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THE APPROXIMATION OF FUNCTIONS
IN THE SENSE OF TCHEBYCHEYV II

JIRI SMERK, Brno
(Received May 27, 1974)

This paper gives a certain generalization of the (classical) Haar condition and the
corresponding theory of the approximation.

The detailed knowledge of all the theory, the notation and the terminology given
in the paper [1] is necessary for understanding this paper.

1. THE HAAR DECOMPOSITION CONDITION

Assumption (for §1.). Let B be a set, ne N, S =R or S = C, let card B = n.
Let .# be a decomposition of the set B. Let w e .# U {0}.

Definition 1. Let ¥ be an n-dimensional subspace of S®. We shall say that V
satisfies the Haar decomposition condition (with respect to B, .#, w) iff every
non-trivial polynomial Q€ ¥V has at most n — 1 zeros in distinct classes of
M — {w}.

Remark. If card (# — {w}) £ n — 1, then every n-dimensional subspace of
SB satisfies the Haar decomposition condition.

Theorem 1. Let card (# — {w}) > n. Let V be a subspace of S® generated by

functions Q,, ..., Q, € S%. Then the following assertions are equivalent:
1) 94, ..., Q, form a basis of V and V satisfies the Haar decomposition con-
dition.

@ If xq, ..., x,€ B — o are in distinct classes of .#, then det Qx(x;) # 0.
Proof. The proof of the assertion is simple.

Theorem 2. Let card (# — {w}) = n. Let ¥ be a subspace of S®, dim V £ n.
Then the following assertions are equivalent:

(1) dim ¥V = n and V satisfies the Haar decomposition condition.
2 If x{, ..., x,e B — o are in distinct classes of # and if y;, ..., y,€ .S are
arbitrary, then there exists exactly one P e V such that P(x;) = y; forj =1, ..., n.
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3)If1 £m<nand if x4, ..., x,,€ B — w are in distinct classes of .#, then
dim,,, ., xmy V= m

Proof. We shall prove that (1) implies (3); the rest of the proof is 51mple Let (1)
hold, let x,, ..., x,,€.B — w be in distinct classes. If m = n, then the assertion
dimg,, . .V =n follows from Theorem 1(2) and from Theorem 23(2) of [1]. Let
m < n; we can add such points x4, ..., X, € B — o that the points x,, ..., x, are
in distinct classes and hence dim,, . ..V =n. By Theorems 23(4) and 23(1) of [1],
we have n = dimy,, . .,V Sdimg,, .V + (n—m) < m+ (n—m)=n, hence
dimg, . ..V =mand (3) is valid.

Remark. If ./ = {{x}/x € B} and @ = 0, then the Haar decomposition condition
is equivalent to the (classical) Haar condition (see [2], p. 25).

Theorem 3. Let D = B. Let us denote A" = {a n Djae.#} — {8}, x = w n D.
Then A4 is a decomposition of D and x e /" U {#}.

Let card (#/° — {x}) = n. Let ¥ be an n-dimensional subspace of S® satisfying
the Haar decomposition condition with respect to B, ./#, w; let us denote W =
= {Qp/Q € V}. Then W is an n-dimensional subspace of S” satisfying the Haar
decomposition condition with respect to D, A", x.

Proof. The assertion is obvious.

2. THE QUOTIENT FUNCTION p(x, y)

Assumption (for §2.). Let B be a set, ne N, S =R or S = C, let card B = n.
Let .# be a decomposition of B; let ~ denote the equivalence on B corresponding
to #. Let we# L {0}.

Let us suppose that for each x, y € B — w of the same class of .# there is given
a fixed non-zero number p(x, y)e S. If x,y,ze B — w and x ~y and y ~ z, let
the relation p(x, z) = p(x, ) - p(y, z) hold.

Let us denote Y = Y(B, #, w,p, S) = {ge SP/g(x) =0 for all xe w, g(x) =
= p(x,y)-g(y) for x,ye B — w and x ~ y}. (In what follows we shall deal only
with the functions of Y.)

Theorem 4. (1) We have p(x, x) =1 for all xe B — w.

(2) If x,ye B — w and x ~ y, then p(x, y) - p(y, x) = 1.

(3) Y is a subspace of S®.

4) If # = {{x}/x€ B} and @ = 0, then ¥ = S®.

(5) Let us choose for each class o € # — {w} a fixed point x, € « and a number
¢, €S. Then there exists one and only one ge Y such that g(x,) = ¢, for all
aeM ~ {w}.

Proof. (1) p(x, x) = p(x, x) - p(x, x) and p(x, x) # 0, hence p(x, X) = 1.
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(2) We have p(x, y).p(y, x) = p(x, x) = 1.

(5) Let ge Y be such that g(x,) = ¢, for all u e/ — {w}.

Then g(x) = 0 for all xe w. If x € B — w, then there exists one and only one
aeM — {w} such that x e a; we have g(x) = p(x, x,) - g(x,) = p(x, x,) - ¢,. Hence
there exists at most one g € Y such that g(x,) = ¢, for all e e # — {w}.

On the other hand, let us define g € S® by the relations: g(x) = 0 for x € w, g(x) =
= p(x, x,) - ¢, for xea where ae# — {w}. Then ge Y and g(x,) = ¢, for all
aeM — {w}. '

Definition 2. A point x € B will be called a significant point iff xe B — w and
| p(»,x)| £ 1 for all ye B — w such that y ~ x.

Theorem 5. Let ¥ be an n-dimensional subspace of Y, fe Y.

(1) We have card (# — {w}) = n.

(2) If x € @, then O(x) — f(x) =0 for all Qe V.

(3 If x,ye B — w and x ~ y, then Q(») — f(¥) = p(y, x)  [Q(x) — f(x)] for all
QeV.

(4) Let x be a significant point. If y ~ x, then | Q(») — f(») | £ | Q(x) — f(x) | for
allQeV. _

(5) Let Pe¥ and 0 <||P —f|| <+ . Let xeB be such a point that
| P(x) — f(x) | = || P — f]| (such a point is called an extreme point of B). Then x
is a significant point.

Proof. (1) Let Q,, ..., O, form a basis of V. By Theorem 21 or [1], there exist
points Xy, ..., X, € B such that det Q(x;) # 0. Evidently x;¢ w for j =1, ...,n.
Let us admit that x; ~ x; and i # j. Then Qu(x;) = p(x;, x;) - Qu(x;) fork =1, ..., n,
hence det Qy(x;) = 0, which is a contradiction. Therefore x,, ..., x, are in distinct
classes of .# — {w}, hence card (# — {@}) = n.

(5) Necessarily x € B — w. Let us admit that there exists y € B such that y ~ x
and |p(y,%)|>1. Then by (), |PO)—/0)|=|p0n 0| |PG) - f(x)| >
> | P(x) — f(x)| = || P — f||, which is a contradiction.

Theorem 6. Let ¥ be an n-dimensional subspace of Y satisfying the Haar de-
composition condition. Let f€ Y, let us denote u = min || @ — f||.
QeV

(1) Let M # 0 be a minimal set (i.e. u > 0, f¢ V). Then:

A Mno=490;

b) the points of M are in distinct classes of # — {w};

¢) if x e M, then x is a significant point;

dcardM=zn+ 1(andif S=R, thencard M =n + 1);

e) dimyV = n.

(2) Suppose that there exists a minimal set M # 6. If Pe Vand || P — f|| = p,
then P has at least n + 1 extreme points in distinct classes of # — {w}.
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(3) Suppose that there exists a minimal set M. Then there exists one and only one
PeVsuch that || P — f|| = p.

Proof. (1) a) Let us admit that x e M n . We have || @ — f ||y 1y = ” 0 —flu
for all Q € V, hence w(M — {x}) = u(M), which is a contradiction. Hence M n v =
=40.

b) Let us admit that x, y € M and x ~ y. Since p(x, ¥) - p(y, X) = 1, we may assume
| p(x, )| < 1. By Theorem 53), | Q(x) —f(x)| = | Q) = f(»)| for all QeV,
which is in contradiction with Theorem 16(1) of [1].

c) Let xe M, let Pe V be such a polynomial that || P — f|| = u. By Theorems
9(4) and 17 of [1], we have |P(x) — f(x) = pu = ||P — f||. Since u >0, x is
a significant point by Theorem 5(5).

d) Let us admit that card M = m < n. By a), b) and Theorem 2, we have dim,, V =
= m. By Theorem 24 of [1], we have u = u(M) = 0, which is a contradiction. Hence
card M = n + 1.

e) By a), b), d) and by Theorem 2, we have dimy,V = n even for each subset
D <= M with at least n points. Hence dim, V" = n, too.

(2) By Theorems 9(4) and 17 of [1], we have IP(x) —f(x)[ = u for all xe M.
The assertion follows now from (1a), (1b), (1d).

(3) If M = 0, then f€ V and the assertion is evident. If M # 0, then dimy, V = n
by (le) and the assertion follows from Theorem 20(3) of [1].

Remark. Theorem 6(3) is a generalization of the classical Haar theorem, namely
of the assertion of the sufficiency (see Theorem 19 of [2]). We can generalize also the
assertion of the necessity (see Theorem 20 of [2]); we need, however, stronger assump-
tions. Theorem 7 is not used in the following theory.

Theorem 7. Suppose that there exists a number d > 0 such that for each ae
€M — {w} there exists a point z, € a such that | p(x, z,) | < d for all xea.

Let D be such a subset of B that p(x,y) =1 for x,ye D — wand x ~ y. Let 7
be a topology on D. Let us denote /* = {&« N Dja e M} — {0}; then A" is a decom-
position of D. Let us denote F = {of =« /' |Us/ € T }; then & is a topology on A"
Suppose that (A, ) is a compact Hausdorff T-space.

Let ¥V be an n-dimensional subspace of Y not satisfying the Haar decomposition
condition (with respect to B, .#, w). Let P be a non-trivial polynomial of ¥ having
Zeros x,, ..., x, in distinct classes «,, ..., o, €.# — {w}. Suppose that P is bounded
in B and continuous in D with respect to the topology 7

Then there exists a function fe Y continuous in D with respect to 4 which has
infinitely many polynomials of the best approximation in V.

Proof. We give only the principle ideas:

1. We may assume HP” =%, X, = z,, and x, € D for @, N D # 0.
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2. There exist b,, ..., b, € S not all zero such that Y 5;Q(x;) = 0 for all Qe V.
i=1

3. There exist a function g € S continuous in D with respect to 4 with the follow-
ing properties: g(x) = Oforallxe D nw; g(x) = g(y)forx,ye D — wand x ~ y;
g(x) = sign b, for o, " D # B; | g(x) | £ 1 for all xe D.

4. Let us define fe S? in this way: f(x) = 0 for xe w and for xea, . " D = 0,
@ {2y, s a); f(0) = px, 2,) 8(z) (1 — | P(zp) |) for xea, x v D # B; f(x) =
= p(x, x;) - (signby) - (1 — | P(x) ) forx € oy, 0 n D =#. Thenp = min || Q@ — f|| =

QevV

=1and ||aP — f|| =1 for all ae S such that |a| £ 1.

Remark. In Theorem 20 of [2] there are the following assumptions: B is a compact
Hausdorff T-space, V is an n-dimensional subspace of C(B) not satisfying the
(classical) Haar condition. We take # = {{x}/xe€ B}, ® =9, D = B. Then /" = #
and (A, #) is a compact Hausdorff T-space. If x ~ y, then x = y and p(x, y) = 1.
By Theorem 7, there exists fe C(B) having infinitely many polynomials of the best
approximation in V.

3. THE APPROXIMATION

Assumption (for § 3.). Let ne N, § = R. Let D be a set, /" a decomposition of D
(~ the corresponding equivalence on D), x €4 U {#}. Let us suppose that for each
x,y € D — » of the same class of A" there is given a fixed non-zero number g(x, y) € R.
If x,y,ze D — xand x ~ y and y ~ z, let the relation q(x, z) = q(x, y) - ¢(», z) hold.

Let B be a subset of D. Let us denote # = {a N Blae A} — {#}, ® = x N B.
Let us suppose card (# — {w}) = n + 1.

Let W be an n-dimensional subspace of Y(D, A, %, g, R) satisfying the Haar
decomposition condition with respect to D, A", x. Let Q,, ..., O, form a basis of W.

Suppose that there are given an interval J < R*, a set / « D — x» and a one-one
mapping & of J onto I. Let every Q € W have the following property: if Q[&(s)] is
non-zero in a subinterval {c,d) = J, then Q[&(c)] - Q[&(d)] > 0. (The same is true
e.g. when Q[&(s)] is continuous in J.)

Let fe R® be such a function that f(x) = 0 for all x € w and f(x) = q(x, y) .f(»)
for x,yeB — w, x ~ y.

Remark. (1) .# is a decomposition of B, w € # U {0}.

(2) If x, y € Band x ~ y, then we define p(x, y) = q(x, y). The function p satisfies
the requirements of the Assumption for §2 with respect to B,.#, . We have
Y(B,#,»,p, R) = {ge RP|g(x) =0 for xew,g(x) =q(x,y) g(y) for x,yeB—w
and x ~ y}, i.e. fe Y(B,#, w, p, R).

(3) Let us denote ¥ = {Qp/Q € W}. We can easily prove (by Theorem 3 etc.)
that ¥ is an n-dimensional subspace of Y(B,.#, w, p, R) satisfying the Haar de-
composition condition with respect to B, #, w.
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(4) Let us denote p = mml[Q f||. If Qe W, let us denote || Q —f|| =

—sung(x) f(x)[—”QB f||.Thenu—gtlp1’1,|[Q f|], too.

(5) The restrictions of the functions Q,, ..., @, to the set B form a basis of V.
When we apply the theorems of [1] and of § 1 and § 2, we must realize that under the
basis of ¥V these restrictions must be understood. However, in the theorems and
formulae we shall speak only about the polynomials of W.

(6) For x, yeIletusdenote: x < yiff E71(x) < &7 1(y), x L yif x < yorx = y.

(MHDIfB=D,then #/ =N, =% p=gq, V=W, too. If we consider such
a case, we shall speak only about B, .#, w, p, V.

(8) If I = (D — %) n R*is an interval and if each polynomial Q € W is continuous
in I, we take mostly J = I, é(x) = x. Then x < y iff x < y.

(9) All these assumptions and constructions are necessary for the applications;
see § 4.

Theorem 8. Let x; < ... < X,,,; be such points in 7 that x; < x < x,,,; and
x ~ x; implies x = x; (for each xeland k =1,...,n+ 1). Fork =1, ...,n + 1
let us denote

-y Q1(x1) - Q1(xk—1) Q1(X+1) -+ @1(Xns 1)
G =(-1) : .
] Qn(xl) - On(Xi—1) Qn(Xi+1) - OulXns1)

Then the numbers C,, ..., C,+, are non-zero and alternate their signs.

Proof. Let ke {1, ..., n}. For all xe D let us put

! Q:(xy) - Q1(xk-1) Q1(x) Q1 (Xk+2) - O1(Xn41) }
ox) =1 : ‘
. Ou(x1) - OulXk=1) On(%) QuXp+2) - On(Xn+1) %

Then Qe W. If se{¢ Yx), & '(xc+1)), then the points X, ..., X_, &(5),
Xp+2s --s Xp4q are in distinct classes of A~ — {3}, hence Q[&(s)] # O by Theorem 1.
Hence (by the Assumption) Q(x) * Q(x,+() > 0. We have C, = (— 1! Q(x;4,)
Cir1 = (=1)* Q(x), hence C; - Cyyy <O,

Remark. If each class « e /" — {x} has at most one point in the set {x e I/x, < x <
= X,+1}, then the assumption of Theorem 8 is fulfilled.

Theorem 9. Let P € W have the following property: there exist points x; < ... <
< Xn+1inTsuchthatx; X x X x,4;and x ~ x;implies x = x(xe L k =1, ..., n+1),
points #;, ..., t,4; € Band a number A€ {—1, +1} such that fork =1, ..., n + 1
we have 7, ~ x, and

P(t,) — f(t) = h-signq(t, x) - (—1)*-d,, where d. = 0.
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(1) For k =1, ...,n + 1 let us denote
Ql(fx) e @1(t=y) O1(tisy) - Qi(tu+r)

D, = (—l)k_l' : .
l Qn(tl) Qn(tk—l) Qn(tk+l) Qn(tn+ 1)
Then p Z p({t(, s tar1)) = 2101 ;‘T(Dtk)| f(tk)l =k mm | P(t) — f(t) |.

(2) Let us define the numbers Cy, ..., C,+ as in Theorem 8. Then u({tl y by y1}) =
- Z|Cel - 1q0a,t)i- IP(tk)—J(tk)|
Z|Ciel - gk, ) | »
Q) If | P(t) — f(t) | = || P = f]| for k =1, ...,n + 1, then || P — f|| = .
Proof. Letus denote w = q(t;, X1) *---* (ty+ 1> Xo+1)- Letk € {1, ..., » + 1}. Then
we have Q,(t,) = q(t,, x) - Qi(x;) for i = 1, ..., n, hence Dy = q(ty, x;) *--.. q(t—y,

w
X-1) 91> Xur) o Glasys Xa+1) Co = ——— C, = w.4(x, 1) C,. By
q(te, xi)

Theorem 8, there exists ae {—1, +1} such that sign C;, = a(-D)fork=1, ..,
n+ 1, hence sign D, =sign w-signg(x,, #)-a-(—1)% Let us denote b =
=aqa-h-signw. Thenfork =1, ..., n + 1 we have b- D, - [P(t,) — f(t)] =b-le| X
x sign w - sign g(x;, £+ a - (—1)%-h-sign q(t, x)- (= 1)*-d, = | Dy |- d; 2 0. There-
fore (1) follows from Theorem 28(6) of [1] (we take ¢, D, instead of x;, C}).

(2) follows from (1), if we substitute | D, | = | w|-| g(x, £ || C|, (3) follows
from (1).

Theorem 10. Let P € W have the property: there exist points x; < ... < X,+, in
I~ B such that x; < x < x,,, and x ~ x, implies x = x,(xe, k = 1,n + 1)and
a number ke {—1, +1} such that for k = 1, ..., n + 1 we have

P(x) — f(x) =h-(-1)*.d, where d,=0.

(1) Let us define Cy, ..., G,y as in Theorem 8. Then p = p({xy, ..., X,4+1}) =

ZIC. | P k .
_ | IZI(?;)I AN > min IP(xk)"'f(xk)|

k=1,

(2 If | P(x) — fx) | = || P~ f|| fork—l ,n+ 1, then | P — f|| = .

Proof. Theorem 10 follows from Theorem 9. We take #, = x,, hence q(t, x,) = 1,
Ck = Dk'

Theorem 11. Let M = {t,, ..., t,, 1} be a minimal set (see Theorem 6(1)) Suppose
that there exist such points x, < < XpyyinIthat fy, ~ x, fork =1, ...,n + 1.
Let Pe Wand || P — f|| = .

(1) Let us define Cy, ..., G4y as in Theorem 8. Then there exists be {—1, +1}
such that fork =1, ...,n + 1

P(t) — f(t) = b-sign q(ty, x;) * sign Cy, * ”P —-f“.
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(@ Let x; Xx=<x,,, and x ~ x; imply x = x(xe Lk =1, ...,n + 1).
a) Then there exists a number he {—1, +1} such that for k =1, ...,n + 1
we have

P(t) — f(t) = h-sign q(t, x)- (=1*-|| P — £]|.

b) Let u,, ..., Uy, € B be such points that u, ~ ¢, for k =1, ...,n + 1. Then
fork=1,..,n+ 1 we have

P(w) — fQu) = h-| q(u, 1) |- sign q(uy, x)- (= D*- || P = ]|
c) If x;, ..., X441 € B, then for k =1, ...,n + 1 we have
P(x) — f(x) =h'|q(xkatk)l'("‘l)k'”P —f”

Proof. Let us define D,,..,D,,, as in Theorem 9, let us denote w =
=q(ty, x) - q(ths1, Xps1). Then D, = w-q(x;, t,)- C fork =1, ..., n + 1 (see
proof of Theorem 9). By Theorem 31(2) of [1] (where we take ¢,, D, instead of x;, Cy)»
there exists a€ {—1, +1} such that P(1) — f(t) = a-sign D,-|| P — f || =
= a-sign w-signq(x,, 1) .sign C;-|| P — f|| for k =1, ...,n + 1. Let us putb =
= q-sign w; since sign g(x,, #) = sign q(#, x;), our assertion is valid.

(2a) By Theorem 8, there exists ce {—1, +1} such that sign C, = ¢ (—1)* for
k=1,..,n+ 1. Let us denote h = b - c; the assertion follows now from (1).

(2b) P(w) — f(u) = qu, 1) - [P(t) — f(1)] = | q(ux, 1) | - sign gy, 1) - b
sign g(t,, x;) - (= 1)*- H P - f“ =h- ‘ g, 1) | - sing (., x;) - (= 1)* - ” P — f”

(2¢) follows from (2b) for u;, = x,.

Theorem 12. (1) Suppose that « N B # @ implies &« N I # 0 for each a e &/ — {x}.
Let M # 0 be a minimal set. Then there exist (significant) points ¢,, ..., #,,, € B
(in distinct classes of &/~ — {x}) and points x; < ... < X,,; in I such that M =
={ty, ., tyyyand t, ~x, fork =1, ...,n + 1.

(2) Suppose that « n B # # implies card (¢ n 1) < 1 foreach a eV — {x}. If
x; < ... < Xx,4, are arbitrary points in I and if there exist points ¢,, ...,%,,, € B
such that t, ~ x, for k =1, ..., n + 1, then x;, X x <x,,, and x ~ x, implies
X = X.

Proof. (1) By Theorem 6(1), M has exactly n + 1 points which are significant and
are in distinct classes of # — {w}; let us denote them by ¢, ...,7,,,. For k =
=1,...,n+ 1 let oy eA" be the class containing #,. Then o # %, o, N B # 0,
hence o, N1 # B. Let us choose x;,o oo, NI arbitrarily. The points x,, ...,
X,+1 are distinct; we may assume that the points ¢,, ..., #,,; are denoted so that
X < .o < Xpiq.

(2) Let ke {l, ...,n + 1}. Let o, €4 be the class containing x,. Then o, # x
and o, N B # 0, hence o, N I = {x;} and the validity of the assertion is proved.
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Theorem 13. Suppose that o« N B # @ implies card (x N I) = | for each x e/~ —
— {»}. Suppose that there exists a minimal set, let Pe W.

Then || P — f|| = p iff there exist points t,, ..., #,,, € B (in distinct classes of
A" — {x}), points x; < ... < X,y in I and a number he {—1, +1} such that for
k=1,..,n+ 1 we have f, ~ x; and

P(t) — f(t) = h-signq(t, x) - (=D*-|| P - f]|.

Proof. Let the latter condition be fulfilled. Then we have || P — f|| = u by
Theorems 12(2) and 9(3).

Let ||P —f|| =n =0. Since card (# — {w}) = n + 1, there exist distinct
classes oy, ..., 0,,, €4 — {x} such that ;u, "B # 0 for k =1, ...,n + 1. Let
{x} = o, 01, t, e, n B. By a renumeration we can attain that x, < ... < X,1;
and the assertion holds.

Let || P — f|| = u > 0. Then the assertion follows from Theorems 12(1), 12(2)
and 11(2a).

Theorem 14. Suppose that there exists a minimal set. Then there exists one and
only one P e W such that || P — f|| = p. .

Proof. By Theorem 6(3) there exists exactly one Q € ¥ such that || @ — f]| = u.
Since card (# — {w} = n + 1, two distinct polynomials of W cannot coincide in B
(see Theorem 2). If P e W is the only polynomial for which Py = Q, then P is the
only polynomial of W such that || P — f|| = p.

Theorem 15. Let a subset A = B be compact with respect to some topology, let the
function | @ — f'| be continuous in A for any Q € W. Suppose that if x €4 — {x}
and o N B # @, then there exists a significant point x € « N 4. Then 4 is a represen-
tative subset (and there exists a minimal set).

Proof. Let x € B — w, let a €.4" be the class containing x. Thena # »x,a N B # 0,
hence there exists a significant point yea n B. As | q(x, y) { <1, we have
| Q(x) — f(®) | £ |00 — f(») | for all Q e W.

Let x € w. As A # 0, we can choose arbitrary y € 4 and then | Q(x) — f(x) | =
=0=<|00) — f(»)| for all Qe W.

Lemma. Let x, y € D be such points that | Q(x) — f(x) < | Q(») — f() | for all
Q € W. Then there exists a number d € R such that |d[ <1, f(x) =d-f(y) and
O(x) = d- Q(y) for all Q € W. (The proof is not difficult and we do not give it here.)

Theorem 16. Let A = B be a representative subset.

(1) If x € B — w, then there exists y € A such that x ~ y and | ¢(x, y) | < 1.

(2) Let the class a e /" — {x} contain at least one significant point (of course
with respect to p). Then there is a significant point in a N A4, too.
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Proof. (1) Let xe B — w; let y e 4 be such a point that | Q(x) — f(x) | <
< | Q(») — f(»)| for all Q e W. By Lemma, there exists d€ R such taht |d| =1
and Q(x) = d- Q(y) for all Q € W. Then dim,, ,W < 1 and hence x ~ y by Theo-
rem 2. Then q(x,y) = d and | q(x,y)| £ 1.

(2) Let x e« be a significant point, let y be the point mentioned in (1) Then
|g(x,»)| = 1. If zeax n B, then |p(z,y)| = |p(z, ¥) | - | p(x, )| = | PG ¥) | £ 1,
hence y is a significant point, too.

4. APPLICATIONS
A. The (Classical) Haar Condition

Assumption. Let S = R, ne N,a,be R* a < b. Let W be an n-dimensional sub-
space of C{a, b), let every non-trivial polynomial Q € W have at most n — 1 zeros
in {a, b) (the Haar condition). Let B = {a, b be compact, card B = n + 1, let
f€ C(B). Let us denote p = min || Q — f||.

QeW

Remark. We take D =<{a, b), &/ = {{x}/xe<a, b)}, » =0. We have,
card(# — {w}) =cardB=n+ 1. W is an n-dimensional subspace of
Y(D, ¥, %, q, R) = R*Y satisfying the Haar decomposition condition with respect
to D, N, x. We take I = J = {a, b), &(s) = s; then card (@ " I) = 1 for all x e A",
Since B is a representative subset, there exists a minimal set.

Remark. As x ~ y implies x = y, it is not necessary to define g explicitely; we
always have g(x,y) = 1. The situation will be similar in the other applications;
moreover, if x ~ y and x # y, it is sufficient to define g(x, y); we have q(y, x) =

1
- ?(_x,y - |

Theorem 17. (1) Let P € W have the property: there exist points x; < ... < X,
in B such that the numbers P(x,) — f(x;) (k =1, ..., » + 1) alternate their signs.
Then n= = ﬂ({x19 tety xn+1}) > mln IP(xk) - f(xk) I

(2) Let Pe W. Then || P — f|| = u iff there exist points x; < ... < X,4, in B
and he {—1, +1} such that P(x;) — f(x;) = h- (= 1)* || P = f||fork =1, ...,n+ 1.
(3) There exists one and only one P € W such that | P — f|| = p.

Proof. (1) follows from Theorems 12(2) and 10(1); (2) follows from Theorem 13
(where t, ~ x, implies t, = x;); (3) follows from Theorem 14.

Remark. If we introduce a basis Q,, ..., 0, of W, we can get a better estimation
in (1) from Theorems 9 and 10. The same will be true of the other applications.
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B. Functions with Zero Values at the End Points

Assumption. Let S = R, neN, a,be R*, a < b. Let W be an n-dimensional
subspace of C{a, b), let Q(a) = 0 for all Q € W and let every non-trivial polynomial
Q € Whaveatmostn — 1zerosin (a, b). Let B < {a, b) be compact, card (B — {a})=
> n + 1. Let fe C(B) and f(a) = 0 in case a € B. Let us denote p = min || @ — f]|.

QeW

Remark. We take D = {a, by, &/ = {{x}/x €{a, b)}, » = {a}; q is defined impli-
citely. We have card (# — {w}) = card (B — {a}) = n + 1. W is an n-dimensional
subspace of Y(D, A", %, ¢, R) = {ge R [g(a) = 0} satisfying the Haar decompo-
sition condition with respect to D, A", x. If x € o, then x = a and x € B, hence f(x)} =
=0. We take I = J =(a,b), &(s) = s. Then xnI =0, card(a nI) =1 for all
aeN — {x}. As B is a representative subset, there exists a minimal set.

Theorem 18. (1) Let P € W have this property: there exist points x; < ... < X,+1
in B — {a} such that the numbers P(x;) — f(x;) (k =1, ..., n + 1) alternate their
signs. Then u = p({x;, ..., Xy41}) Z min |P(xk) = f(x) |

+1

k=1, ...,n

(2) Let Pe W. Then ||P — f|| = p iff there exist points x; < ... < X,y in
B —{a} and he{-1, +1} such that P(x)) —f(x) =h- (=) ||P = f|| for
k=1,..,n+ 1.

(3) There exists one and only one P e W such that | P — f|| = p.

Proof. (1) follows from Theorems 12(2) and 10(1); (2) follows from Theorems 10(2)
and 13 (we have f, = x;); (3) follows from Theorem 14.

Remark. (1) If we examine the functions being of zero value at b, we get similar
results.

(2) We can also examine the functions having zero values at both a and 5. We
assume that Q(a) = Q(b) = 0 for all Q € W, every non-trivial polynomial Q € W
has at most n — 1 zeros in (a, b), card (B — {a,b}) = n + 1, f(a) = 0 in the case
ae B and f(b) =0 in the case be B. We take x = {a,b}, I = J = (a, b) etc.
Theorem 17 will hold also in this case, only the points x; < ... < x,,, will be in
B — {a,b} = B (a,b).

C. Functions with Proportional Values at the End Points

Assumption. Let S =R, neN, g,beR*, a<b, deR, d+#0. Let W be an
n-dimensional subspace of C{a, b), let Q(a) = d- Q(b) for all Q € W and let each
non-trivial polynomial Q € W have at most n — 1 zeros in {a, b). Let B = {a, b) be
compact, let card B = n + 2 in the case a, b€ B and card B = n + 1 in the other
cases. Let fe C(B) and f(a) = d- f(b) in the case a,be B. Let us denote u =
=min[ 0~ 7|

Qew
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Remark. We take D = {a, b), /' = {{x}/xe(a,b)} U {a,b}, x =0, q(a, b) = d.
We have card(# — {w}) = n+ 1. W is an n-dimensional subspace of
Y(D, A, %,q, R) = {ge R““¥/|g(a) = d-g(b)} satisfying the Haar decomposition
condition with respect to D, A", x (as Q(b) = 0 iff Q(a) = 0). The function f satisfies
the requirements. Let us put 7 = J =<a,b), {(s) = 5. If x; < ... < x,,, are such
points in {a, b) that x; > a or x,+1 < b, then x; £ x £ x,,, and x ~ x, implies
x =x,. Iif aeA, then « n I # 0. Since B is a representative subset, there exists
a minimal set.

Theorem 19. (1) Let Pe W have the following property: there exist points
X; < ... < X,4, in B such that either x; > a or x,,, < b and the numbers P(x,) —
—f(x) (k=1,..,n+ 1) alternate their signs. Then pu = u({x;, ..., x,4,}) =
_—>=k lmin HI P(x,) = f(xi) |-

(2) Let Pe W. Then || P'— f || = u iff there exist points x; < ... < X, in B
and a number h € {—1, + 1} such thateither x;, > aorx,,, < band P(x)) — f(x,) =
=h-(=D-||P=f||fork=1,.,n+1.

(3) There exists one and only one P e W such that || P — f|| = p.

Proof. (1) follows from Theorem 10(1); (3) follows from Theorem 14. As for (2):
Let||P — f|| = # >0.Letx; < ... <X, bethe points in B which form a minimal
set. Then either x; > a or x,,,; < b (else x; ~ x,, ) and the assertion follows from
~ Theorem 11(2c) (we take t, = x;).

Remark. Let a,be B. Let Pe W, || P — f|| = u > 0; then the points x, < ... <
< Xx,4+, of Theorem 19(2) are significant by Theorem 5(5). Hence, if | d| <1, then
x, >a;if |d| > 1, then x,,, <b.

Theorem 20. We have signd = (—1)"" 1L

Proof (we give only the principle ideas). Let O, ..., Q, form a basis of W, let us
choose points x,, ..., x,_; such that a; < x;, < ... < x,_; < b. For all xe<a, b)
let us put
‘;Ql(x) 0:(xy) ... Ql(xn—l)i
0(x) = : E

! On(x) Ou(x1) ..o Qul(x,-1) 1‘

Then Qe W, QO(x) # @ for xe<a, by — {x,, ..., x,+,}. We can prove that Q
changes the sign at each point x,: Let e.g. Q(x) >0 for 0 < | x — x| < u. Let
T € W be such that T(x;) = 1 and T(x;) = O for j # k. Then there exists ¢ > 0 such
that Q — cT has two zeros in (x, — , X)) N (X, X, + u): of course x;, ..., X_y,
Xk41s -+-» Xn—1 are zeros of Q — T, too, which is a contradiction. Hence sign Q(b) =
= (—=1y""1-sign Q(a) = (—1)""! - signd- sign Q(b), i.e. signd = (—1)""1,
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D. Functions with Proportional values at m Points

Assumption. Let S = R, ne N,a,be R*, a < b, me N. Let B < {a, b) be com-
pact,card B = n + 1. Let us consider distinct points z,, ..., z,, € {a, b) — Band non-
zero numbers d,, ..., d, € R. Let W be an n-dimensional subspace of C{a, b), let
Q@) =d,. Q(zy) fork =2, ..., mand for all Q € W, let each non-trivial polynomial
Q € W have at most n — 1 zeros in {a, b) — {z,, ..., z,,}. Let fe C(B); let us denote

p=min| Q — f||.
QeW

Remark. We take D = {a, b), /" = {{x}/xela,b) — {z,, ..., Zn}} U {Z(, ... Zpn}»
» = 0. Let us denote d;, = 1 and q(x;, x;) = dy/d; for k,j =1, ..., m. Wis an n-di-
mensional subspace of Y(D, A, x,q, R) = {ge R |g(z,) = d, - g(z,) for k =
= 2, ..., m} satisfying the Haar decomposition condition with respect to D, A",
(as Q(z,) = 0 implies Q(z,) = 0). We have card (# — {w}) =card B=n + 1. If
x,ye Band x ~ y, then x = y, hence there is no condition for f. Letusput I = J =
=<{a,b),¢(s) = s.lfaeV/ anda N B # O, thena # {z,, ..., z,} and card (a N ) =
= 1. As B is a representative subset, there exists a minimal set.

Theorem 21. All the three assertions hold also in this case, they are the same as
in Theorem 17.

E. Generalized Even and Odd Functions

Assumption. Let S = R,ne N,0 <a £ +o,deR,d # 0. Let W be an n-dimen-
sional subspace of C{—a, a), let Q(—x) = d- Q(x) for all xe€(0,a) and Q(0) =0 '
for all Q € W. Let every non-trivial polynomial Q € W have at most n — 1 zeros in
(0,a). Let B = {—a,a) be compact, let card ({| x |/xe B, x # 0}) = n + 1. Let
fe C(B) be such that f(0) = 0 in case 0 € B and f(—x) = d - f(x) in case x > 0,
x€B, —xeB. Let us denote y = min || @ — f]|.

QeW

Remark. We take D = {—a, a), /" = {{—x, x}/x €0, a)}, x = {0}, g¢(—x, x) =
= dfor0 < x £ a. We have card (# — {w}) = card ({[x|/xeB,x #0)=n+ 1.
W is an n-dimensional subspace of Y(D, A", x%,q,R) = {ge R*"*?/g(0) = 0,
8(—x) = d- g(x) for all xe(0,a)} satisfying the Haar decomposition condition
with respect to D, 4", ». The function f satisfies the requirements. We can take either
I=J=0,a)orl=J=(-a,0),¢&s)=s.ThenanlI=06andcard(anl) =1
for all e /" — {x}. As B is a representative subset, there exists a minimal set.

Theorem 22. (1) Let P € W have this property: there exist points x, < ... < X+ 1
in I, points #;, ..., %,, ;€ B and he {—1, +1} such that for k =1, ....,n + 1 we
have either t, = x; and P(t,) — f(t,) = h- (= 1)*- di, 018, = —x, and Pit) —f(t) =
= h- (signd): (—1)*-d,, where d, 2 0. Then pu = u({x,, ..., X,,,}) > min dkv,

k=1,...,n+1
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(2) Let Pe W. Then || P — f|| = p iff there exist points x; < ... < X,4, in ],
points ¢, ..., t,+1 €B and he {—1, +1} such that for Kk =1, ...,n + 1 we have
either 4, = x, and P(t,) — f(t) = h.(=D*-||P = ||, or #, = —x, and P(t,) —
—f(t) = h-(signd)- (=1)*-||P - f||.

(3) There exists one and only one Pe W such that || P — f || = p.

Proof. (1) follows from Theorems 12(2) and 9(1); (2) follows from Theorem 13;
(3) follows from Theorem 14.

Remark. Let Pe W, let xe{—a, a) be such a point that xe B, —xe€ B and
|Px) — fx)| =||P = f]|| >0.If |d| <1, then x > 0; if | d| > 1, then x <O.

Remark. (1) If d = —1, then the functions are odd.

(2) Let d = 1. We may change the assumptions in this way: we omit the assump-
tions Q(0) = 0 and f(0) = 0 and assume that every non-trivial polynomial Q € W
has at most n — 1 zeros in €0, @). Then we take x =0, I =<0,a) or I ={—a,0)
etc. Then the functions are even and all the three assertions of Theorem 22 hold
also in this case. We can substitute sign d = 1 and simplify the assertions (1) and (2).

F. The Approximation on a Generalized Arc

Assumption. Let S = R,ne N, a, be R*, a < b. Let &(s) be a one-one mapping of
{a, b) onto some set I. Let W be an n-dimensional subspace of R/, let every non-trivial
polynomial Q € W have at most n — 1 zeros in 7 and for every Q € W let the function
Q[&(s)] be continuous in {a, b)>. Let B = I be such a subset that £~(B) is a compact
subset of <a, b), let card B = n + 1. Let fe R® be such a function that f[£(s)] is
continuous in ¢”'(B). Let us denote u = min || Q — f||.

) Qew

Remark. We take D = I, & = {{x}/x eI}, x = 0; g is defined implicitely. We
have card (# — {w}) =card B=n+ 1. W is an n-dimensional subspace of
YD, A, x,q, R) = R' satisfying the Haar decomposition condition with respect
to D, A", x. We take J = <a, by, we have card (x n 1) = 1 for all a e A".

We transfer the topology from {a, b) onto I by means of the mapping £. Then
each Q € Wis continuous in 7, B is compact and fis continuous in B. B is a represen-
tative subset and consequently there exists a minimal set.

Theorem 23. (1) Let P € W have this property: there exist points x,, ..., X,,; € B
suchthat é7(x,) < ... < ¢7'(x,4,)and the numbers P(x,) — f(x)(k =1, ...,n+ 1)
alternate their signs. Then u = p({x;, ..., x,4,}) = min | P(x;) — f(x) |.

k=1 ,nt1

(2) Let Pe W. Then || P — f|| = p iff there exist,‘i)oints Xy, .., Xop1 € B and
he{—1, +1} such that {7 '(x)) < ... < €™ Y(x,+,) and P(x;) —fx) =h-(=1)kx
||P—f|/fork=1,..,n+1
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(3) There exists one and only one P € W such that || P - f“ = W
Proof is the same as that of Theorem 17.

Remark. Any theory formulated for an interval can be transferred in this way onto
a generalized arc.

G. Trigonometric Polynomials

Theorem 24. (1) Let ay, ..., @y, by, --., b, € R be not all zero. Then the trigono-
metric polynbmial 0(x) = ay + Y (a4, - cos kx + b, - sin kx) has at most 2m zeros
o

=1
in <€0,27).
(2) Let aq, ..., a, € R be not all zero. Then the even trigonometric polynomial
Q(x) =Y a; - cos kx has at most m zeros in <0, 7).
k=0
(3) Let by, ..., b, € R be not all zero. Then the odd trigonometric polynomial

Q(x) = ) b, sin kx has at most m — 1 zeros in (0, m).
k=1 .

Proof. Theorem 24 is well-known and can be proved e.g. by expressing O(x) by
2m

means of algebraic polynomials; we have Q(x) = e+ Y ¢; - (™) for (1), Q(x) =

m m—1 k=0
=Y ¢ - (cos x)* for (2), Q(x) = (sinx) - ¢ - (cos x)* for (3).
k=0 k=0
Definition 3. Let the symbol C,, denote the system of all the continuous functions
in R which are periodic with the period 2.

Remark. Let W mean the system of all the trigonometric polynomials of at most
the m-th degree, let fe C,,. We shall aproximate f by the polynomials Q € Win R.
As max | Q(x) — f(x) | = max | Q(x) — f(x)| for all Q € W, we may investigate

x€R

x€{0,2n)

the problem only in <0, 2z). This problem can be solved according to 0§4.C, if we
takea=0,b=2n,d=1,B =40,2n),n =2m + 1 = dim W.

Theorem 25. (1) Let P € W have this property: there exist points x; < ... < Xzp42
in €0, 27) such that the numbers P(x;) — f(x) (k = 1, ..., 2m + 2) alternate their
signs. Then p = p({xy, ..., Xom42}) 2 Min |P(xk) — flx) l

k m+2

=1,..,
(2) Let Pe W. Then || P — f|| = p iff there exist points X; < ... < Xzp4, in
<0,2m) and he {—1, +1} such that P(x) — f(x) = k- (=1)*- || P = f|| for k =
=1,..,2m+ 2.
(3) There exists one and only one P € W such that H P-—f H = U
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Proof. See Theorem 19. To the assertion (2): Theorem 19 admits also the case
Xy > 0, x5,4, = 2n. Then we can put x, = 0; we have P(xy) — f(Xo) = P(Xzm+2) —
= fGamed) = h - (=)™ 2 ||P—f||[=h-(=1)° || P - f||. We can take
Xgs --+» Xam+1 and renumerate them.

Remark. Let now W represent the system of all the even trigonometric polynomials
of at most the m-th degree, let fe C,, be even. We shall approximate f by the poly-
nomials Q € Win R. As max | Q(x) — f(x) | = max | Q(x) — f(x)| for all Q € W,

x€R xe(0,n)

we may investigate the problem only on {0, z)>. This problem can be solved according
to §4A,ifwetakea=0,b=1n,B={0,n), n =m+ 1| =dim W. We shall not
formulate the theorem since it would be the same as Theorem 17, if we substitute
B=L0,n),n=m+ 1.

Remark. Let now W mean the system of all the odd trigonometric polynomials of
at most the m-th degree, let f € C,, be odd. We shall aproximate f by the polynomials
Qe W in R. Since max | Q(x) — f(x) | = max | Q(x) — f(x)| for all Qe W, we

x€R x€{0,n)

can investigate the problem only in <0, n). This problem was mentioned in Remark
(2) of 0§4.B.Wetakea = 0,b = n, B =<0, n), n = m = dim W.We can formulate

Theorem 26. (1) Let P € W have this property: there exist points x; < ... < X4,
in (0, 7) such that the numbers P(x;) — f(x,) (k = 1, ..., m + 1) alternate their signs.
Then p = p({X(, s Xm+1}) 2 min | P(x) — f(x) |-

k=1,..,m+1
(2) Let Pe W. Then || P — f|| = piff there exist points x; < ... < X4, in (0, )
and he{—1, +1} such that P(x;) — f(x,) = h-(=1)"-||P = f || for k =1, ...,
ce,m+ 1.
(3) There exists one and only one P € W such that || P — f|| = p.

H. Another Approach to the Trigonometric Polynomials

Remark. Let W be the system of all the trigonometric polynomials of at most the
m-th degree, let fe C,,. We shall approximate f by the polynomials Q € W in R, let
p=min|o-/].

QeW .
Let us denoten =2m + 1, S = R, D = B = R. Let us give a decomposition A~

of R by means of the equivalence on R: x ~ y iff —iz—_n—y- is integer. Let » = 0,

q(x,y) =1 for x ~ y.

W is an n-dimensional subspace of Y(D, 4", %, q, R) = {ge RR/g(x) is 2n-periodic
in R} satisfying the Haar decomposition condition with respect to D, A", ». The
function f satisfies the requirements of the Assumption for § 3.

Let 7 = J =<0, 2n), &(s) = s. We have card (@ n 1) = 1 for all o e #". The set
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A = {0, 2n) is a representative subset (e.g. by Theorem 15), hence there exists a mi-
nimal set.

We can now derive Theorem 25 once again; (1) follows from Theorems 12(2) and
10(1); (2) follows from (1) and from Theorem 11(2c) (since we may assume M <
< (0, 27) by Theorem 15 of [1]); (3) follows from Theorem 14.

Remark. In the same way we can investigate also the even trigonometric polyno-
mials (we take x ~ y iff either xz—ny or Xz_;y is integer, ¥ = #, q(x,y) =1 for
x~y,n=m+1,I=<0,n), A =0, n)) and the odd trigonometric polynomials
(we take x = {kn/k integer}, x ~ y iff either x,yex or x,ye R — »x and one of

the numbers 11, Xty is integer; if x, ye R — » and XZy is integer, we
2n 2n 2n

take ¢g(x,y) =1; if x,ye R — » and fz—;y

=m, I =(0,n), 4 =0, n)).

is integer, we take g(x, y) = —1;

Remark. We can investigate also the approximation on a subset, i.e. B < R, fis
defined only on B. We can solve the problem if B has a representative subset A4.
The compactness of A may be investigated with respect to the usual topology on R,
but we may introduce also another topology on R and investigate the compactness
of A with respect to it.

Remark. Let U be the system of all the trigonometric polynomials of at most the
m-th degree, g € C,,. Let A(x) be a continuous positive real funciton in R. We can
approximate the function f = hg by the polynomials of {#Q/Q € U} if we are able to
prove the existence of a representative subset (e.g. for A(x) = e™ ).

5. THE HAAR NODE CONDITION

Remark. In what follows we shall consider functions having common zeros (or
values) at several points. We distinguish two types of the zeros according to the
behaviour of the function in a neighbourhood of the zero point. We consider only
real functions.

Definition 4. Let g be a real function defined in some set I = R*, let z € I be a point.

(1) The point z will be called a cross zero of the function g iff there exists a number
u > 0 such that (z — u, z + u) = I, g(z) = 0 and either g(x) < 0 for xe{z — u, 2)
and g(x) >0 for xe(z,z 4+ u), or g(x) >0 for xe<z — u,z) and g(x) <0 for
xe(z,z + u).

(2) The point z is called a touch zero of the function g iff there exists a number
u > Osuchthat(z — u, z + u) = I,g(z) = 0 and either g(x) > 0for0 < | x — z| <
Suorg(x) <0for0<|x—z|<u
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Remark. If z is a cross zero or a touch zero of g, then z is inside 7 and g :has no
other zeros in some neighbourhood of z.

Theorem 27. (1) Let g be defined (at least) in {a,b),leta <z < b. Let g(z) =0
and g(x) # 0 for all xe<a, z) v (z, b). Suppose that if either a < ¢ =d <z or
z < ¢ S dZ b, then g(c) - g(d) > 0. Then z is either a cross zero or a touch zero
of g, moreover, g(x) has a constant sign in {a, z) and a constant sign in (z, b).

(2) Let g be continuous in {a, b), let a < z < b. Let g(z) = 0 and g(x) # 0 for all
x €<a, z) U (z, b). Then the assertions of (1) hold.

(3) Let g have derivatives up to the r-th order at a point z (re N). Let g(2) =
=g'(z) = ... =g" (z) = 0,8"(z) # 0.1f ris odd (even), then z is a cross (touch)
zero of g.

Proof. Assertions (1) and (2) are obvious, (3) follows immediately from a well-
known theorem.

Assumption (for § 5.). Let ne N, me Ny, let I = R* be an interval. Suppose that
there are given points z, < ... > z,inI(called nodes) and numbers ¢, , ..., t, € {1, 2}.
Let us denote I' = I — {z,, ..., Zn}.

Remark. Let us denote A(7) = {g € R/if{c,d) = Iand g(x) # 0forall xe{c, d),
then g(c) - g(d) > 0}, X(I) = {g € A())/g(z)) = ... = g(zn) = O}.

(1) We have C(I) = A(I).

(2) Let g € A(I). Then g(x) keeps the sign in each subinterval of J, in which g(x) #
# 0.

(3) Let g € A(I) and let z be an isolated zero of g (inside 7). Then z is either a cross
zero or a touch zero of g.

Definition 5. Let g e X(I). A poiht x € I will be called an additional zero of g iff
either

(1) xe I’ and g(x) = 0; or
(2) x =z, t, = 1 and z; is a touch zero of g (inside I); or
() x =z, t, =2 and z; is a cross zero of g (inside I).

Remark. If ¢, de I' and ¢ < d, then t(c, d) will denote the sum of all ¢, for such k&
that c < z; < d.

Remark. If x; < ... £ x, are points in I’ (r = 2), then #(x,, x,) = t(x;, x;) +
F o+ (X g, X)),

Theorem 28. Let g € X(I), let ¢ £ d be such points in I’ that the function g has no
additional zero in {c, d). Then sign g(d) = (—1)"“? - sign g(c) # 0.

Proof. Suppose that there are exactly z, < ... <z, in {c,d). The function g
keeps the sign in the intervals <c, z,), (2,5 Zp+1)s > (Zg-1,2)s (2, d). Let ke
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€{p, ., q};ift, = 1, then 2 is a cross zero of g; if #, = 2, then z, is a touch zero of g.
If the number of such k € {p, ..., ¢} for which #, = 1 is odd (even), then g(c) - g(d) <
< 0 (g(c)- g(d) > 0) and t(c,d) = t, + ... + t, is odd (even), hence the assertion
holds.

Remark. The numbers 7, are of the following meaning. Suppose that g € X(7) and
z; is an isolated zero of g (inside 7). The number ¢, determines the behaviour of g in
some neighbourhood of z, which is necessary for z, to be an ,,allowed* zero of g
(i.e. which is not additional). For ¢, = 1 we allow a cross zero, for #, = 2 we allow
a touch zero; if z, is a zero of the other type, then z, is called an additional zero of g.
If z, is an end point of the interval I, then % has no meaning.

Definition 6. Let W be an n-dimensional subspace of X(/). We shal say that W
satisfies the Haar node condition (with respect to 1, z, 1) iff every non-trivial
polynomial Q € W has at most » — 1 additional zeros in I.

Remark. If m = 0, then we have the classical Haar condition.

Theorem 29. Let W be an n-dimensional subspace of X(/) satisfying the Haar node
condition. Let Q,, ..., Q, form a basis of W.

(1) If ay, ..., a, € R are not all zero, then Y @0y has at most n — 1 additional
k=1
zeros in 1.
@) If x4, ..., x,e I’ are distinct, then det Q;(x;) # 0 and dim{n, W =1
(3 If x4, ..., x, €I’ are distinct and numbers yy, ..., ¥, € R are arbitrary, then
there exists one and only one P e W such that P(x)) = y, for k = 1, ..., n.

Proof. All the assertions are obvious.

Theorem 30. Let W be an n-dimensional subspace of X(I) satisfying the Haar node
condition, let @y, ..., @, form a basis of W. Let x; < ... < x,,; be points in I".
For k =1, ...,n + 1 let us denote

§1 Q1(x1) - Q10-1) @1(Xk4y) --. O1(Xn+1)
Co=(-1)""-]:

Qn(xl) Qn(xk— 1) Qn(xk+ 1)- Q,.(x,,+ 1)
The sign C, = (—1)/¢»™**=1 gion C, #0fork=1,...,n + 1.

Proof. Let k e {1, ..., n}. For all x € I let us put

Ql(xx) e @1(x—1) @1(%) Q1(Xk42) - Q1(Xa+1)
ox) =| :
On(xy) - @a(Xk=1) On(X) QulXi42) v Cu(Xns1)
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We have Q € Wand Q 0. Since Q has additional zeros Xy, ..., Xx—1, Xk42> > Xns 1>
consequently Q has no other additional zero, namely Q has no additional zero in
{Xy, Xi+ 1. By Theorem 28, we have sign Q(x, ;) = (—1)"®**1 . sien Q(x,) # 0.
As C, = (D' O(x4q) and Cipy = (—1)* Q(xy), we have sign G,y =
= (= 1) X0+l 5ion C,. Hence sign Cj = (—1)/Ck-n3+L. L (_q)ox)+l o
x sign C; = (—=1)u®+k=1.gign C, for k =1, ...,n + 1.

6. THE APPROXIMATION

Assumption (for § 6.). Let ne N, me Ny, let I = R* be an interval. Suppose that
there are given points z; < ... < z,, in I and numbers ¢, ..., t, € {1,2}. Let I’ =
=1—{zy, ...z}

Let W be an n-dimensional subspace of X(I) satisfying the Haar node condition.
Let Q,, ..., Q, form a basis of W.

Let B # @ be a subset of I, let us denote B’ = B — {z,, ..., z,,}. Let fe R® be
such a function that if z, € B, then f(z;) =

Remark. Let us denote ¥V = {Qp/Q € W}. Then V is a subspace of R, dim V =
= dimgW <.n. We shal approximate f by the polynomials Q € ¥ on the set B; let us
denote y = mm | @ —f||.If Qe W, we denote | @ — f|| = sup |0(x) — f(x) | =

=05 - f|| wehaveu—(rznln”Q Al

Theorem 31. (1) If card B’ < n, then p = 0.

(2) If card B’ > n, then dim ¥V = n and the restrictions of Q,, ..., Q, to the set B
form a basis of V.

Proof. (1) follows from Theorem 29(3), (2) follows from Theorem 29(2).

. Theorem 32. Let P e W have this property: there exist points x; < ... < X,4
in B’ and a number A€ {—1, +1} such that for k =1, ..., n + 1 we have

P(xk) - f(xk) = h . (‘_ l)t(xl’xk)+k * dk’ Where dk g 0

(1) Let us define Cy, ..., C,,, as in Theorem 30. Then u = u({x,, ..., X,41}) =
E l (’kl ‘P()”k) - f('xk)l min IP(xk) _ f(xk) l

TN
@ If | P(x) — f(x) | = ||P fH for k=1,..,n+ 1, then||P - f|| =

Proof. (1) We have dimy,, . .,V = dlm{x,,...,x,,ﬂ)W= n by Theorem 29(2).
Fork =1, ...,n + 1 we have (—h - sign Cy) - C; - [P(x;,) — f(x,)] = —h-sign C; -
| G| - (= 1)y *RT L sign Cy - - (= 1) YR G = | Cy |- d 2 0 by Theorem
30. Now the assertion follows from Theorem 28(6) of [1].

(2) follows from (1).
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Remark. If B is compact and if all the polynomials Q € W and the function f are
continuous on B, then B is a representative subset.and there exists a minimal set M <
< B. If M # @, then u > 0 and necessarily card B’ = n + 1 by Theorem 31(1).

Theorem 33. (1) Let M # 0 be a minimal set. Then M = B’, card M = n + 1
and dimyV = dimy W = n.

(2) Suppose that there exists a minimal set M and card B’ > n. Then there exists
one and only one P e W such that || P — f|| = p.

Proof. (1) Let us admit that z e M. Then || @ — f||m-(zy = || @ — f||m for
all Q e ¥, hence (M — {z;}) = u(M), which is a contradiction; hence M <= B’. Let
us admit card M < n, then we have u = u(M) = 0 by Theorem 29(3), which is
a contradiction; hence card M = n + 1. By Theorem 29(2), we have dimyV =
= dimy W = n. :

(2) By Theorem 29(3), two distinct polynomials of W cannot coincide on B’. If
M =0, then u = 0, fe V and the assertion is evident. If M # 0, then dim,V =
by (1) and the assertion follows from Theorem 20(3) of [1].

Theorem 34. Let M = {x,, ..., x,,,} be a minimal set, we can assume x; < ...
< < Xn41. Let Pe W be such a polynomial that || P — f|| = p. Then there exists
a number / € {—1, +1} such that P(x,) — f(x,) = h- (=1)¢** .|| P — f|| for
k=1,...,n+ 1. :

Proof. By Theorem 31(2) of {1], there exists ae {—1, +1} such that for k =
=1, ...,n+ 1 wehave P(x,) — f(x;) = a-sign C;- || P — f|| = a-(—1)Ev™+k=1
x sign C, - || P — f||; we take h = —a - sign C,.

Theorem 35. Let card B’ > n + 1. Suppose that there exists a minimal set, let
Pe W.Then || P — f|| = piff there exist points x; < ... < X, in B* and a number
he{—1, +1} such that P(x)) — f(x) = h - (=1 || P— f|| for k =
=1,..,n+ 1.

Proof. If the latter condition is fulfilled, then we have || P — f|| = u by Theorem
32(2).

Let || P — f|| = p. If ¢ = 0, then the assertion is trivial. If u > 0, then the asser-
tion follows from Theorem 34.

Remark. The theory given in § 5 and § 6 corresponds to that of § 2 and § 3. The
most important common fact is that we can find some relations between the signs
of the numbers Cy, ..., C,,,. If we consider any other properties of the polyno-
mials Q € W which enable us to find some similar relations, we can derive all the
theory analogous to these two theories. E.g., it is possible to construct a theory
which is a common generalization of these two theories (such a theory is given
in [4]).
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7. THE CONNECTION WITH THE CLASSICAL
HAAR CONDITION

Assumption (for §7.). Let ne N, me N,, let I = R* be an interval. Let z, <
<..<z,bepointsinI,letI' =1 — {zy, ..., z,}.

Let Z be an (n + m)-dimensional subspace of A(I) satisfying the classical Haar
condition on I. Let B # # be a subset of , let us denote B‘ = B — {z,, ..., z,}. Let
Wy, -.» Wn € R be fixed numbers.

Let fe R® be such a function that if z, € B, then f(z;) = w, (for k =1, ..., m).

Remark. We take t;, = ... = ¢, = 1. A point x € Iis an additional zero of g € X(I)
iff either x eI’ and g(x) = 0 or x = z, and z; is a touch zero of g.
If ¢, deI’ and ¢ £ d, then t(c, d) is equal to the number of z, in (c, d).

Remark. Let us denote U = {Q € Z/|Q(z,) = ... = Q(z,) =0}, W ={Q € Z|0(z) =
=w fork=1,..,m}

Theorem 36. U is an n-dimensic1.&l sutspace ~f X(I) satisfying the Haar node
condition.

Proof. U is a subspace of X(I). Let us choose arbitrary distinct points x, ..., X,€
eI’'. By the Haar condition (see Lemma (4) in § 2.4. of [1] where we take n + m
instead of n), there exist Q,, ..., @, € Zsuchthatfork = 1, ..., n we have Q,(x) = 1,
Q,‘(x,- =0forj=1,..,k—1,k+1,..,nand Qz;) =0forj =1, ..., m Then
Q,, ..., 0, are independent polynomials of U.

On the other hand, if Q € U, then the polynomials Q and Z QO(xy) . Qi have the
same values at m + n points x,, ..., X,, Zy, ..., Z,, hence Q Z Q(x;) - Oy (see

Lemma (4) in § 2.4. of [1]). Therefore Q,, ..., @, form a basis of U, hence dim U =n.

Let Pe U, P % 0. Let P have n additional zeros in 7, let p of them (denoted by
Uy, ...,u,) be in {zy, ..., z,,} and n — p of them (denoted by v, ..., v,-,) be in I".
If p =0, then P has n + m zeros vy, ..., U,, 2y, ..., Z,, Which is a contradiction.
Hence p = 1. Let ke {1, ..., p}; then u, is a touch zero of P (inside I). There exist
points a,, b, € I with these properties:

(1) a w by for k =1..., p;

(2) P has a constant sign in {a,, by — {w} for k =1, ..., p;

(3) if j # k, then b, < a; or b; < a,.

There exists a polynomial Fe Z such that F(i) = sign P(q,) for k =1, ..., p,
F(o) =0fork =1,..,n—pand F(z) =0 for z, ¢ {u,, ..., u,}. We can choose
such ¢ > 0 that ¢+ | F(a) | < |P(a) | and ¢+ | Fb) | < | Py | for k =1, ..., p.
Let us put Q = P — cF; we have Q € Z, Q =£ 0. We have sign Q(a,) = sign Q(b,) =
= sign P(ay), sign Q(w,) = —sign P(aq,) for k =1, ..., p; hence Q has a zero in
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(a,, u,) and a zero in (4, b,). Moreover, Q(v)) = Ofork =1, ...,n — pand Q(z) =
= 0 for zx ¢ {#1, ---» Up}; all these zeros are distinct. Hence Q has 2p + (n — p) +
+ (m — p) = m + n zeros in I, which is a contradiction; U satisfies the Haar node
condition.

Remark. We shall approximate the function f by the polynomials Q € W in the
set B. Let us denote u = inf || Q — f||.
QeW

Theorem 37. Let us choose arbitrary fixed T e W, let us denote g = f — Ty. Then
we have:

(1) geR?; if z,e B, theng(z,) =0 (k = 1, ..., m).

Q wW={0+T/QeU}.

(3) Let Pe Wand Q € U be such that P = Q + T. Then P(x) — f(x) = Q(x) — g(x)
for all xe B, hence || P — f|| = Q2 — 2]||-

(4 p=min || Q@ — g||; hence there exists Pe W such that || P — f|| = u and

QeU

it may be written p = min || Q — f||.
QeW

Corollary. All the assertions of § 6. hold if we write U and g instead of W and f.
However, by Theorem 37(3), they hold also if we write W and f again (i.e. in the
original formulation).

Remark. The meaning of the theory given in § 7. is the following: We approximate
the function f in the set B only by the polynomials of Z which have the fixed given
values wy, ..., w,, at the points z,, ..., z,,. The numbers w,, ..., w,, must be given
so that f(z;) = w, in case z, € B.

§ 7. gives this theory only for the case when Z satisfies the Haar condition. It is
possible to give such a theory also for the case when Z satisfies the Haar decomposi-
tion condition (see [4]).

A special case of the theory of § 7. was solved e.g. in [5].

8. THE APPROXIMATION WITH GIVEN DERIVATIVES

Assumption (for § 8.). Let n € N, m e Ny, let I = R* be an interval. Suppose that
Zy < ..<zparepointsin I, let I' =T — {zy, ..., z,.}.
Suppose that ry, ..., r, € N, are such numbers that r, = 0 if z; is at the end of I.

m
Let us denote #, = 1if r, isevenand t, = 2if r, is odd. Let us denoter = ). (r; + 1).
k=1

Let Z be an (r + n)-dimensional subspace of A(I) with the following properties:
(1) If z, is inside 7, then every Q € Z has derivatives up to the order r, + 1 at z,.
(2) If we give
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(a) ge N, and points u,, ..., u,el’;

(b) numbers sy, .-, S, € N, such that
(bl) if z, is inside I, then r, < 5, < 1 + 1;
(b2) if z, is at the end of /, then s, = 0;

®3) Y+ 1D +qg=r+n;
k=1

(c) numbers wy, ..., w,, 0\?, ..., o, ., 0l ., o5 € R,

then there exists one and only one P e Z such that P(y) = w, for k =1, ...,
gand Pz)=0v) fork=1,...,mandi =0, ..., 5.

Let us denote U = {Q e Z/QW(z,) =0fork =1,...,mand i =0, ..., r,}.

Lety (k =1, ...,mand i =0, ..., r,) be fixed real numbers; let us denote W =
={0eZ/0Vz) =y fork =1,..,mand i =0, ..., r}.

Let B # 0 be a subset of 7, let us denote B' = B — {z,, ..., z,,}. Let fe R® be
such a function that if z, € B, then f(z,) = y°.

Theorem 38. U is an n-dimensional supspace of X(/) satisfying the Haar node
condition.

Proof. Uis a subspace of X(I). Let us choose arbitrary distinct points x,, ..., x, €
el’. Let us take g =n, y, =x, for k=1,...,n and s, =r, for k =1, ..., m;
by (2), there exist Q,, ..., @, € Z such that for k = 1, ..., n we have Q,(x,) =1,
Ox) =0forj=1,..,k— 1, k+1,..,nand Q(z) =0forj=1,..,mand
i=0,..,r;. Then Q,, ..., Q, are independent polynomials of U.

On the other hand, if Q € U, then the polynomials Q and Y Q(x,) . Q, have the
k=1
same values at the points x, ..., x, and zero derivatives at each z; up to the order r;
(j=1,..,m). By (2), we have Q = ) O(x;) - Q,. Hence Qy, ..., Q, form a basis
k=1

of U and dim U = n. )

Let Pe U, P==0. Let P have n additional zeros in I and let p of them be in
{zys ---s Z,}. Let us consider one of these z,; it is inside /. Let us admit that
P*(z) # 0. Then for r, odd (even) z, is a touch (cross) zero of P (see
Theorem 27(3)) and z, is not an additional zero of P. Hence P"**1)(z,) = 0.

We shall apply (2). If z, is an additional zero of P, we put s, = r, + 1, otherwise
5, = ry. Let uy, ..., u,_, be the additional zeros of P in I'; we put ¢ = n — p. We
have Y (s, +1)+g=(@¢+p)+ (n—p)=r+n We have P(y) =0 for k =

k=1
=1,..,qand PPz)=0fork =1,..,mand i =1, ..., 5. By (2), there exists
one and only one polynomial of Z with these properties. Hence P = 0, which is
a contradiction. U satisfies the Haar node condition.

Remark. We shall approximate the function f by the polynomials Q € W in the
set B. Let us denote p = inf|| Q — f||.
QeW
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Theorem 39. Since W # 0 by (2), let us choose arbitrary fixed Te W and let us
denote g = f — Tg. Then we have:
(1) geRE;if z,e B, theng(z,) = 0 (k = 1, ..., m).

@ W=1{Q+T/QeU).
(3) Let Pe W and Q € U be such that P = @ + T. Then P(x) — f(x) = Q(x) —f(x)
for all xe B, hence || P — f|| =|| @ — g ||
(4) p =min || @ — g||; hence there exists Pe W such that || P — f|| = p and
QeU

it may be written p = min || Q — f||.
QeWwW

Corollary. All the assertions of § 6. hold if we write U and g instead of W and f.
However, by Theorem 39(3), they hold also if we write W and f again (i.e. in the
original formulation).

Theorem 40. Let 7 = R. Let Z be the system of all the algebraic polynomials of
at most the order r + » — 1. Then Z satisfies the Assumption for § 8.

Proof. (1) is evident, (2) follows from the well-known theorem of the interpola-
tion theory.
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