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ON ASYMPTOTIC PROPERTIES AND DISTRIBUTION
OF ZEROS OF SOLUTIONS OF y" + f(t,y,y) =0

MIROSLAV BARTUSEK, Brno
(Received May 31, 1976)

1. Consider a differential equation

J’” +f(\f»y,}") = 09
(1) where the function f is continuous in D = {(t, y,v):

te[ty, ©),yeR veR}, f(t,y,v)y >0fory #0.

It is evident that Cauchy initial problem for (1) has a solution but we do not
suppose its uniqueness. In the present paper we shall omit the trivial solution y == 0
from our considerations. '

A solution y of (1) is called oscillatory if there exists a sequence of numbers {#,}{°
such that 1y < t, < typ1, Yt) =0, y(@) # 0 on (¢, her), & =1,2,3, ...

In this paper we shall deal only with oscillatory solutions of (1) that exist on the

whole interval [#,, ), i.. lim #, = co. We shall study some asymptotic properties
k— o0
of them and the distribution of their zeros.

If y is an oscillatory solution of (1), then the distribution of its zeros is characterized
by the sequence {4,}7 4, = t,,, — t, where {#,}7 is the sequence of all zeros of y.
There exists exactly one sequence {r,} called the sequence of extremants of y,
with the property f, < 7, < ty4q, ¥'(ty) = 0 (see [2]). The symbols #, t,, 4, have
the above mentioned meaning in the present paper.

We shall need the simple lemma the proof of which can be found in [2], [3].

Lemma 1. Let y be an arbitrary non-trivial solution of (1) and t, < t, its consecutive
zeros (y(t) # 0 on (t,, t;)). Then there exists exactly one number t, t, < t < t, such
that y'(t) = 0 holds, the function y’ sgn y is decreasing on (t,, t,) and the inequalities

[Y) | @ =) >|y@ ]|, |y —1) >]|y0]|
are valid. ‘

2. Theorem 1. Let y be an oscillatory solution of (1) and let there exist a constant
M > 0 such that for an arbitrary number M, > O the following relation holds:



lim f(t, p,v) =0,  uniformly for . |y| < M,,|v| £ M.

[ Sud )
Then at least one of the following assertions is valid
@) limy'(t) =0,

-0

(ii) y is unbounded on [t,, ).
If, in addition, constants M,, M, exist such that

0<M, S |y@)| =M, k=123,

then lim 4, = oo.
k-
Proof. Assume that y is bounded on [t,, ©). We shall prove at first the relation

limy’(t) = 0. Let
t— o

| p(t)| £ N =const. <0,  te[tg, ).
Put

Hy(v) = max | f(t,y,v)| >0  for veR,

|Y|§N, S 1S By
It follows from the assumptions of the theorem that

#) lim H(v) =0  uniformly for |v| £ M.
k—

By multiplicating the equation (1) by — ;I); and by integration we obtain

’

_ Yy
) O L S FUOFLON
o Hy(tsgn y'(t)) iw Hy(y'(1)
YO YO YOl 4, T
a  HOO) [ , *

Supposé that y’ does not converge to zero for t — oo. Then there exists a sequence
of integers {k;}T such that | y'(t,)| 2 & >0,i=1,2,3,... holds in case &, ¢ £ M
is a suitable number. According to (2)

i

_ o akal tdt p tdt
~ lim —_——— 2 limf =
i 0 H,(tsgn y'()) — i~= 0 Hy(tsgny'(t,))
and' we-get a contradiction to the inequality (3). Thus the first part of the statement
is proved. y

Let M,, M, be constants such that 0 < M, < | y(t)) | < M5, k =1,2,3, ...
Thus according to the proved part of the theorem lim p'(r) = 0 holds and the rest

t— 00

of the statement fqllows‘ from Lemma 1:
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‘r,‘ - tk > I y(rk) Z M2 - Q0
Y@ 1YW ke
tesy — T I;Y(fk)l > le -0
[V (1) [ Y (e ) ko

The theorem is proved.

Theorem 2. Let y be an oscillatory solution of (1) and let a constant M, 0 < M
exist such that for arbitrary numbers M,, M,, 0 < M, £ M, 0 < M, the following
relation holds

lim| f(t,y,v)| = 0 uniformly for M, < |y| < M, |v| £ M,.
1 00

Then at least one of the following assertions is valid
() limy(t) =0,

t— o
(i) ¥’ is unbounded on [t,, o).

Proof. Suppose that (i) is not valid. Then there exists a sequence of integers {k;}
such that |y(r,)| = e >0, i =1,2,3,... where ¢, ¢ < M is a suitable number.
Put

Hiv) = min | f(t,y,0)| >0, for

8/2§|y|§8a L, S 1S Loy veR; i=12,..
With respect to the assumptions of the theorem we have

) lim H() = o uniformly for | v| < const.

and by integrating we obtain

By multiplicating (1) by —»Hy

i

P rde _ T y@, YO Y01 4
o Htsgny'(t)) i H{(y'(t) -
LA y@, Y @) ly@lde % AR 3
3} O (0) 2 1y @1d= 1y - 1)1 = 5,

where ¢}, ¢} are such numbers that #,, <t} <t? < 1, |yt | = ¢/2, | p(t}) | =¢,
i=1,2,3,...
Let y’ be bounded on [#y, ©]. Thus there exists a constant N > 0 such that
| »’(®)| £ N, te[ty, o). Then according to (4) we can conclude
1y’ ()l . N
f_“’"__ <N ._ﬂ_l___ 0.
o Htsgny'(t)) o Hytsgny'(t)) i~w
But this fact is in contradiction with the inequality (5) and the function y’ is un-
bounded on [#,, 00). The theorem is proved.

)




Remark 1. It is evident from (3) and (5) that under the assumptions of Theorem 1

lim inf {| »@) |} < o0 = liminf {{»’@) |} =0
k-

k=00

holds, too. Similarly, if the assumptions of Theorem 2 are valid, then

lim inf {| y@) |} > 0 = lim {| Y (1) |} = 0
— k- o '

holds.

Remark 2. Let the assumptions of Theorem 1 be valid and let y be bounded on
[to, ). Then _
limy'(t) = 0, lim y"() = 0.

t— o0 - 00

The last result follows from the previous one and from the relation

lim y"(t) = —lim f(¢, y(t), y'(1)) = 0,

t— o0 t—+ o0

Similarly, let y be an oscillatory solution of (1) and let for an arbitrary constant
M, > 0 the following relation hold

lim | (¢, y,v) | = 0 uniformly for |v| < o0, M, £ |y]| < .

Let lim sup {[ y(t) I} > 0. Then the functions y’, y” are unbounded on [z,, ).
k- o
If, in addition, lim inf {| p(z) |} > 0, then
k— w0

lim | y'(t) | = lim o, = where @, = max |y'(0)].
k- k- telti, tic+1]

Remark 3. The results of Theorems 1 and 2 were studied in [2], [3] for the
differential equation

(P YY) + f(t,3,5) =0,

The statements of Theorems 1 and 2 generalize some conclusions of the above
mentioned papers for (1).

Corollary 1. Let y be an oscillatory solution of a differential equation
Y +a®)f(ry) =0,
where a(t), f(y, v) z;re continuous functions
for te[ty, ©), yeR, veR,a >0,
lf(y,v)y >0 for y#£0.
(i) Let lim a(t) = 0. If y is bounded on [#,, o), then

t—=w

)

limy'(t!) =0, limy"(r) = 0.

t—oaoc [ A+l



If, in addition, lim inf {| ¥(xi) |} > 0, then lim 4, = oo holds.
t= o k=

(ii) Let lim a(f) = oo. If " is bounded on [#,, o), then
t— oo
lim y(t) = 0.

t— o

(i) Let lim a(¢) = oo. If there exist constants M, M, such that 0 < M <

100
< | ¥@) | £ M, < oo holds, then lim | y'(s) | = oo.
k— o0
If, in addition, for an arbitrary constant N > O there exists a number M, > 0
such that

|f(y,U)IZM2>0a IJ’]%N,IUI<°0

holds, then limg, = 0, 6, = max | p"(t)].
k- telti, tic+ 1]

3. In this paragraph some well-known results for the linear differential equation

(see [15], [1], [9D

y'+qt)y =0, te[ty, )

g continuous, 0 < M = const. < g(f) £ M, = const. < 00, t € [t,, 00) are extended
to the equation (1).

Theorem 3. Let y be an oscillatory solution of (1). Let constants M, My, M3,0 < M,
0 < M,,0 < M, exist such that for an arbitrary number M,, 0 < M, < M there
hold
|f(t,y,v)|§M3, tG[ZO,OO), l.VI§M, Ivl_S_Mh
0<M, = |ft,y,0)|, tefto,0), M=|y|sM |v]|SM,

where M, is a constant (depending on M,).
Then
limy(t) =0 if,and onlyif limy'(t) =0.

t—> o0 t—

Proof. Let lim j(t) = 0. Then there exists a number 7 € [#,, ) and an integer k

t—
such that | ()| £ M, te[i, o), 1z = t. We can define the function H,(v) in the
same way as in Theorem 1 (N = M), the estimation (3) holds, thus especially

1y’ () tdt
Q) | ———<=S1y@l, k=kk+Lk+2 ..

o Hy(tsgny'(t)) ~
If lim y(r,) = 0, then according to the estimation

k- o0 -
H@w) £ M3 =const. <o, |v|SM, k=kk+1,k+2,..

(the validity of which follows from the assumptions of the theorem) we can conclude
lim y'(t,) = 0.

k— o



On the contrary, let lim y’(tf) = 0. We shall use the indirect proof for proving the

t— 0
relation lim y(¢) = 0. If this relation is not valid, then there exists a sequence {k;}?
t— o0
and a number ¢, 0 < ¢ such that | y(r,)| = & i = 1,2, ... and (5) hold. Thus
bttt tde €

o Htsgny'(t,))

From this and according to lim y’(r) = 0 we obtain a contradiction because from

t— o0

the assumptions of the theorem there follows
0 < N, = const. £ H(v), i=12,..

uniformly in some neighbourhood of v = 0. The theorem is proved.
Remark 4. It is evident from the proof of Theorem 3 that the following assertion
is valid, too
liminf| y(r,) | = 0 <> liminf|y'(s) | =
k- | =)

Corollary 2. Let y be an oscillatory solution of (6). Let constants M, M, exist
such that
0<M<a() s M, te[ty, )
holds. Then
limy() =0 if and only if  limy'(t) =

t— 0 t— o
Theorem 4. Let y be an oscillatory solution of (1). Let a continuous function g(v),
e
veR, g >0, s—é—(—j!:—t)—dt = o0 exist such that for arbitrary constants M, M,, M,,
)

0 <M, <M< oo there hold |f(t,y,v)| £ M3g), te[tg, ), [y| <M, veR
and

(8) 0<M4.—_<—'f(tay,v)l’ te[th(x’)’ Mlélyl’ IvléMz
Here M5 (M) is a suitable number that depends on M (on M, M,). Then

(i) y is bounded on [t,, ) if and only if y' is bounded on [t,, o)
(i) hm l y(@) | = o if and only if Izm [ Y(t)| =0

(iii) If 0 < M = const. £ | y(tk)l < M6 =const., k =1,2,3,..., then there
exist numbers C, C, such that

9 0<Cs 4. =0, k=1213,..

holds.
Proof. (i) Let y be bounded |y(t)| < N, te[ty, ©). Then we can define the
function H,(v) in the same way as in Theorem 1 and (3) holds. Thus, especially
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[y ()| t dt

,‘*"él)’(f)l‘_g_N, k=1’2’3""
o H(tsgny'(ty) *

According to the assumptions of the theorem a constant N, < o exists such that
H,(v) £ N,g(v), k = 1,2, ... From this

1y' (1) |y (t)|
1 tde < tdt

Ny o gltsgny'(t)) — o Hytsgny'(1))
Thus with respect to the assumptions of the function g we obtain that y’ must be
bounded on [¢,, o).

On the contrary let y’ be bounded | y'(t)| £ N,, t€[t,, ). The statement will
be proved by the indirect proof. Thus suppose that there exists a sequence of integers
{k:}7 such that lim | y(r,,) | = . Let ¢ > 0, g, i = 1,2, ... be such numbers that

i—oo

ly(t"‘)l > g, ly(di)l =g, tk‘ < Gi < Tk‘, i = 1, 2, e
hold. Put

Av) = minlf(t,y, v) >0 fore<y =< !y(rk;) Ia LSS By

There exists a constant N, such that

(10) AW 2Ny, |o|SN,, i=12..
and thus (according to (1))
N2 1y’ ()] T ! !
o > [ 44 1dt _ If(t,y(t),yf{))l YOl g, >
o N3 o Afrsgny'(t)) iy Ay ®)

L
2 [ ly@ldt=[yn)]| — &= .

But this is a contradiction.

(ii) The result follows from the proved part of the theorem and from the following
conclusion which can be proved in the sams way as (i):

Let {k,} be a sequence of integers. The sequence {| ¥(z;,) |} T is bounded on [0,
iff {|»'(,) |} T is bounded on this interval.

(iii) It follows from the proved part of the theorem that

(11) | »(t)]| £ Ns =const., k=1,2,..

holds. Denote by oy, 0, such numbers that

Ms
2 ’

As the function y'(¢) sgn y(t) is decreasing in the interval (¢, 7,) (see Lemma 1), the

following inequalities are valid

e <0, < 0 S T, ly(Uk)|=

‘y(ak)vl = Ms;.

0<ak—tk<5k—ak§tk—-0’k.



Put
Ak(v) = min If(t’y’ D) l >0

for M2<|y|SMs, <1<, veRy k=1,2,..
Then 4,(v) 2 Ng = const. > 0 for | v | £ Ns. By multiplicating (1) by —A4; '(y'(t))
and by integration we can conclude

1y’ (t)| ™®
o> NS dt | £, ¥, YO 4,

N o Agtsgny (tk)) t Ay’ D)

> (LY@ yO) o T gy o p
20 AL®) oz far- s o

Thus t, — t, = (1, — o) + (o, — t,) is bounded above for k =1, 2, 3, ... It can be
proved similarly that {#,., — 7,}7 is bounded.

The boundedness of {4,}7 from below by a positive constant is a consequence of
Lemma 1 and (11). The theorem is proved.

Remark 5. It is evident from the proof that under the assumptions of Theorem 4
the following assertions are valid

@) lim inf|y(rk) | < 0= lim inf[y’(tk) | <o0

(i) limsup|y()|= o éhm suply )| = oo.
t— 0
Remark 6. It can be easily seen from the proof of Theorem 4 that the conslusion
(iii) holds even if we suppose

0<MZ|ftyv)], telte,0), M =|y|sM |v|=M,
instead of (8).

Theorem 5. Let y be an oscillatory solution of (1) and let a continuous function g
, T tdt

exist, g(t) > 0, te[ty, ), j HED
0 < M, it holds

0<M28(U)§|f(’yy,v)|, tG[lo,(ﬁ), Mlélyl9 UGR,

where M, > 0 is a suitable number (depending on M,). Then y is bounded on [t,, ).
If, in addition, 0 < M3 = const. < | y(ry) |, k = 1,2,3, ..., then {4,}7 is bounded.

Proof. The first part of the theorem can be proved similarly to the second part
of the statement (i) in Theorem 4 (i.e. ' is bounded = y is bounded). We must use the
estimation

< oo such that for an arbitrary constant M,

Av) = Nglv), wveR, i=1,23,..



instead of (10). The boundedness of 4, can be proved similar to the same result in
Theorem 4.

4. Consider a differential equation

(12) y"'+ f(t, y) g(y) =0,
where f(¢, »), g(v) are continuous functions in D = {(t,y) : 1€ [t,, ), ye R}, vE R,
g>0,ft,y)y >0fory#0.

In our further considerations we must suppose very often the validity of the
conditions

(13) flt,y) = =fit, =y), &) = g(-v).

This paragraph contains especially some consequences of the previous paragraphs and
of some results of [5]. At first we mention here necessary results of [5].

Theorem. Let y be an oscillatory solution of (12). Let the function | f(t, y)| is non-
increasing (non-decreasing) with respect to t in D.

(i) Ifg() = g(—v)forve (—o0, ), then the sequence {| y'(t;) |} is non-increasing
(non-decreasing) and t, — t, £ tyyy — T (T — 8 2ty — T,) holds.

@) If f(t, y) = —f(t, —y) in D, then the sequence {] y() |}¥ is non-decreasing
(non-increasing).

Theorem 6. Let y be an oscillatory solution of (12) and let (13) hold. Let

@ @ ] f(t,») | be non-decreasing with respect to t in D

(ii) a constant M > 0 exist such that f(t, y) is non-decreasing with respect to y in
D, ={(t,y):te[ty, ), |y| £ M}.

If lim y(t) = 0, then lim 4, = 0.

t—= oo k=
Proof. It follows from Theorem that {| y(z,) |} is non-increasing and {|y'(t,) |}
is non-decreasing. Thus

|y @) | 2|y =N>0, k=123,..

min g(1)
i <=y ___ | te by oy, k =
Let ¢ > 0 be an arbitrary number, ¢ < max g 2 Denote by o, 1,2,3,
Msy _
numbers such that 1, < o, < 74, ] y'(0)) ] = ¢ First we prove that lime, — ¢, =0

k=0

holds. According to the Rolle theorem there exists a number & € (%, g,) such that

y'(&) = M. From this
O — tk

= @)l | y(ou) | — 0
1Yol ¢ ”

Oy —

and thus lim o, — ¢, = 0.

k- o0



According to lim yp(f) = O there exists an integer n such that | y(1,) | < M, k = n.
t—= o
Consider the function
y" dt Yo dy

== I gay=J/yw)di relt.a].

Fiy=[-——
¢ g(y)
Ifo, <t £t; £ 1y, then I)’(’l)l = I,V(fz)l and
F'(t;) — F'(t)) =f(t2v)’(t2)) ‘f(fn,.)’(tx)) =
= [f(tz , Y(tz)) —f(’z , J’(tl))] + [f(’z’ J’(fl)) _.f(tl , Y(fl))] =

=0 for y(¢;,) >0

<0 for y(¢;,) < 0.
As F'(t) > 0 (< 0) if y > 0 (y < 0), the function | F’| is non-decreasing on (#, 7).
Denote by g, such number that #, < 6, < oy, | F(6,) | = 2| F(}) |. 6, really exists
because ] F ] is non-increasing and

S dt € N_ 1
o)l = | 505 < Tingty & 2 maxg®)”
UE3Y =N
mal gy N
= < *
[ F(t) | .i g(t) = maxg(1)

HEY
According to the mean value theorem we have
' F(oy) I = I F(r,) — F(=) I = l F'(¢)) , (tx — o), &1 € (0w, ™),
' F(O'k)l = l F(oy) — F(ay) f = l F'(¢3) l (ox — 00, & € (04, 03).
From this and with respect to [ F' | being non-decreasing, we can conclude

Tk—akéak—5k§o'k—tk7:;~>0.

Thus finally limt, — ¢, = 0.
k— o

By Theorem there holds t, ., — 7, < 1, — 1, and the theorem is proved.

Remark 7. Katranov [11], [12] deals with the problem of Theorem 6. He proved
the statement of this theorem but under the more restrictive assumptions. He must,

in addition, suppose that

1° there exists —;7 f(t, y) and it is continuous

2° for an arbitrary M # 0 there holds lim | f(r, M) | =

t—

3° there exists a constant g; > O such that g(v) > g,, ve R
4° the uniqueness of the Cauchy initial problem holds.

10



Theorem 7. Let y be an oscillatory solution of (12), (13) and let | f(t, ¥) | be non-
increasing with respect to t in D. Further, let for an arbitrary constant 0 < M there
holds lim f(t, y) = O uniformly for | y | < M. Then

t— o0
lim 4, = o0.
k— oo
Proof. It is evident that the assumptions of Theorem 1 are fulfilled. Thus either
lim y’(t) = 0 or y is unbounded. From this and according to Lemma 1 and Theorem

t— o0

we have

REECCATRN

TR

The theorem is proved.
The following Corollary is a consequence of Theorem 4 and Theorem.

Corollary 3. Let y be an oscillatory solution of (12), (13). Let | [, y)l be non-

o0

increasing (non-decreasing) with respect to ¢ in D and let | ~th-)—dt = oo0. Further
0

suppose that for an arbitrary constant M, 0 < M there exists a number M such that

0 <M, <lim|f(r,y)|, M=<|y|,

tim |f, )| = M, for|y| < M)

t— o
holds. Then the sequences {| y(r) [}7, {| »'(%) |}7> {4:}T are bounded above and are
bounded away from zero.

Remark 8. The problems concerning the boundedness of y and y’ are studied in
[6]. [7], [14], [18], [19] (these papers deal with the differential equation (1), f(¢,»,v) =
= a(t) r(y) h(y")) and in [8], [10], [13], [16], [17] (for f(t, y,v) = a(t)r(y)), but

mostly without the assumptions (13) and j?}%ﬁ = 00. The other assumptions of
0
Corollary 3 are supposed, too.
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