reasonable to consider the valuation in which v(a) = 0 only
fora = 0.

Theorem 2. Let L be a lattice with the least element O and with the property that
aAb=0inLifandonlyifa = 0orb = 0. Let T be a compatible disjunctive tolerance
on L such that (L, T) is a connected tolerance space. Then there exists an order-
preserving valuation v on L such that v(a) = 0 only for a = 0.

Proof. Let v be the valuation from the proof of Theorem 1. Put v’(0) = 0, v'(a) =
= v(a) + 1 for each a # 0. Let x, y be two elements of L. If x # 0, y # 0, then also
xAy #0, xVy#0and we have

VxAY)+0(xvVvy)=vxAp)+oxVy) +2=0x +0v(y)+2=
=v'(x) + v'(y).
Ifx=0y#0,thenxAy=0,xvy+#0and

VExAY) + v (xVvy) =vxAy) +exVvy) + 1 =0x)+v(p) +1 =
=v'(x) + v ().
Analogously for x # 0, y = 0. For x = y = 0 the equality is evident. Therefore v’ is

the required valuation.
Before proving the last theorem, we shall prove a lemma.

Lemma 2. Let m,, m,, n,, n, be four non-negative integers, let | m; — n, | < 1,
|my —ny | £ 1. Then
| max (my, m,) — max (n;,n;) | S 1,
| min (m,, m,) — min (ny,ny)| S 1.

Proof.Ifmy = m,,n; 2 n,,then | max (m;,m,) — max (n,,n;)| =|my —n,| =
S L.Ifmy 2 my, ny S ny, then | max (my, my) — max (ny, ny)) | = |my —ny|.
If m, = n,,then|m; —nml=m—n=m —n =|m —n | <1;ifm Sn,y,
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then |my; — n,| =ny —my < ny, — my =|my, —n,| < 1. Analogously we do the
proof for my < m,, n; = n, and m; < m,, ny < n,. The proof for the minimum
is dual.

Theorem 3. Let L be a quasimetric lattice with the valuation v satisfying v(x V y) =
= max (v(x), v(y)), v(x A y) = min (v(x), v(y)), for any two elements x, y of L. Let T
be the tolerance on L defined so that xTy if and only if v(x V y) — v(x Ay) < 1. Then
T is a compatible tolerance on L. '

Proof. Let a, b be two elements of L. Let aTh. This means v(a V b) — v(@aAb) £ 1
and according the assumption max (v(@), v(b)) — min (v(a)), v(b)) < 1. But one of
the numbers v(a), v(d) is the maximum and the other is the minimum of these two
numbers, therefore | v(a) — v(b)| < 1. On the other hand, if | v(@) — v(d) | £ 1,
then max (v(a), v(b)) — min (v(a), v(b)) < 1 and aTh. We have proved that a7b if
and only if | v(a) — v(b) | < 1. Now let x,, x,, y;, y, be four elements of L such
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that x,Ty,, x,Ty,; this means {v(x,) — vy} = 1, { v{x;) — v{y;}| = 1. Then
o(xy ¥V xz) = max (v{x;), v{xy)), v{x; A X)) = mn (0(x,), v(x)), v{y, Vy;) =
= max (2(y;). v(32)), v(y; Ay} = min(2(y;), x(»;)). By Lemma 2 we have
(ofxy Vv x3) — o(ps Vy) | £ 1, | v{x;Axy) ~ v(py Ay} | £ 1 and thus
(x, Vx2) T(yy ¥ ¥2), (31 A x3) T(y; A yy) and T is compatible.

Remark. Fig. 1 shows a lattice with the valuation satisfying the conditions of Theorem
3. On Fig. 2 we see a lattice with a valuation which does not satisfy them; for the
clements x,, x,, ¥,, y; of this lattice we have x,Ty,, y;Ty,, but not
(x; A x3) T(y, A y,). Fig. 3 presents a lattice which satisfies the conditions, but not
the assertion; therefore the converse assertion to Theorem 3 is not true.

The tolerance T in Theorem 3 is derived from a metric mentioned in [2].
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