
Archivum Mathematicum

Miroslav Bartušek
On asymptotic properties and distribution of zeros of solutions of y′′ + f(t, y, y′) = 0

Archivum Mathematicum, Vol. 14 (1978), No. 1, 1--12

Persistent URL: http://dml.cz/dmlcz/106986

Terms of use:
© Masaryk University, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/106986
http://project.dml.cz


ARCH. MATH. 1, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 

XIV: 1—12, 1978 

ON ASYMPTOTIC PROPERTIES AND DISTRIBUTION 
OF ZEROS OF SOLUTIONS OF y" +f(t9y9y') = 0 

MIROSLAV BARTUŠEK, Brno 

(Received May 31, 1976) 

1. Consider a differential equation 

' y " + f ( > , y , y ' ) = 0 , 

(1) < where the function f is continuous in D = {(t9 y, v): 

te[t09co)9yeR9 veR}9f(t9y9 v) y > 0 for y ?- 0. 

It is evident that Cauchy initial problem for (1) has a solution but we do not 
suppose its uniqueness. In the present paper we shall omit the trivial solution y === 0 
from our considerations. 

A solution y of (1) is called oscillatory if there exists a sequence of numbers {tk}f 
such that t0^tk< tk+i9y(tk) = 0, y(t) # 0 o n (tk9 tk+l)9 k = 1, 2, 3, ... 

In this paper we shall deal only with oscillatory solutions of (1) that exist on the 
whole interval [f0, oo), i.e. lim tk = oo. We shall study some asymptotic properties 

k-+ao 

of them and the distribution of their zeros. 
If y is an oscillatory solution of (1), then the distribution of its zeros is characterized 

by the sequence {Ak}ft Ak = tk+l - tk where {tk}™ is the sequence of all zeros of y. 
There exists exactly one sequence {xk}™ called the sequence of extremants of y, 
with the property tk < xk < tk+l9 y'(xk) = 0 (see [2]). The symbols tk, xk9 Ak have 
the above mentioned meaning in the present paper. 

We shall need the simple lemma the proof of which can be found in [2], [3]. 

Lemma 1. Let y be an arbitrary non-trivial solution of (1) and ti < t2 its consecutive 
zeros (y(t) ^ 0 on (tx, t2)). Then there exists exactly one number T, tt < x < t2 such 
that y'(x) = 0 holds, the function y' sgny is decreasing on (tt, t2) and the inequalities 

| y'('i) | (t - h) > | y(x) |, | / ( / , ) | (t2 - T) > | XT) I 
are valid. 

2. Theorem 1. Let y be an oscillatory solution of (1) and let there exist a constant 
M > 0 such that for an arbitrary number Mt > 0 the following relation holds: 
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lim/(f, y, v) = 0, uniformly for j y | g Mx, | v j = M. 
f-*oo 

Tĥ /i a/ teas/ ewe 0/ the following assertions is valid 

(i) lim/(t) = 0, 
f-+co 

(ii) y /s unbounded on [f0, oo). 
//*, //i addition, constants M2, M3 exist such that 

0<M2й\y(ч)\ѓM3, £ = 1,2,3, ..., 

then lim Afc = 00. 
k-ao 

Proof. Assume that y is bounded on [f0, 00). We shall prove at first the relation 
lim y'(t) = 0. Let 
f->oo 

I y(0 I = N = const. < 00, t e[t0, 00). 
Put 

Hk(v) = max | f(t9 y, v) \ > 0 for v e R, 

|y>| = N , tkStStk+A. 

It follows from the assumptions of the theorem that 

(2) lim Hk(v) = 0 uniformly for | v \ = M. 
jfe-00 

By multiplicating the equation (1) by — and by integration we obtain 
Hk(y) 

(3) ' T - - = -?^^-d,= 
i Hk{t sgn y'(tk)) ,{ Hk{y'(t)) 

tk Hk(y (0) 

Suppose that y' does not converge to zero for / -> 00. Then there exists a sequence 
of integers {ki}f such that | y'(tki) | = e > 0, i = 1, 2, 3, ... holds in case e, e = M 
is a suitable number. According to (2) 

i ; . , . . . . - . , • 

,. , / ( ? l ) | tdt ^ ,. J tdt 
lim } - ^ lim J = 00 
i-co 0 Hki(t sgny'(lk)) i-co 0 Hki(t sgn y'(tk)) 

arid We get a! contradiction to the inequality (3). Thus the first part of the statement 
is proved. 

Let M2, M3 be constants such that 0 < M2 g | y(xk) \ = M3, k = 1, 2, 3, ... 
Thus according to the proved part of the theorem lim y'(t) = 0 holds and the rest 

t-*oo 

of the statement follows from Lemma 1: 
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r t ->li_L > Mi _..*, 
i t — rt > -tc —*• oo , 

I/(o r i/a*)I*— 
**+l ~ T* > = ~* °0« 

I/('*+.) I l/(**+i)l--» 
The theorem is proved. 

Theorem 2. Le/ y be an oscillatory solution of (1) and let a constant M, 0 < M 
exist such that for arbitrary numbers Mx, M2, 0 < M2 g M, 0 < Mx the following 
relation holds 

lim | f(t9 y,v)\ =oo uniformly for M2 _; | y \ <J M, | v \ _; M t . 
f-»oo 

7%e/f af /easf one of the following assertions is valid 
(i) lim>>(0=0, 

f-*oo 

(ii) yf is unbounded on [t0, oo) . 
Proof. Suppose that (i) is not valid. Then there exists a sequence of integers {kJS° 

such that | y(xki) | _: e > 0, i = 1, 2, 3, . . . where e, e <; M is a suitable number. 
Put 

7/f(v)= min | / ( - \ J M > ) | > 0 , for 

e/2 = | y | _ f i , fk< <; t S tki + 1, veR; i = 1,2, ... 

With respect to the assumptions of the theorem we have 

(4) lim Ht(v) = oo uniformly for | v | = const. 
| ->00 

y 
By multiplicating (1) by — and by integrating we obtain 

Hiy') 

(5)
 I y y tdt = ]'i/(t,Ktx/(o)i 1/(01 dt ^ 

l Ht(t sgn y\tk)) I HfrXt)) 
^ y i r ( . , ^o . ^co) I I -̂co i < i ^ y , ,,xo; dr=, x<f) t _, ̂ g/), _ ̂ _, 

.,- Hi(y(t)) r,« 2 
where t}9 tf are such numbers that tki < tf < tf ;_ T*., | y(t]) \ = e/2, | y(tf) | = e, 
/ = 1,2,3,... 

Let y be bounded on [t0, oo]. Thus there exists a constant N > 0 such that 
| j>'(0 | _; N, t e [t*0, oo). Then according to (4) we can conclude 

\y'(tki)\ tdt N dt 

1 • „, „ „ =!vj df o tf ,(< sgn / ( U ) o tff(f sgn y\tki)) i-» • 

But this fact is in contradiction with the inequality (5) and the function / is un­
bounded on [J"0 , oo). The theorem is proved. 



Remark 1. It is evident from (3) and (5) that under the assumptions of Theorem 1 

lim inf {| y(xk) |} < oo => lira inf {| y'(tk) |} = 0 
fc-+oo fc-*oo 

holds, too. Similarly, if the assumptions of Theorem 2 are valid, then 

lim inf {| y(xk) |} > 0 => lim {| y(tk) |} = oo 
fc-*oo fc~>oo 

holds. 

Remark 2. Let the assumptions of Theorem 1 be valid and let y be bounded on 
[f0, oo). Then 

l im/ (0 = 0, lim/CO = 0. 
f-*oo r-*oo 

The last result foUows from the previous one and from the relation 

lim y"(t) = - l im f(r ,^(0, / (0) = 0, 
t-*co t-*oo 

Similarly, let y be an oscillatory solution of (1) and let for an arbitrary constant 
M2 > 0 the foUowing relation hold 

lim | f(t, y9v)\ = oo uniformly for | v \ < oo, M2 ^ | y \ < oo. 
i->oo 

Let Um sup {| y(xk) |} > 0. Then the functions y\ y" are unbounded on [f0, oo). 
fc->00 

If, in addition, lim inf {| y(xk) |} > 0, then 
fc-*Q0 

lim j y'(tk) | = Um ak = oo where ak = max | y"(t) |. 
fc-*co fc-+oo tettkttk + il 

Remark 3. The results of Theorems 1 and 2 were studied in [2], [3] for the 
differential equation 

(/*OyO' + /(*>y,y')=o. 
The statements of Theorems 1 and 2 generalize some conclusions of the above 

mentioned papers for (1). 

Corollary 1, Let y be an oscillatory solution of a differential equation 

^ + a(0/(y,y ') = 0 , 

where a(t)9 f(y9 v) are continuous functions 

for t e [f0, oo), y e R, v e R, a > 0 , 

f(y9v)y > 0 for y # 0 . 

(i) Let lim a(t) = a If y is bounded on [f0, oo), then 

limy'(0 = 0 , Um^(0 = 0. 

(6) 



If, in addition, lim inf {| y(rk) |} > 0, then lim Ak = oo holds. 
f-*oo k-*ao 

(ii) Let lima(/) = oo. If y' is bounded on [/0, oo), then 
f-»oo 

lim y(t) = 0. 
f-+00 

(iii) Let lima(0 = oo. If there exist constants M, Mx such that 0 < M g 
f-»QO 

S | y(rk) | S Mi < oo holds, then lim | /(.**) | = oo. 
&-> oo 

If, in addition, for an arbitrary constant N > 0 there exists a number M2 > 0 
such that 

\f(y,v)\ =M 2 > 0 , | j | = N , | v | <oo 

holds, then lim ak = oo, ak = max | j>"(0 |. 
*-+00 «6[f|c,rk+i] 

3. In this paragraph some well-known results for the linear differential equation 
(see [15], [1], [9]) 

y' + 9(Qy = 0, te\t0fco) 

q continuous, 0 < M = const. :g q(t) <£ Mx = const. < oo, t e [f0, oo) are extended 
to the equation (1). 

Theorem 3. Let y be an oscillatory solution of(l). Let constants M, Mx, M3, 0 < M, 
0 < Mt, 0 < M3 exist such that for an arbitrary number M2, 0 < M2 S M there 
hold 

\f{t9y9v)\ = M3, *e[f0,oo), | y | ^M , \v\ S Ml9 

0 < M4 g |/(>>y, v)\9 te[t09 oo), M2 ^ \y \ £ M, | v \ g Mls 

where M4 /s a constant (depending on M2). 
Then 

limXO = 0 if, and only if lim y'(t) = 0. 
f-+oo f->oo 

Proof. Let limy(t) = 0. Then there exists a number t e [t0, oo) and an integer £ 
f-*oo 

such that | y(t) \ S M9 t e [f, oo), T* g: t. We can define the function Hk(v) in the 
same way as in Theorem 1 (N = M), the estimation (3) holds, thus especially 

\y'{tx)\ t d t 

(7) J - , g j j f a ) ! , fc = £ , £ + l , £ + 2,. . . 
o Hfc(*sgn/(**)) 

If lim j(tk) = 0, then according to the estimation 
*-+oo 

flik(i?) ^ M3 = const. < oo, \v\SMl9 k = if, k + 1, £ + 2,.. . 

(the validity of which follows from the assumptions of the theorem) we can conclude 
lim/(tk) = 0. 
k-*oo 
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On the contrary, let lim y'(t) = 0. We shall use the indirect proof for proving the 
t-*oo 

relation limj(0 = 0. If this relation is not valid, then there exists a sequence {kjf 
f~*00 

and a number e, 0 < s such that | y(xk) | = e, i = 1, 2, ... and (5) hold. Thus 

f L™ > * > o. 
o H^sgn/^)) - 2 

From this and according to lim^XO = 0 we obtain a contradiction because from 
r->oo 

the assumptions of the theorem there follows 

0 < N2 = const. <; Ht(v), i = 1, 2, ... 

uniformly in some neighbourhood of v = 0. The theorem is proved. 
Remark 4. It is evident from the proof of Theorem 3 that the following assertion 

is valid, too 
lim inf | y(xk) | = 0 o lim inf | y'(tk) | = 0. 

k-*oo fc-*oo 

Corollary 2. Let y be an oscillatory solution of (6). Let constants M, Mx exist 
such that 

0 < M = a ( 0 ^ M i , fe[t0 ,oo) 
holds. Then 

lim y(t) = 0 if and only if lim y'(t) = 0. 
f-+oo t-*<x> 

Theorem 4. Let y be an oscillatory solution of (I). Let a continuous function g(v), 
00 t 

v e R9 g > 0, J dt = oo exist such that for arbitrary constants M, Ml9M2, o 9\±t) 
0 < M i gj M < oo Mere /ro/d |f(*\ y, v) | g M3g(tf), * e [t0, oo), \y\ ^ M, v e R 
and 

(8) 0 <M4^\f(t9y,v)\, *G[t0,oo), Mx^\y\, \v\£M2. 

Here M3 (M4) & a suitable number that depends on M (on Mt, M2). Then 

(i) y is bounded on [t0, oo) if and only if y' is bounded on [t0, oo) 
(ii) lim | y(xk) | = oo if and only if lim \ y'(tk) \ = oo 

k-+oo Jfe->oo 

(iii) If 0 < M5 -= const. <* | j(tk) | <; M6 = const., k = 1, 2, 3 , . . . , rhen there 
exist numbers C, Ct such that 

(9) 0 < C g z i J k g C 1 , £ = 1,2,3,... 

holds. 
Proof, (i) Let y be bounded |y(t)\ ^ N9 te[t0, oo). Then we can define the 

function Hk(v) in the same way as in Theorem 1 and (3) holds. Thus, especially 
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J ^ ^ L _ S \ y ( H ) \ S N , fc-1,2,3, ... 
0 H*(f sgn y (tk)) 

According to the assumptions of the theorem a constant N, < oo exists such that 
H*(v) ^ Nig(v), k = 1, 2, ... From this 

1 'y'('fc)l / d / <
| y Y > l / d / < ^ 

-Vi o #(/ sgn y'(tk))
 = o Hfc(l sgn/(/*)) = 

Thus with respect to the assumptions of the function g we obtain that y' must be 
bounded on [/0, oo). 

On the contrary let y' be bounded | y'(t) | <* N2, / 6 [/0, oo). The statement will 
be proved by the indirect proof. Thus suppose that there exists a sequence of integers 
{ki}f such that lim | y(rki) | = oo. Let e > 0, ai9 i = 1, 2, ... be such numbers that 

f-00 

I y(*k) | > c, | y(<ri)\ = e, /*. < at < T*., i = 1, 2, ... 

hold. Put 

A{(v) = min | f(/, y, v) > 0 for e = 7 = | y(rk) |, /ft g / g / t + 1 . 

There exists a constant N3 such that 

(10) A;(v) = N3, | H ^ N 2 , 1 = 1,2,... 

and thus (according to (1)) 

0 N 3 - Jo ^ t s g n / U t , ) ) i A{y\t)) 

^ 7 ' l -v'(01 d* = I KT*,) I - e -7-r-r 00. 

But this is a contradiction. 
(ii) The result follows from the proved part of the theorem and from the following 

conclusion which can be prjved in the same way as (i): 
Let {k j f be a sequence of integers. The sequence {| y(rk) \}^ is bounded on [/0, 00 

iff {| y'(tk) |}5° is bounded on this interval. 
(iii) It follows from the proved part of the theorem that 

(11) I y\tk) J g N5 = const., k = 1, 2 , . . . 

holds. Denote by ak, ak such numbers that 

tk<ak<ak^ tk , I y(ak) | = - ^ , | yv?fc) | = M5. 

As the function y'(t) sgn y(t) is decreasing in the interval (/k, xk) (see Lemma 1), the 
following inequalities are valid 

0 < ak - tk < ak - ak <> xk - ah. 



Put 
Ak(v) = min| f(f, j ,v) | > 0 

for Af5/2 = | y | S M69 tk = t = rfc, veR; A: = 1,2, ... 

Then Afc(t>) = N6 = const. > 0 for | v | = N5. By multiplicating (1) by -A^^yXO) 
and by integration we can conclude 

oo > Ei z ' T ' dt = Tfif(t,xo,/(o)i d, < 
!V6~

 Jo ^(Jsgn/O*)) £ Ak(y\t)) 

>]Lf(<>y«)>y'mdt^dt = Xk_0k. 
** A(yf(t)) 

Thus Tfc — tk = (rfc — afc) + (<xfc — tk) is bounded above for k = 1, 2, 3, . . . It can be 
proved similarly that {tfc + l — Tfc}f is bounded. 

The boundedness of {-4fc}J° from below by a positive constant is a consequence of 
Lemma 1 and (11). The theorem is proved. 

Remark 5. It is evident from the proof that under the assumptions of Theorem 4 
the following assertions are valid 

(i) lim inf | y(xk) \ < oo <=> lim inf | y'(tk) \ < oo 
k-»co Jc-*oo 

(ii) lim sup | y(t) \ = oo <=> lim sup | y'(t) | = oo. 
r-*oo r-»oo 

Remark 6. It can be easily seen from the proof of Theorem 4 that the conslusion 
(iii) holds even if we suppose 

0 <MS \f(t,y,v)\9 te[t09co)9 Mt£\y\£M9 \v\£M2 

instead of (8). 

Theorem 5. Let y be an oscillatory solution of (1) and let a continuous function g 
00 t dt 

exist, g(t) > 0, t e[t09 oo), J < oo such that for an arbitrary constant Ml9 
o g(±0 

0 < Mi it holds 

0 <M2g(v) = \f(t,y9v)\9 re[r 0 ,oo) , Mx ^ \y\9 veR9 

where M2 > 0 is a suitable number (depending on Mt). Then y is bounded on [t0, oo). 
If, in addition, 0 < M3 = const. <J | y(xk) \,k = 1, 2, 3 , . . . , then {Ak}™ is bounded. 

Proof. The first part of the theorem can be proved similarly to the second part 
of the statement (i) in Theorem 4 (i.e. y' is bounded >̂ y is bounded). We must use the 
estimation 

A,(t?) £ N3g(v), veR9 / = 1,2,3,... 
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instead of (10). The boundedness of Ak can be proved similar to the same result in 
Theorem 4. 

4. Consider a differential equation 

(12) y*+f(f,y)sO>')=0, 
where f(t9 y)9 g(v) are continuous functions in D = {(t, y) : t e [t09 oo), y e R}9 ve R9 

g > 09 f(t9y)y > 0 for y*0. 
In our further considerations we must suppose very often the validity of the 

conditions 

(13) f(t9y) = -f(t9 - y ) , g(v) = g(-v). 

This paragraph contains especially some consequences of the previous paragraphs and 
of some results of [5]. At first we mention here necessary results of [5]. 

Theorem. Let y be an oscillatory solution of (12). Let the function \f(t9 y) | is non-
increasing (non-decreasing) with respect to t in D. 

(0 Ifg(v) = g( — v)for v e ( — OO, OO), then the sequence {\ y'(tk) |}J° is non-increasing 
(non-decreasing) and Tk — tk S tk+i — Tk (Tk — tk «> tk + i — Tk) holds. 

(ii) If f(t9y) = —f(t9 —y) in D, then the sequence {|y(Tk)|}5° is non-decreasing 
(non-increasing). 

Theorem 6. Let y be an oscillatory solution of (12) and let (13) hold. Let 
(i) (i) | f(t, y) | be non-decreasing with respect to t in D 

(ii) a constant M > 0 exist such that f(t9 y) is non-decreasing with respect to y in 
Dx ={(t9y):te{t09oo)9 \y\ = M}. 

If\imy(t) = 0, then lim Ak = 0. 
- - • O O k->ao 

Proof. It follows from Theorem that {| y(Tk) \}f is non-increasing and {|y'(tk)|}i° 
is non-decreasing. Thus 

\y'(tk)\ = \y'(t1)\ = N > 0 , k = 1,2,3, ... 

ming(0 
Let e > 0 be an arbitrary number, e < J l ^ ^ ~ — - . Denote by ak9 k - 1, 2, 3 , . . . 

~ maxg(0 2 
l-IS-V 

numbers such that tk < ak < Tk9 I y'(ak) I == e. First we prove that lim ak - tk = 0 
* - o o 

holds. According to the Rolle theorem there exists a number & e (tk9 ak) such that 

\y(*ó\ 

Æk) = wu УW F г o m ü 

<Гк~ h 

IІS 

°k - h = 
\Á°Ò\ 

\y'Ш 
and thus lim ak — tк = 0. 

*-*oo 

fc-*oo 



According to lim y(t) = 0 there exists an integer n such that | y(Tk) | ^ M, k = n. 
t~*cc 

Consider the function 
Tk v"dt y,(t) dt tk 

F«> - i - ^ - - i 7H> " "J / ( ' . J<0)dr . r € [ f 4 l t j . 

f #(y ) 0 gW r 

I f <jfc =" lt = l2 £ tfc, then | X't) | ^ | y(>2) | and 

FVi) - F'(h) ~f(t2,y(t2)) - f ^ - y C ) ) = 

= [f(h,y(t2)) - / ( W ( ' i ) ) ] + [ /vW( ' i ) ) -Atx>y(h))\ = 

= 0 for y(tt) > 0 
^0 fory(t1)<0. 

As F'(t) > 0 (< 0) if y > 0 (y < 0), the function | F' | is non-decreasing on (ffc, T*). 
Denote by ak such number that tk ^ ak < ak, \ F(ak) | = 2 | F(ak) |. 5k really exists 
because | F | is non-increasing and 

I f (**) I ̂  J -^TA = 
0 #(t) ~ min g(t) ~ 2 max g(t) ' 

1 ( y ' ~ J 0(0 = max^(t)* 

According to the mean value theorem we have 

| F(ak) | = | F(t&) - F\>,) | = | FXZd | (Tk - ak)9 ix e (<xfc, Tjk), 

| Ffa) | = | F((Tfc) - F(afc) j = | F'«2) | (<r* - **), f2 e fo, ak). 

From this and with respect to | F' | being non-decreasing, we can conclude 

*k - <rk ^ <rk - €tk ^ ak - ffe - j ^ * * 0 . 

Thus finally lim T* — /* = 0. 
k~*ao 

By Theorem there holds tk+l — Tk ^ Tk — tk and the theorem is proved. 

Remark 7. Katranov [11], [12] deals with the problem of Theorem 6. He proved 
the statement of this theorem but under the more restrictive assumptions. He must, 
in addition, suppose that 

1 ° there exists -j~-f(t, y) and it is continuous 

2° for an arbitrary M * 0 there holds lim \f(t, M) | = co 
f-+oo 

3° there exists a constant gt > 0 such that g(v) > gt, v € R 
4° the uniqueness of the Cauchy initial problem holds. 

10 



Theorem 7. Let y be an oscillatory solution Of (12), (13) and let \f(t, y) \ be non-
increasing with respect to t in D. Further^ let for an arbitrary constant 0 < M there 
holds limf(t, y) = 0 uniformly for \y\<L M. Then 

r-*oo 

lim Ak = oo. 
fc-oo 

Proof. It is evident that the assumptions of Theorem 1 are fulfilled. Thus either 
lim y'(t) — 0 or y is unbounded. From this and according to Lemma 1 and Theorem 

f-+oo 

we have 

Ak > - • • oo. 

I/O*) I k~" 
The theorem is proved. 

The following Corollary is a consequence of Theorem 4 and Theorem. 

Corollary 3. Let y be an oscillatory solution of (12), (13). Let \f(t, y) \ be non-
oo t 

increasing (non-decreasing) with respect to t in D and let J —— dt = oo. Further 

suppose that for an arbitrary constant M, 0 < M there exists a number Mt such that 

0 <MX ^Xxm\f(t,y)\, M^ \y\, 

(Iim|f(f,jO| SMt for J j . j SM) 
f-*oo 

holds. Then the sequences {| y(xk) |}J°, {| y'(tk) |}J°, {Ak}f are bounded above and are 
bounded away from zero. 

Remark 8. The problems concerning the boundedness of y and yf are studied in 
[6], [7], [14], [18], [19] (these papers deal with the differential equation (1), f(t,y, v) = 
*=a(t)r(y)h(y')) and in [8], [10], [13], [16], [17] (for f(/,>>, v) ~a(t)r(y)), but 

oo t 

mostly without the assumptions (13) and J -—— = oo. The other assumptions of 
o g(0 

Corollary 3 are supposed, too. 
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