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METRICS AND TOLERANCES 

IVAN CHAJDA, Přerov and BOHDAN ZELINKA, Liberec 
(Received June 30, 1977) 

§1 

A reflexive and symmetric binary relation T on a non-empty set A is called 
a tolerance relation (or shortly tolerance) on A and the ordered pair (A, T) 
is called a tolerance space. By the symbol I we denote the identity relation on A, 
i.e. such a relation that xly if and only if x -= y for any x and y from A. De­
note T° = I,Tl = T,Tn+1 = T . Tn for each positive integer «. 

Definition 1. Let (̂ 4, T) be § 1. a tolerance space. A non-empty subset B of A is 
called T-connected in A, if for any xeB, yeB there exists a positive integer p such 
that xTpy. If A is T-connected in (A, T), then (A, T) is called a connected tolerance 
space. 

Proposition 1. Let (A, T) be a tolerance space, let B be a T-connected set in A 
and let 5T(x, y) be an integer-valued function on BxB given by the rule 

(P) dT(x,y) =0oxT°y, 

5T(x,y) = p o xTpy and -i xTqy for q < p. 

Then 8T(x, y) is an integer-valued metric on B. 

Proposition 2. Let (A, JJL) be a quasimetric space and e a positive real number. The 
relation T^e) defined on A by the rule 

(Q) xTmy<>ix(x,y) ^ e 

is a tolerance on A and the tolerance space (A, T^e)) is T^-connected. 

Definition 2. Let (A, T) be a tolerance space, let B be a T-connected set in A. 
The metric 5T on B is called induced by the tolerance T. Let e > 0 and let (A, pi) be 
a quasimetric space. Then the tolerance rM ( g ) is called induced by the quasimetric \i 
with the unit s. 
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Proposition 3. Let (A, T) be a connected tolerance space, 5T a metric induced by 
the tolerance T and TsTi\) the tolerance induced by the metric 3T with the unit e = 1. 
Then T = Tdril). 

Proposition 4. Let (A, p) be a quasimetric space, let 0 < e ̂  1, let FM(e) be the 
tolerance induced by the quasimetric fi with the unit e and ST the metric induced by the 
tolerance T^. Then 8T(x, y) _ ii(x, y) for any xe A, ye A. 

Proposition 5. Let (A, n) be a metric space with an integer-valued metric n, let 
Tnil) be a tolerance on A induced by the metric n with the unit s = 1 andbT the metric 
induced by the tolerance Tn(t). Then n = 8T. 

Proposition 6. Let (A, p) be a quasimetric space and el9 ̂ 2 positive real numbers. 
If sx < e2, then FM(8l) c FM(C2). If x e A, y e A and st < fi(x,y) < e2, then TKei) ^ 

si < &i=> T^(si) <= rM(82). 

Remark. Evidently each equivalence on A is a tolerance on A. By Definition 1 
it is evident that for an equivalence E on A a set B such that 0 ^ B £ A is E-connected 
in A if and only if there exists a partition class [a] e AjE such that B <= [a]. There­
fore if x, y, z are elements of [a], then for 8E the triangle inequality holds. Further, 
if x = y, evidently SE(x, y) = 0 and for x e [a], y e [a], x # y we have SE(x, y) = 1, 
because the transitivity of E implies Tk c T for k = 0, 1, 2 , . . . This implies that 
if Tis an equivalence on A, xTy, yTz, x ?- y,y ^ z, then the sharp triangle inequality 

(T) 5T(x,z)<8T(x,y) + ST(y,z) 

holds, because ST(x, z) = 1 and 5T(x, y) + 8T(y, z) = 2. We shall show that also 
the converse assertion holds. 

Proposition 7. Let (A, T) be a connected tolerance space with at least three elements 
and let 5T be the metric induced by the tolerance T. If for any three elements (pairwise 
distinct) x, y, z of A the sharp triangle inequality (T) holds, then Tis an equivalence on A, 

Proof. Let x, y, z be pairwise distinct elements of A and let xTy, yTz. Then by (P) 
we have 5T(x, y) = 1, ST(y, z) = 1 and (T) implies dT(x, z) < 2, i.e. 8T(x, z) ^ 1. 
As x 7* z, we have 5T(x, z) ?- 0, because 8T is a metric (by Proposition 1), therefore 
dT(x, z) = 1 and (P) implies xTz. As x, y, z were chosen arbitrarily, T is transitive, 
i.e. it is an equivalence. 

§2 

Definition 3. Let (A, p) be a quasimetric space and {£»}**.= i a decreasing sequence 
of positive real numbers. Denote 
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11im •— II T^(ti), 

where T^(Ei) is a tolerance on A induced by the quasimetric n with the unit et. 

Proposition 8. Let (A, /x) be a quasimetric space, let {e,},* x be a decreasing sequence 
of positive real numbers and e = lim e,.. Then J^(£) = FIim and Tlim is a tolerance on A. 

I -+00 

Proof. Evidently Flim is a reflexive and symmetric relation on A, i.e. it is a tolerance. 
If xTmy, then fi(x, y) = e, therefore n(x, y) S £i for each /. Hence xT^^y for each 
i and xFlimy. We have proved Tm <= T!im. Conversely, if xTUmy, then xT^y 
for each / and thus n(x,y) S £» and fi(x,y) ^ e = lime,-, which means xT^y. 

i-*co 

Hence Flimc= Tm. 

Proposition 9. Let (A, pi) be a quasimetric space and {ej^j a decreasing sequence 
of positive real numbers such that lim^ = 0. Then the following two assertiens are 

i-*<x> 

equivalent: 
(1) \x is a metric. 
(2) Tnm = /. 
Proof. Let \x be a metric and xTUmy for some xeA, ye A. Then xT^y for 

each gf, thus }i(x, y) S -1111 £,- = 0. As /i is a metric, fi(x,y) = 0 implies x = y and 
i-> GO 

hence TUm <= /. Evidently /<= rlim, therefore Flim = /. Now let Flim = / and 
y(x,y) = 0 for some x eA,ye A. Then fi(x,y) = limef, i.e. xTUmy, hence by (2) 

i-* oo 

we have x = y and /x is a metric. 

Proposition 10. Let (A, pi) be a quasimetric space and T„(e) a tolerance induced 
by the quasimetric ]i with the unit e. Then for e — 0 the relation T^0) is an equivalence 
on A and AjT^(0) is a metric space. 

Proof. If xFM0)y, yT»(0)z, then ii(x,y) = 0, pi(y,z) = 0 and this implies 0 <* 
S ii(x, z) = n(x, y) + pt(y, z) = 0, hence fi(x, z) = 0 and xTM0)z. The second 
assertion is evident. 

§3 

Lemma 1. Let Lbe a lattice with the least element 0, let Tbe a compatible tolerance 
on L (see for example [3]). If aeL, beL and aTr0, bTs. 0 for some non-negative 
integers r, s, then (a V b) rmax(r's) 0, (a A b) Tmin(r>s) 0. 

Proof. If T is a compatible relation on L, then (by Theorem 3 in [1]) Tk is also 
a compatible relation on L for each non-negative integer k. If aTr 0, bTs 0, then by 
Corollary 5 in [1] we have aT90, bT90 for q = max (r, s) and the compatibility 
of T9 implies (a V b) T90. Further let p = min (r, s); without less of generality let 
p = r. Then aTr0 => (a A b) Tr(0 A b) = 0 and thus (aAb)Tp0. 
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Definition 3. Let L be a lattice with the least element 0. A tolerance T on L is 
called disjunctive, if (a Ab)Tk0 implies aTk 0 or bTk 0. 

In [2] the concept of a valuation on a lattice is introduced. A real-valued function v 
on L is called a valuation, if for any two elements a, b of L 

v(a) + v(b) = v(a A b) + v(a V />). 

A valuation is called order-preserving, if a <> b implies v(a) <£ t;(b) and positive, 
if a < b implies v(a) < v(b) for any a and b. If there exists an order-preserving (or 
positive) valuation on L, then L is called a quasimetric (or metric respectively) 
tomte. (see [2], p. 108). 

Theorem 1. Let L be a lattice with the least element 0 and let T be a compatible 
disjunctive tolerance on L such that (L, T) is a connected tolerance space. Then L is 
a quasimetric lattice. 

Proof. Let v be an integer-valued function on L defined so that v(a) = 0 for each 
a eL such that aTO and v(a) = p for each aeL such that aTp+i 0 and ~~\aTq 0 for 
all q 5* p. As (L, T) is connected, v is defined for all elements of L. If a S b, then 
aV b = 6, a hb = a and thus v(a A b) + v(a V b) = v(a) + v(6). Now let a, 6 be 
two incomparable elements of L, let u(a) = p, v(b) = q; without loss of generality 
let q <; p. Then aTp+i 0, bTq+i 0 and by Lemma 1 we have a V bTp+i 0. Suppose 
a V bTp0. From this and from aTpa we obtain a = a A (av b) Tp0 A a = 0 and 
t;(a) < p, which is a contradiction. Therefore t;(a V b) = p. Further from Lemma 1 
we have (a A b) Tq+i 0. Let j <; q; then ~\aTJ 0, ~~]bTJ 0 and the disjunctivity of T 
implies ~~}(a Ab) TJ 0, therefore v(a A b) == q. We have v(a A b) + v(a V b) = 
= i7 + # = *>(*) + v(b). We have proved that v is a valuation on L. Now let # ̂  y, 
v(y) = q* Then yTq+i 0 and ~"|yrr0 for r = q. We have x A j> = x and from the 
compatibility of Tq+i we obtain 

xr*+1x, yTq+i0=>x = (jcA.y)r*+1(xA0) = 0 

and thus v(x) ̂  q = v(y) and v is order-preserving. This means that L is quasi-
metric. 

Remark. We shall show that in the case when Tis not disjunctive the function v defined 
in this proof is not a valuation. If T is not disjunctive, then there exist elements a, b 
of L and a non-negative integer s such that ~~]aTs+i 0, ~]bTs+i 0, a A bTs+i0. Then 
v(a A b) S s. Let v(a)> = p, v(b) = q; then p^s + 1, qj^s+l. Without loss of 
generality let p = q. We have aTp+i 0, bTq+i 0, thus by Lemma 1 (a V b) Tp+i 0 
and v(a v b) Sp. Then 

v(a) + v(b) =p + q > p + s + 1, 

v(a Ab) + v(aVb) ^p ± s 

and thus t;(a) + v(b) * v(a A b) + u(a v *). 
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We have proved that the valuation v defined in the proof of Theorem 1 is order-
preserving. The following proposition shows, when it is positive. 

Proposition 11. Let L and T be given as in Theorem 1, let v be the valuation defined 
in the proof of Theorem 1. The valuation v is positive, only ifL is a chain embeddable 
into the chain of all non-negative integers (naturally ordered). 

Proof. Suppose that L is not a chain. Then there exist two elements x, y of L 
which are incomparable. Let v(x) = p, v(y) = q and without loss of generality 
p ^ q. In the proof of Theorem 1 it is proved that then v(x Ay) = q, v(x V y) = p. 
But then x Ay < y, v(x Ay) = v(y) and v is not positive. Therefore L is a chain. 
If v is a positive valuation on a chain, it is evidently an embedding of this chain into 
the chain of all non-negative integers. 

Now it seems to be reasonable to consider the valuation in which v(a) = 0 only 
for a = 0. 

Theorem 2. Let L be a lattice with the least element 0 and with the property that 
a A b = 0 in L if and only if a = 0 or b = 0. Let Tbea compatible disjunctive tolerance 
on L such that (L, T) is a connected tolerance space. Then there exists an order-
preserving valuation v on L such that v(a) = 0 only for a = 0. 

Proof. Let v be the valuation from the proof of Theorem 1. Put v'(0) = 0, v'(a) =-
= v(a) + 1 for each a ^ 0. Let x, y be two elements of L. If x 7-= 0, y 5-= 0, then also 
x A y T£ 0, x v j> # 0 and we have 

v'(x A y) + v'(x V y) = v(x A y) + v(x V y) + 2 = v(x) + v(y) + 2 = 

= v'(x) + v'(y). 

If x = 0, y # 0, then x A y = 0, x V j # 0 and 

v'(x A j ) + v'(* V y) = v(x A j ) + v(x V >>) + 1 = v(x) + vO) + 1 = 
= v'(x) + v'(y). 

Analogously for x ?- 0, y = 0. For x = j = 0 the equality is evident. Therefore v' is 
the required valuation. 

Before proving the last theorem, we shall prove a lemma. 

Lemma 2. Let mx, m2,nx, n2 be four non-negative integers, let | mx — nx | ^ 1, 

I m2 — n2 I = -• -fi^w 

I max (mx, m2) — max (nx, n2) j = 1, 

I min (mx, m2) — min (nx, n2) \ <j 1. 

Proof. If ^ 1 ^rn2,nx ^n2, then | max (mx, m2) - max (ni, n2) | = | m t - nx | «£ 

= 1. If mx ^ ^2» nx <* n2, then | max (mx, m2) - max (nx, n2)"| == | mj - «2 |. 
If mx ^ n2 , then | mi - n2 | = mx - n2 = m t - nx = \ mx - nx \ = 1; if mx = « 2 , 
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then | mt — n2 | = n2 — m± ^ n2 — m2 = | m2 — «2 | S 1. Analogously we do the 
proof for w^ ^ m2, /*! ^ /i2 and mx ^ m2, nt S n2. The proof for the minimum 
is dual. 

Theorem 3. Let Lbe a quasimetric lattice with the valuation v satisfying v(x V y) = 
= max (v(x), v(y)), v(x A y) = min (t>(x), v(y)),for any two elements x, y ofL. Let T 
be the tolerance on L defined so that xTy if and only ifv(x V y) — v(x A y) S 1. -TAe/i 
r & a compatible tolerance on L. 

Proof. Let a, b be two elements of L. Let aTb. This means v(a V b) — v(a A b) S I 
and according the assumption max (v(a), v(b)) — min (v(a)), v(b)) S 1. But one of 
the numbers v(a), v(b) is the maximum and the other is the minimum of these two 
numbers, therefore | v(a) — v(b) \ S 1. On the other hand, if | v(a) — v(b) |. rg 1, 
then max (v(a), v(b)) — min (v(a), v(b)) ^ 1 and aTb. We have proved that aTb if 
and only if | v(a) — v(b) | ^ 1. Now let ^ l 9 x 2 ,y i ,y 2 be four elements of L such 
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that xxTyí9 x2Ty2; this means | v(xí) — v(yt) | ^ 1, | v(x2) — v(y2) | á 1- Then 
v(xt V x2) = max OO^), v(x2)), v{xx A x2) = min (ufo), i;(x2)), v(yl V >>2) = 
= max OCVÍ), i>02)), 0O1 A y2) = min (^(JO, *02)). By Lemma 2 we háve 
\v(xx V x2) - !;(>! V j 2 ) | ^ 1, | r fo A x2) - t ; ^ AJ>2) | <; 1 and thus 
(*! V x2) T ^ V y2), (xt A x2) T^i A y2) and T is compatible. 

Remark. Fig. 1 shows a lattice with the valuation satisfying the conditions of Theorem 
3. On Fig. 2 we see a lattice with a valuation which does not satisfy them; for the 
elements xl9 x2, yx, y2 of this lattice we háve x1Tyl9 J>27>2, but not 
(xí A x2) T(yt A y2). Fig. 3 presents a lattice which satisfies the conditions, but not 
the assertion; therefore the converse assertion to Theorem 3 is not true. 

The tolerance T in Theorem 3 is derived from a metric mentioned in [2]. 
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