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0. INTRODUCTION

We say that an ordered pair (V, L) is a language if V is a finite set (the alphabet)
and L is a subset of the free monoid V* over V.
Let (¥, L) be a language. We define for ae V

or(a) = {(u, v); (u, v) € V*x V* and uav € L}.
We call o;(a) the set of all contexts accepted by a in (V, L). We

H(V, L)  pure homonym
R(V, L) root
P(V, L) partial homonym
put{ I(V,L) = {o.(a); a is a { initial word-form  in (V, L)}.
N(V, L) nonhomonym
F(V,L) free homonym
| C(V, L) | complete element

The definitions of the above mentioned special types of elements of the alphabet can
be found in [6] or in [4]. Let us denote

WUV, L) = {o,(a); ac V}.

We say that a language (V, L) contains no parasitary elements whenever the empty
set # is not in A(V, L). The set A(V, L), ordered by inclusion, is a finite poset for
each language (V, L).

Let G be a poset. If (V, L) is a language and r: G — A(V, L) an isomorphism then
we call the ordered pair (r, (V, L)) a p-representation of G.
_ In the Main theorem we characterize, for a given finite poset G, all ordered seven-
tuples (H, R, P, I, N, F, C) of elements from 29 (the set of all subsets of G)such that
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there exists a p-representation (r, (¥, L)) of G with the following properties. (¥, L)
contains no parasitary elements and {r(a);ae M} = M(V,L) for M = H, R, P, I,
N, F, C.

1. FORMULATION OF THE PROBLEM

Let n > O be an integer. We denote by {a,, a,, ..., a,} the finite set containing just
the elements ay, a,, ..., a,. In case n = 0 we define {a,, a,, ..., a,} = 0. Further,
we put J90 = 0.

Let A4, D be sets and e: 4 —» D a map. We denote e[B] = {e(b); b € B} for each
B c A. If e(a) = a for all a € 4 then we call e an identity map. If, moreover, D = A
then we put e = 1,. We say that e is an embedding (of A into D) if A, D are posets
and if a £ b<>e(a) £ e(d) for all a, b € A. Obviously, any embedding is an injection.

The definitions of the minimal condition, the closure operator, and the Galois
connection can be found in [3].

Let G be a poset. We put wg(a) = {b; b€ G and b < a} for each ae G. Each
subset of G is considered partially ordered by the restriction of the ordering on G.

We denote by VA the L.u. bound of 4 in G for each 4 = G and write a vV b
instead of Vg{a, b}. We define V0 iff there exists the smallest element o in G; then
we put Vg0 = o.

1.1. Lemma. Let G be a poset,ae G, B = G, C(b) = G for each be B. If a = VB
and b = V;C(b) for each be B then a = Vg |J C(b).

beB

1.2. Definition. Let G be a poset. We call a e G (completely additively) irreducible
(in G)if a = Vg4 = ae A for each 4 = G.
We denote by IR the set of all irreducible elements in G. Further, we put

IR. = _IRg U {0} if o is the smallest element in G,
¢ IR;; if there is not a smallest element in G.

1.3. Definition. Let H be a poset and G = H. We call G a o-dense subset (in H)
if there exists 4(a) < G such that a = VzA(a) for each a € H.

1.4. Lemma. Let H be a poset and G a o-dense subset in H. Then IR, < G.
We now give a sufficient condition under which the converse of 1.4 is true.

1.5. Lemma. Let H be a poset and let there exist a o-dense subset G, satisfying the
minimal condition, in H. Then IRy is a o-dense subset in H.

Proof. Let us put O = {a;ae G and a # VyA4 for each 4 < IR,}. If O # 0
then there exists m minimal in O. Since m ¢ IRy, we can find 4 < H such that
m¢ A, m = VgA. As G is o-dense in H, there exists B(a) = G with the property
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a = VyB(a) for each ae 4. If we put B = |J B(a) then B = G and m = VgBby 1.1.

acA

The obvious fact B n O = 0 implies the existence of C(b) = IRy such that b =
= VyC(b) for each b € B. By this and by 1.1, it follows that m = V,C for C =

= |J C(b). Since C = IRy, we have a contradiction with m € O. Thus, O = @ and
beB

the statement follows by 1.1.

1.6. Definition. Let G be a poset and .S a complete lattice with the smallest element o.
We call the map e: G — S a gy-dense embedding (of G into S) if e is an embedding,
e[ G] is a o-dense subset in S, o ¢ [ G].

1.7. Remark. (i) If we omit the requirement o ¢ e[G] in 1.6 then we obtain the
concept of a o-dense embedding which was studied in [1], [5], [7] and in many
other works.

(ii) Let S be alattice. Then S'is finite and nonempty whenever there exists a o,-dense
embedding of a finite poset into S.

1.8. Definition. Let S be a lattice.

(i) Wecallae S strong (in S)ifb <c,allc==avb<aVcforallb,ces.

(ii) We call ae S (completely additively) primitive (in S) if a £ VgA = there
exists b € 4 such that a £ b for each 4 = S.

We denote by Sg, Pg the set of all strong, primitive elements in S, respectively.

1.9. Definition. Let S be a lattice and o the smallest element in S.

() We call ae S an atom (in S) if b < a=>b = o for each be S.

We denote by Ag the set of all atoms in S.

(ii) We call N = S a nonhomonymous set (in S) if N is finite, N = Sg n Pg N Ag
and if no element from Ag is the smallest one in S — wg(VsN).

We denote by R the set of all nonhomonymous sets in S.

1.10. Lemma. Let S be a lattice with a smallest element and N = Sg N Pg N Ag
a finite set. Then IRg N wg(VgN) = N.

Proof. Clearly, N < IRg n ws(VgN). If ae wg(VsN) then a = Vgd for 4 =
= {b;be Nand b < a} by [4] I, 1.16. If, moreover, a € IRs then ae 4 = N. Thus,
IRg N wg(VgN) = N.

We shall see that our Main theorem is an easy consequence of the main results
from [4] II and of the solution of the following

1.11. Problem. Let G be a poset satisfying the minimal condition. What are the
necessary and sufficient conditions imposed on an ordered fourtuple (I, R, N, C) of
subsets of G for the existence of a complete lattice S and a o ,-dense embedding e of G
into S such that e[I] = Ag, e[R] = IRy, e[N] e N, [C] = Ps.
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2. 0-GENERATING SYSTEMS AND 0-EMBEDDING
OPERATORS

2.1. Definition. Let G be a poset. We call A < G an initial segment (in G) if wg(a) =
< A for each a e A.
We denote by Qg the set of all initial segments in G.

2.2. Definition. Let G be a poset and & < 2°. We call & a O-generating system
(on G) if
® 6 < 2, |
(i) NAe® for each A < G, A 5 0,
(ili) wg[G] € O,
@iv) {9,G} < 6.
We denote by Gs(G) the set of all 0-generating systems on G.

2.3. Lemma. Let G be a poset, € Gs(G), A = 6, H =6 — A. If
() AN (0[G]u {0, G}) =0 and
(ii) for each A € W there exists ae G — A such that

AS B,a¢B=>BeU forall Be®
then § € Gs(G).

Proof. Clearly, 2.2 (i), (iii), (iv) hold for $. For an arbitrary B = §, B # 0
we have NB € G and we can find A(a) € B with the properties B = A(a), a ¢ A(a)
for each ae G — NWB. This and A " B = G give NB ¢ A. It follows that 1B e H
and 2.2 (ii) is true.

2.4. Lemma. Let G be a poset and ¢ a closure operator on 2°. Then the assertions (i)
and (ii) hold for all A, B = G.

@) B <= 4 < ¢(B) = ¢(4) = ¢(B).

(i) @(e(4) U B) = ¢(4 L B).

2.5. Definition. Let G be a poset and ¢ a closure operator on 2% We call ¢ a
0-embedding operator (on 2°) if p({a}) = wg(a) for each a € G and @(90) = 0.
We denote by Op(G) the set of all 0-embedding operators on 26,

2.6. Remark. If we consider Gs(G), Op(G) partially ordered then the ordering on
Gs(G) is the inclusion and that on Op(G) is the following. For arbitrary ? ¥ € Op(G)
we have ¢ <  whenever ¢(4) < y(A) for each 4 = G.

2.7. Definition. Let G be a poset. We associate a map £g6 : 26 — 29, defined by
E,6(4) = N B for every A = G, with each G e Gs(G) and a set Cgp = ¢[2°]

ACBe®

with each ¢ e Op(G).
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2.8. Theorem. Let G be a poset. The pair £, € forms a Galois connection between
the posets Gs(G), Op(G) and it holds

Ceée = lcs(G)a ¢eCe = IOp(G)'

2.9. Lemma. Let G be a poset and ® € Gs(G). Then ®, ordered by inclusion, is a
complete lattice in which meets coincide with intersections and Vg0 = ¢;G(UA) for
each A < 6.

Proof. The first part of the statement follows by 2.2 (ii), (iv) and by theorem 10
from [3]. By 2.8, {® is a closure operator on the complete lattice 2°. The second
part of the statement is now a consequence of theorem 15 from [3].

The connection between the concept of a 0-generating system and that of a -dense
embedding is formulated in the following fundamental theorem which was proved
in [5] for the case of o-dense embeddings.

2.10. Theorem. Let G be a poset. Then

(i) For each ® € Gs(G), wg : G - © is a 6y-dense embedding.
(i) For each o,-dense embedding e of G into a complete lattice S there exist & € Gs(G)
and an isomorphism ¢ : S — ® such that e = wg.

2.11. Corollary. Let G be a poset and ® € Gs(G). Then IRy, Py, Ay, and all
N e N, are subsets of wg[G].

Proof. This assertion is a consequence of 2.10 (i), 1.4, and of the inclusions
Py < IRy, Ay < IRy, N < IR for each N e 9.

3. SPECIAL PROPERTIES OF ELEMENTS
IN 0O-GENERATING SYSTEMS
AND THE 0-EMBEDDING OPERATOR ¢f

3.1. Definition. Let G be a poset and a € G. We put
wg (@) = wga) — {a}, &g(a) ={b;beGanda < b},
gg(a) = G — g4(a).
3.2. Lemma. Let G be a poset. Then

() &gla) c sgb)<>a < bjforalla,bed.

(i) wg(a) € &g(b), acegd) =>a =bforalla,beG.
(i) A& ég(@)<>ac A forallae G, Ae Q.
(iv) wg(@) € A<Avu {a}eQ; forallac G, A€ Q.

3.3. Lemma. Let G be a poset and a € G. Then a ¢ IR if and only if a = Vg (d).
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3.4. Lemma. Let G be a poset, ® € Gs(G), a€ G. Then the assertions (i) and (ii)
are equivalent.

(i) wg(a) e IRy.
(i) wg(a) € ®.

Proof. Let us put A = wg(we(a). If b € wg(a) then b € w(b) € A by 2.10 (i) and
we have wg (@) € UU. This inclusion and the obvious validity of its converse imply
wg(a) = UA. By 2.9, it follows that V% = EG(UA) = ¢;6(wg (a)). Since either
$60(wg (@) = wg(a) or £66(wg(a)) = wg(a), it holds VA = we(a) iff wg(a) ¢ 6.
Now, the statement follows by 3.3.

3.5. Lemma. Let G be a poset, & € Gs(G), a € G. Then the assertions (i), (ii), (iii) are
equivalent.

(i) wg(a) € Pg.
(ii) &5(a) € ®.
(iii) a ¢ £cO(A) for each A € Qg such that a¢ A.

Proof. Let us assume wg(a) € Pg. Then wg(a) £ VU for each A = G such that
wg@) £ UA. We have UB = &4(a) for B = wg[es(a)]. By wg(a) £ UB and by 2.9,
it follows that wg(a) & VB = ¢;6(s5(a)). Hence, a ¢ £;6(¢5(a)) € ® and, con-
sequently, ¢;®(£5(a)) = £5(a) by 3.2 (iii). Since the inverse inclusion is obvious, we
obtain ¢;G(84(a)) = &6(a) and, consequently, £5(a) € G. We have proved (i) = (ii).

If &5(a) e ® then for A€ Q satisfying a¢ 4 it holds 4 < g5(a), (c6(A4) =
S &6®(26(a)) = &(a) and a ¢ £gG(A). Thus, (i) = (iii).

Suppose a ¢ £{;6(4) for each 4 € Qg with the property a ¢ A. If wg(a) = ViU
for A = G then a € {HUA) by 2.9. This gives ae UA and there exists
AeW such that ae 4; we have wg(a) S A and, therefore, wg(a)ePy. Hence
(iii) = (i).

3.6. Definition. Let G be a poset, ® € Gs(G), ae G. We denote by ¥ (G, a) the follow-
ing assertion. ’

AV wg(a) € A U wg(a) U gg(a) for each 4 € 6.

3.7. Lemma. Let G be a poset, ® € Gs(G), ae G. Then

(i) wg(a@) €Sy N Py = ¥v'(G, a).

(ii) wgla) € Ag, ¥ (6, a) = wg(a) € Sg.

Proof. Suppose wg(a) € Sy N Pg. Let us admit that there exists 4 €  such that
AV wgla) £ 4 U wg(a) v gg(a). Then, clearly, A4 || wg(a) and we can find be 4 v
V wg(a) with the properties wg(b) & 4, wg(b) || wg(a). If we put B = 4 V wg(b) then
A < B. Further, B < wg(a) would imply 4 = wg(a) which is a contradiction.
Similarly, wg(a@) = B = 4 V wg(b) would imply either wg(a) € 4 or wg(a) = we(h)
because wg(a) € Pg; both cases are impossible. Thus, B || wy(a). Simultaneously,
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AV wgla) = (4 V 06a) V wg(b) = BV wg(a) which contradicts wg(a) € Sg- Thus,
¥ (®, a) is true.

Suppose wg(a) € Ag, ¥ (®, a). Let us take 4, Be ® such that 4 = B, B|| wg(a).
Then a¢ B, a¢ A and there exists b€ B — 4. The facts wg(a) € Ay, B N wg@)
< wg(a) give B N wg(a) = B. For this reason b £ a. As, at the same time, a ¢ B, we
obtain a £ b. Hence, b || a and it follows that b¢ 4 V wg(a) according to ¥'(®, a).
Since 4 < B and be BV w4(a), it holds 4 V wg(a) = B V wg(a). We have proved
wg(a) €Sg.

3.8. Corollary. Let G be a poset. Let us take ® € Gs(G) and a € G in such a way that
wg(@) e Py N Ay. Then the assertions (i) and (i) are equivalent.

(i) wg(a) €S-

(i) 7(6, a).

We shall now deal with a 0-embedding operator of a special kind which will often
appear in our considerations.

3.9. Definition. Let G be a poset. We call R an irreducible set (in G) if IR; < R = G.
3.10. Definition. Let G be a poset and R an irreducible set in G. We put
={4;A€Q;and w;(a) = A =>ae A foreachae G — R}.

3.11. Lemma. Let G be a poset and R an irreducible set in G. Then HX € Gs(G).

Proof. The condition 2.2 (i) is satisfied trivially. Let % = $¥ be nonempty.
Then, clearly, NA € Q;. If w;(a) = NA for ae G — R then w; (@) = Aand ae 4
for each A € . It follows that a € NA. We have NWA € H§ which proves 2.2 (ii). If
w;(a) € wg(d) foraeG — R, be G then b is an upper bound of wg(a). Since
a = Vgwg(a) by 3.3, we obtain a € wg(b). For this reason wg(b) € H§ and 2.2 (jii)
is true. If wg (a) < 0 for a e G then a is minimal in G. Clearly, a € IR; and, conse-
quently, a¢ G — R. Thus, 0 € H5. As G e HX in an obvious way, 2.2 (iv) holds.

3.12. Lemma. Let G be a poset and R an irreducible set in G. Then IRgx = wG[R] =
= Pgz.

Proof. Clearly, w;(a) ¢ H3 for each ae G — R. By this, 3.4, and 2.11, IRgr <
€ wg[R]. Suppose wg (b) < &g(a) for arbitrary ae R, be G — R. If b ¢ £5(a) then
beeg(a) and b = a according to 3.2 (ii). This is a contradiction. Hence, we have
b € £5(a) and, therefore, £5(a) € H%. Since wg(a) € Pgx by 3.5, we obtain wg[R] S
< Pgz. The statement follows by the proved inclusions and by Pgz < IRgz®.

3.13. Lemma. Let G be a poset, R an irreducible set in G, & € Gs(G). Then
IR S wg[R] if and only if 6 = $¢.
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Proof. Suppose IR, < wg[R]. Take an A4 € G arbitrarily. If w;(@) < 4, a¢ 4
for some ae G — R then wg (@) = A N wg(a) € 6. Since wg(a) € IR by 3.4, we have
wg(a) € wg[R]. This result and 2.10 (i) give a € R which is a contradiction. Hence,
ac A, Ae HF, and 6 < HR. '

Let us now assume & < $¢. If 4 € IR then A = wg(a) for some a € G by 2.11.
According to 3.4, w;(a)e & = HF and 4 = wy(a) e IRgr = w¢[R] by 3.4, 3.12.
Thus, IRy < wg[R]. ‘

3.14. Definition. Let G be a poset and R an irreducible set in G. We put pf = {;HR.

3.15. Remark. From the definition of G it follows that 5 = Qg for any poset G.
Then, clearly, ¢&(4) = A4 for each 4 € Q.

The foll'owing implication is of a great importance.

3.16. Lemma. Let G be a poset, ® € Gs(G), R an irreducible set in G with the
property wg[R] =1IRy, N S G a finite set such that wg[N] S Sg 0 Py Ag.
Then for arbitrary ae G, Ae ®

w;@) € A, &AL N) = gg(a) = wg(a) € Pg.

Proof. Let us put ¢ = £;6. Then ¢ € Op(G), €z = G by 2.8. Suppose wg (a) =
S A, 084 UN) =¢5a)foraecG,Ae 6. Asa¢ pR(4 U N),itholds a ¢ 4 = ¢(4).

Let us denote {a,,a,,...,a,} =N — A. From a;€ £5(a) it follows that a £ qa;;
wg (@) € A gives a; ¢ g (a) which is equivalent to a; < a. Thus a || a; and we have
a¢ wgla) vegla) fori =1,2,...,n.

Supposea ¢ (4 L {a,, a,, ..., a;}) forsome je {0, 1, ..., n — 1}. Then, according
toa ¢ wg(a;4q) U es(a;1,) and 3.8, we obtaina ¢ (4 L {ay, a;, ..., a;}) V wg(a;q).
By 2.9, 2.4 (ii), it holds @(4 U {ay, a3, ..., a;}) V ¢({aj+,}) = o(e(4 U {ay, a, ...,
a}) v o({a;+1})) = (4 v {ay, a;, ..., a;} U 0({a;+1})) = o(4 v {a;,a;, ...,
a;.1})- Since 9({a;.1}) = wg(a;4,), we have a¢ (4 L {a;, az, ..., aj41}).

By induction, we obtain a ¢ ¢(4 v N) which is equivalent to (4 U N) < &4(a).
With respect to 3.13, it holds & = X which gives 5 < ¢ by 2.8. Now, £5(a) =
= of(4 U N) < ¢(4 U N) € &4(a) and, clearly, ¢(4 U N) = £;(a). Then £4(a) € ®
and wg(a) € Py by 3.5.

4. SOLUTION OF THE PROBLEM

4.1. Definition. Let G be a poset. We denote by M the set of all minimal elements
in G.
4.2. Theorem. Let G be a poset and ® € Gs(G). Then
A@ = CDG[MG].
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Proof. For ae Mg we have wg(a) = {a} and, clearly, wg(a) € Ay. If a¢ Mg
then there exists b < @ in G. We obtain 8 c wg(h) = ws(a) by 2.10(1) and wg(a) ¢
¢ Agy. The statement now follows by 2.11.

4.3. Definition. Let G be a poset and R an irreducible set in G. We say that N is
an R-nonhomonymous set (in G) if N is finite, N € Mg, and if no element from Mg
is the smallest one in R — N.

4.4. Definition. Let G be a poset, R an irreducible set in G, N an R-nonhomonym-
ous set in G. Then

(i) We denote by P(R, N) the set of all a€ R such that either p§(wg (@) UN) =
= &¢(a) or there exists b € G satisfying wg (a) = wg(b). pi(we(b) U N) = &s(a).

(ii) We say that C is an R, N-primitive set (in G) if Po(R, N)UN < C = R.

4.5. Definition. Let G be a poset. We call an ordered triple (R, N, C) suitable (in G)
if R is an irreducible, N an R-nonhomonymous, C an R, N-primitive set in G.

d
®) ®)
a b (s 4
Figure 1

4.6. Example. Let G be the poset from Fig. 1. We construct a suitable triple (R, N, C)
in G. As IR; = G, there is only one irreducible set R in G, namely R = {a, b, ¢, d}.
We can easily check that N is {a, b, ¢, d}-nonhomonymous in G iff N € {9, {a}, {b},
{c}, {a, b}, {a, ¢}, {a, b, c}}. Let us put N = {c}. According to 3.15, P;({a, b, ¢, d},
{e}) = {x; x € {a, b, ¢, d} and either wg; (x) U {c} = £5(x) or there exists y € G such
that wg(x) = we(¥) and wg(y) U {c} = &5(x)}. We see 0 = wg(a) = wg(d) = {b}
and wg(b) U {c} = {b, ¢} = &¢(a). That is why a e Ps({a, b, ¢, d}, {c}). Similarly, we
verify b e Pg({a, b, ¢, d}, {c}), c¢ Ps({a, b, ¢, d}, {c}), d¢Ps({a, b, c, d}, {c}), so
that Pg({a, b, ¢, d}, {c}) = {a, b}. Now, Cis {a, b, c, d}, {c}-primitive iff {a, b, ¢} =
c Cc{ab,c,d}.Weput C = {a, b, c}; then (R, N, C) = ({a, b, ¢, d}, {c}, {a, b, c})
is a suitable triple in G.

4.7. Theorem. Let G be a poset satisfying the minimal condition, ® € Gs(G), N € Ny.
If wg[R] = IRy, wg[N] =N, wg[C] = Py then (R, N, C) is a suitable triple in G.

Proof. Ris an irreducible set in G: Suppose a € IR;. If a is not a smallest element
in G then a € IR and a is not the 1. u. bound of wg (@) in G by 3.3. Thus, there exists
an upper bound b of w; (@) in G such that a £ b. We obtain w; (a) < wg(a) N wg(b).
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Since a ¢ wg(b), it holds also the inverse inclusion and wg (@) = wg(a) N wg(d) € G.
If a is the smallest element in G then w; (a) = ¥ € 6. In both cases we obtain ws(a) €
€ IRy by 3.4. As wg is an injection by 2.10(i), we have a € R and IR; < R; this gives
the statement.

N is an R-nonhomonymous set in G: N is finite by 2.10(])) and N < M by 4.2.
Suppose that there exists a € M; which is the smallest element in R — N. Let A€
€ ® — wyz(VgN) be arbitrary. Obviously, wg[G] satisfies the minimal condition.
It is a g-dense subset in ® by 2.10(i). It follows by 1.5 that IR is a o-dense subset
in . Thus, there exists W = IRy = wg[R] such that 4 = V. Since 4 ¢ wy(VuN),
it holds A N. As wg[R — N] 2 U — N # 0, we can find be R — N with the
property wg(b) € A. But then a < b and wg(a) S wg(b) = A. We have proved that
wg(a) is the smallest element in & — wy(VyN). As, at the same time, wg(a) € Ay
by 4.2, we have a contradiction with N € .

C is an R, N-primitive set in G: Suppose a € Pg(R, N). Then a € R, wg(a) € IR
and, by 3.4, w;(a) € 6. Further, p§(4 U N) = &(a) for some 4 € wg[G] L {wg(a)}
such that wg(a) < 4. As wg[G] U {wg (@)} € G, it holds 4 € 6. By 3.16, we obtain
wg(a) e Py = aJG[C]. Then a € C according to 2.10(i) and we have proved Pg(R, N) =
< C. The remaining inclusions N < C, C < R hold trivially.

In the following, we find a O-generating system ® on G satisfying wg[R] = IR,
wg[N] € Ry, wg[C] = Py for a given suitable triple (R, N, C) in a given poset G.
According to 3.13, & = HX. By 3.16, each 4 € 532, such that there existsae R - C
with the properties wg(a) = 4, ¢p&(4 U N) = £4(a), is necessarily in H§ — &. This
leads to the
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4.8. Definition. Let G be a poset and (R, N, C) a suitable triple in G. We put
Dg(R, N, C) = {4; Ae H& and there exists a,e R — C such that
wg(ay) € 4, o84 U N) = &5(a,)} and
Je(R, N, C) = H5 — D(R, N, C).
We shall often write D, J instead of Dg(R, N, C), Js(R, N, C), respectively.

4.9. Example. Let us take the suitable triple (R, N, C) = ({a, b, ¢, d}, {c}, {a, b, c})
in the poset G from 4.6. Then Ds({a, b, ¢, d}, {c}, {a, b, c}) = {4; A€ HS and
w;(d) € 4, %4 U {c}) = &)} = {4; A€ Qs and {a} = 4, 4 U {c} = {a,
b, ¢}} according to 3.15. It is clear that Dy({a, b, ¢, d}, {c}, {a, b, ¢}) = {{a, b},
{a, b, ¢}} and J = Js({a, b, ¢, d}, {c}, {a, b, c}) = Qz — Ds({a, b, ¢, d}, {c}, {a,
b, ¢}) = {9, {a}, {b}, {c}, {a, ¢}, {a, d}, {b, ¢}, {a, b, d}, {a, c,d}, {a, b, c, d}}. We
can easily verify J e Gs(G). In Fig. 2 we can see that wg[{a, b, ¢, d}] = IRy,
oel{e}] € Ry, wella, b, ¢}] = Py,

We prove that the conclusions of 4.9, namely I = J4(R, N, C) € Gs(G), wg[R] =
7 IRy, wg[N]e Ry, ws[C] = Py, are true for any suitable triple (R, N, C) in
any poset G.

4.10. Lemma. Let G be a poset and (R, N, C) a suitable triple in G. Then 36(R, N, C) e
€ Gs(G).

Proof. We verify the validity of 2.3(i), (ii) for D.

If there exists 4 = wg(a) in D then piwg(@) U N) = £g(a,) and wg(a,) S wga).
Each of the cases wg (a,) = wg(a), w;(a,) < wg(a) implies a4 € Pg(R, N) < C which
contradicts a, € R — C. Thus, wg[G] n D = 0. If e D then wg(a,) =9, pgN) =
= £g(a,). It is clear that a, € M. For an arbitrary ae R — N, wg(a) € Pog by 3.12.
This, the obvious fact N € Q;, and 3.5 give a ¢ pR(N). Since p5(N) = &4(a,), we have
a¢eg(ay). Then aeeg(ay) and, consequently, R — N < gg(a;). By this and by
ay€ R —N, it follows that a is the smallest element in R — N. But then N is not an
R-nonhomonymous set which is a contradiction. We have proved 0 ¢ D. Since
G ¢ D in a trivial way, 2.3(i) is satisfied.

Clearly, a,¢ A for each 4e®. Let us assume Be 95, 4 = B, a,¢ B. Then
wg(a,) € B and, as B < &4(a,) by 3.2(iii), it follows A U N < BU N < &5(a,) =
= @&(4 U N). This and 2.4()) imply @&(B U N) = £g(a,). Thus, Be D and we
have proved 2.3(ii).

The statement follows by 3.11 and 2.3.

The following lemma formulates an interesting property of the operator .

4.11. Lemma. Let G be a poset, R an irreducible setin G, Ae $X,a e G. If wg(a) = A
and B < A L £g(a) for some B e Qg then ¢S(B) = A L gg(a).
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Proof. Let us admit that there exists b, € ¢§(B) — [4v ¢(@)]. Since by € oi(B) —
— B, we obtain w(b,) ¢ Por by 3.5 and bo€ G — R by 3.12.

Let there exist an integer i = 0 and elements b,, b,, ..., b; such that by > b, >
>..>b;, and b;e pR(B) — [4 Uega)], bjeG — R for j=0,1,...,i. Then,
clearly, wg(b) nega) =0 and we also have wg ()< 4. Indeed, wg (b)) < 4,
b,e G — R, A€ HR give b, € A which is not true. Thus, there exists b;,,; < b; such
that b;,, ¢ A U (). Since b, ; € p5(B) — B, we obtain b;,, € G — R by 3.5, 3.12.

By induction, we construct an infinite descending chain b, > b, > ... which is
a subset of f(B) — [4 U g4(a)]. Let us put C = @f(B) — U g4(b)). It is clear that

20

CeQ. If wg(b) = C for be G — R then wg(b) < (pg(B)= and be p&(B). If be

€ U &c(b;) then there exists je {0, 1, ...} such that b € g5(b;). It follows that b;,, €
i20 ’

€ w; (b)) = C and we have a contradiction. Thus, be C and Ce $&. Since B < C,
we have ¢3(B) = @5(C) = C; this contradicts C < ¢&(B).

4.12. Lemma. Let G be a poset, (R, N, C) a suitable triple in G. If a€ N then
¥ (3s(R, N, C), a).

Proof. Let us take an A € J arbitrarily. We prove 4 V wg(a) = 4 L g5(a) by
transfinite induction.

(1) We put B® = ¢R(4 U {a}). Since 4 € H¥, w;(a) =0, it holds A U {a} € Qg
and B® © 4 U gg(a) by 4.11. In case B°e D we have @g(B° U N) = &,(ag) and
og(ag) S B. If w;(ag) < A then A e D. Indeed, ég(ap) = @a(B® U N) =
= of(p&(4 U {a}) UN) = @(4 U N) by 2.4(ii) because a € N. It is a contradiction.
Thus, there exists b € wg(ag) — A. As be B® — A and B° = A4 U g5(a), we have
b € eg(a) and apo € g5(a), too.

(2) Let 4 # 0 be an ordinal number. Suppose B* € D, B* = A U &4(a), ap. € £6(a)
for each y < Aand B* « B' forall p <v < A

(a) If 4 is a successor ordinal then we put B* = ¢&(B*~* U {ag.-:}). Since ag.-. €
€ B* — B*"!, we have B ' < B* and B* c B’ for all u <v < i + 1. Clearly,
B*"1 U {ag:-1} € A Uegla) and it holds B* ™' U {az.-.} € Q¢ by 3.2(iv) because
B~ 'e Q; and w; (ag:-1) < B*.

(b) If A is a limit ordinal then we put B* = @&( U B*). For each u < 2 there exists v
B<i
such that u <v <1 and we have B* = B’ = B It follows that B* = B” for all

u <v <A+ 1. Simultaneously, |J B*e Q; and |J B* = 4 U g5(a).

. u<i n<a
(c) Both in (a) and in (b) we obtain B* = 4 U ¢g(a) by 4.11. If B* € D then B® < B*
gives £5(ago) = @R(B° U N) € @&(B* U N) = &5(aps). Thus, age < ap. according to
3.2(i); by this and by ago € g4(a), it follows that ay. € gg(a).
(3) If B* is defined then B® c B' = ... ¢ B* B* < G foreach p < 4, and B*€ D
for each p < A. This and the connections between cardinals and ordinals (see [2])
give the existence of an ordinal u such that B* is not defined. Then, necessarily, there
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exists an ordinal v < u satisfying B'€ 3. As 4 < B°, wg(a) < B°, we have 4 < B,
wg(@) € B* and AV wgla) < B’. On the other hand, by (2)(c), B* < A Y &4()
and we have 4 V wg(a) € 4 U g5(a).

4.13. Theorem. Let G be a poset and (R, N, C) a suitable triple in G. Then wa[R] =
= lea(R,N,cw wG[N] € mJG(R,N.C)’ wG[C] = P:{G(R.N.Cr

Proof. (1) wg[R] = IR;: As 3 = H§, we obtain IRy = wg[R] by 3.13. By 4.10,
ge3J = 9HF — D. By this and by N = Mg, it follows that w;(a) = 0 ¢ D for each
aeN. Let aeR — N be arbitrary. According to 3.12, wg(a) € Pyr. This, a¢
¢ wg(a) U N, 3.5, give a¢ pf(wg (@) U N). If wg (a) € D then pf(wg (a) U N) =&4(b)
for b = a,_,,.- That means wg(a) < é5(b), a e eg(b); by 3.2(ii) we obtain b = a.
But then b e Pg(R, N) = C and we have a contradiction with be R — C. We have
proved wg(a) ¢ D for each ae R. Since J = HX — D and wj(a) € H8 by 3.12, 3.4,
we obtain wg () € J for each a € R. Then wg[R] = IR, by 3.4.

(2) 0g[C] = Py: It follow from (1) that Py = wg[R]. Let us take ae R — C.
It holds &,(a) € H8 by 3.12, 3.5. As a¢ C, N < C, we have ae N. If b ¢ £5(a) for
some b e N then a < b and b ¢ M; which is not true. For this reason &g(@) U N =
= &g(a) and @(Eg(a) U N) = &4(a); this and w;(a) S &4(a) give &5(a) € D. Then,
clearly, £5(a) ¢ J and wg(a) ¢ Py according to 3.5. We conclude Py < coG[C].

Let us take an q € C arbitrarily. Then £5(a) € H8 by C = R, 3.12,3.5. If wg (b)) S
< £;(a) for be R — C then b € &5(a). Indeed, by b € gg(a) and 3.2(ii), it follows that
a = b which is a contradiction. Now, £5(a) ¢ D in an obvious way and ég(@) e J =
= H¢ — D. Then wg(a) € Py according to 3.5. We have proved wg[C] < Py.

(3) wg[N] e Ry: By (2) and by 4.2 we obtain ws;[N] < Py n Ay. This inclusion,
4.12, and 3.8 give wg[N] = Sy. Thus wg[N] = Sq N Py N Ay and, clearly, wg[N]
is a finite set. Let us assume that there exists 4 € Ay which is the smallest element
in 3 — wy(Vqwg[N]). Regarding 1.10 we have IRy N wy(Vywg[N]) = wg[N]. Then
ARy — w[N]) N 0y(V4we[N]) =8 and, consequently, IRy — wg[N] = J -
- ws(Vsa)G[N]). By this and by the properties of 4 we obtain that A is the smallest
element in IRy — wg[N]. As A €Ay, there exists ac Mg such that 4 = wg(a)
according to 4.2. By these results and by (1) it follows that a is the smallest element
in R — N. We have a contradiction with the fact that N is an R-nonhomonymous
set in G.

4.14. Corollary. Let G be a poset satisfying the minimal condition and (I, R, N, C)
an ordered fourtuple of subsets of G. Then there exists a o,-dense embedding e of G
into a complete lattice S such that e[I] = Ag, e[R] = IRg, [N]eNs, ¢[C] = Ps
if and only if I = Mg and (R, N, C) is a suitable triple in G.

Proof. Let there exist a o,-dense embedding e of G into a complete lattice S
such that ¢[I] = Ag, e[R] =IRg, e[N]e Ry, ¢[C] = Ps. By 2.10(i), there exist
® € Gs(G) and an isomorphism ¢: S — © such that te = wg. Then wg[I] = w[I] =
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= [As] = Ag and, similarly, wg[R] = IRy, wg[N]e Ry, w[C] = Pg. By this
and by 4.2, 4.7, I = M; and (R, N, C) is a suitable triple in G.

Suppose that 7 = Mg and (R, N, C) is a suitable triple in G. If we put S =
= J(R, N, C) and e = wg: G — S then e[I] = Ag by 4.2 and ¢[R] = IR;, ¢[N] €
€ Ng, ¢[C] = Ps by 4.13.

5. MAIN THEOREM

Let (V, L) be a language. We put
SUW, L) = {Uo,[4]; 4 < V).

For each language (V, L), ZU(V, L) is a finite lattice with # as the smallest element
and with union as the operation of join. If a language (¥, L) contains no parasitary
elements then the identical map from (¥, L) into ZA(V, L) is a 6,-dense embedding.
Let S be a lattice. We call an ordered pair (r, (V, L)) an I-representation of S if
(V, L) is a language and r: S — ZA(V, L) an isomorphism.
Using the statements [4] II, 3.1 and [4] II, 3.3, we can easily prove

5.1. Theorem. Let S be a nonempty finite lattice and (H, R, P, I, N, F, C) an ordered
seventuple of subsets of S. Then there exists an 1-representation (r, (V, L)) of S such
that (V, L) contains no parasitary elements and r[M| = M(V, L) for M = H, R, P, I,
N,F, Cifand only if HS S — IRs, R = IR, P = IRs — Ag, I = Ag, Ne R,
F=Ag— N, C = Ps.

‘ 5.2. Main theorem. Let G be a finite poset and (H, R, P, I, N, F, C) an ordered

seventuple of subsets of G. Then there exists a p-representation (r, (V, L)) of G such
that (V, L) contains no parasitary elements and r[M]| = M(V, L) for M = H, R, P, I,
N, F, Cifand only if I = Mg, (R, N, C) is a suitable triplein G, H=G — R, P =
=R — Mg, F=M; — N.

Proof. Let there exist a p-representation (r, (¥, L)) of G such that (¥, L) contains
no parasitary elements and r[ M ] = M(V,L)for M = H,R, P, I, N, F, C. The ordered
pair (1 5y, 1y, (V, L)) is an 1-representation of ZA(V, L) and H(V, L) < XA(V, L) —
= IRsyy,1)» R(V, L) = IRsyy 1y, P(V, L) = IRyyy,1y — Ay, IV, L) =
= Asyw,1y> NV, L) € Rsg, 1), F(V, L) = Asyp, 1) — N(V, L), C(V, L) = Pryy,1,
according to 5.1. By these results, by the fact that r: G - ZA(V, L) is a oy-dense
embedding, by 4.14, it follows that 7 = M and (R, N, C) is a suitable triple in G.
By the definition of a pure homonym we have H = G — R. The assertions P = R —
— Mg, F = Mg — N hold trivially.

Let now I = Mg, (R, N, C) be a suitable triplein G, H =G — R,P = R — Mg,
F = Mg — N. By 4.14, there exists a oo-dense embedding e of G into a complete
lattice S such that e[I] = Ag, ¢[R] = IRs, e[N] e Rs, [C] = Ps. Then, clearly,
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e[H] =< S — IRs, ¢[P] =IRs — Ag, ¢[F] = As — ¢[N], and S is a nonempty
finite lattice by 1.7(ii). According to 5.1, there exists an 1-representation (r’, (¥, L))
of S such that (¥, L) contains no parasitary elements and r'[e[M]] = M(V, L) for
M=H, R P, I N, F, C.If we put r = r'e then the ordered pair (r, (V, L)) is
a p-representation of G and r[M] = M(V,L) for M = H, R, P, I, N, F, C.
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