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CONTRACTIVE MAPPINGS AND PERIODICALLY 
PERTURBED CONSERVATIVE SYSTEMS 

JEAN MAWHIN, Louvain-la-Neuve 
(Received November 3, 1975) 

1. I N T R O D U C T I O N 

This paper is devoted to the usfe of Banach fixed point theorem [2, 17] in proving 
a mapping theorem for nonlinear operators of the form L — Nin a Hilbert space H, 
with L linear and N (possibly) nonlinear. The abstract result is then applied to give 
an elementary and direct proof of a result of Lazer and Sanchez [13] concerning the 
existence of periodic solutions for some periodically perturbed conservative systems. 

The abstract mapping theorem is in the spirit of the work by Hammerstein [9], 
Golomb [7], Dolph [4], Kolodner [12], Ehrmann [5, 6] and others on nonlinear 
Hammerstein equations. In contrast with those papers, our result is formulated for 
mappings of the form L — N instead of Hammerstein mappings I — KN (K linear), 
emphasizing the fact that L needs not to be invertible. Moreover no compactness is 
required on the mappings which should make possible the use of this theorem in 
problems such that ker L is not finite-dimensional. Lastly the spectrum of L is not 
required to be discrete and, together with the classical theorem of fixed point for 
contractions, we use in the proof only basic facts of the theory of self-adjoint linear 
mappings. 

The considered application to some periodic differential equations has its origin 
in Loud's work [16] on Duffing's equation 

x" + g(x) = Kcos / ' 

with the derivative gf satisfying conditions of the form 

(n + S)2 ^ g'(x) < (n + 1 - 5)2 

for some 3 > 0 and some positive integer n. Loud proved for this equation existence 
and uniqueness results by elementary but rather long arguments based upon the use 
of the operator of translation along solutions and the properties of the variational 
equations. Those results were partly extended by Leach [15] using the method of 
continuation and, like in Loud's papers, polar coordinates in the plane, which makes 
difficult the extension of their methods to systems. This extension was performed by 
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Lazer and Sanchez [13] using the alternative method [8] and a version of Brouwer 
fixed point theorem to solve the corresponding bifurcation equations. The uniqueness 
of the solution was only obtained later by Lazer [14] under more general conditions 
for which existence also holds, as shown recently by Ahmad [I] using the method of 
continuation and Lazer's paper [14]. Lastly, in the frame of the assumptions of Lazer 
and Sanchez' [13], Kannan [10] has recently proved simultaneously the existence and 
uniqueness of the solution by the use of Cesari's alternative method [3] and an 
invariance of domain theorem. The result of Lazer and Sanchez, together with uni­
queness, is given in this paper as a very simple application of our abstract mapping 
theorem and we obtain in this way a functional analytic proof based upon very simple 
arguments as well as the usual Picard iteration for getting approximate solutions. 
Of course, other boundary value problems for n-dimensional systems of the form 

x" + grad G(x) = e(/), 

including Neumann boundary conditions, could be treated similarly. 

2. A M A P P I N G T H E O R E M I N H I L B E R T SPACE 

Let / / be a (real) Hilbert space with inner product (,) and norm |. | , L: 
dom L c / / - 4 l f a linear, self-adjoint operator and N : H -> H a mapping having 
on Ha bounded linear Gateaux derivative N' such that, for each x in H, N'(x) is a sym­
metric operator. We shall denote respectively by Q(A), G(A), ra(A) the resolvant set, 
the spectrum and the spectral radius [11] of any linear operator A in H, and we 
shall write A ^ 0 if and only if (Ax, x) ^ 0 for every xe H and A ^ B if and only 
if A - B £ 0. 

Theorem 1. Suppose there exist real numbers X < p. such that 

]X, p[ c Q(L), X, jUGtf(L) 

and real numbers p, q with 

such that, for each x e H, 

Then, L — N is one-to-one, 

X < q S P < џ 

ql Š N'(x) й PÍ-

(L - N)(dom L) = H 

and (L — N)*1 is globally Lipschitzian. 

Proof. If v e ]X, p[ and yeH, the equation 

(1) Lx - Nx = y 
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is clearly equivalent to 
(L - vI) x - (N - v/).v = } \ 

i . e . t o > "•' •'•• •• ";: ;. • -: < •"'•• ' 

Ax — Bx = y 

if A: dom L c H -> H is the linear self-adjoint operator defined by 

A = L - v/ ; ; v r ' ., ' .!..•/. ' '. ' ... 

and i? : H -+ H is the (Gateaux) differentiable mapping 

B = N - vl .. 

with linear, bounded and symmetric Gateaux derivative at x <e H 

B'(JC) = N ' ( x ) - vL 

The proof consists now in the following four steps. 

1. A"1 exists, is bounded and \ A~l | = max {(p. — v)"1, (v — A)"1}. 

By our assumptions, v e g(L) and hence A""1 = (L — v/)"1 exists and is bounded-
Moreover, 

A - a/ = L - (v + a) / 
and hence 

]A - v, p - v[ c o(A) 

which implies, A being self-adjoint, 

<r(A) c: ] — oo, X - v] u [/i - v, +oo[ 

But A is necessary closed and hence a # 0 belongs to a{A) is and only if a~ l belongs 
to a(A~l) [11], which implies that 

o(A-i)cz[{k-vr\{p-vrl] 
the boundary points of the interval belonging to ofA""1). Now A""1 is also self-adjoint 
and hence 

M " 1 I = ra{A']) = max {(v - k)-\{p - v ) ' 1 } . 

2. B is globally Lipschitzian with Lipschitz constant y = max (I p — v |, | q — v I). 

Using the mean-value theorem [18], we have, if x, x' e H, 

| Bx - Bx' | S I B'{x + t(x ' - x)) | | x - x' | = sup | N'(z) - vl | | x - x' \ 
ze f l 

where t e ] 0 , 1[. But, 

{q -- v) / £ N'(z) - v/ = J?'(z) £ (P - v) / 

and hence for each x e H, 
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(q - v) | x |2 = (B'(z)x, x) = (p - v) | x |2 

which implies, using the self-adjointness of B'(Z), 

|B'(z)| = sup \(B'(z)x,x)\ =max(\q- v |, | p - v |) -= y. 
N - i 

3. Equation (1) /s uniquely solvable for each yeH. 
Clearly equation (1) is equivalent to the fixed point problem 

(2) x~A~\Bx + y) 

and we shall show that for a convenient choice of v, the right-hand member of (2) is 
a contraction in H. If x, x' e H, 

| A~\Bx + y)- A'HBx' + y) \ = | A"1 | | Bx - Bx' \ = 

= max {(v - k)~\ (n - v)"1} . max (| q - v |, | p - v \). | x - x' \ = 
= max (| q — v |, | p — v \) [min (v — k9 \i — v)]~x \ x — x' | 

Hence A~1(B(.) + y) will be a contraction if and only if 

max (| q — v |, | p — v \) < min (v — A, /z — v) 

which is easily shown equivalent to 

(p + k)l2 < v < (q + II)I2. 

In particular, one can take v = (p + q)\2 or v = (k + p)\2. For such a value of v 
it follows directly from Banach fixed point theorem that equation (2), and hence 
equation (1) has an unique solution. 

4. (L — N)"1 is globally Lipschitzian with constant (| A-1 I"1 — y)~l-
If y, y',x, x' e H are such that 

Lx — - Nx = y, Lx' — Nx' = y\ 
then), 

\x-x'\ = \A-x(Bx- Bx' + y - y') \ = | A"1 | (y \ x - x' \ + \ y - yr |) 

and hence 

[{L-Ny'y-^-Ny'y^ = | x - x' \ = \A'X \ (1 - y \A~' \)~x \ y - y' \ = 

= ( M - 3 r i - y r i i j ~ / i . 
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3. P E R I O D I C A L L Y P E R T U R B E D CONSERVATIVE SYSTEMS 

Let us consider the vector differential equation 

(3) x" + grad G(x) = y 

where G : Rn -> R is of class C2, y : R -> Rn is continuous and 2n-periodic, and where 
H:Rn -> &(Rn, Rn) is defined by 

í d2a 
\ dXidxj вд = h^ъ-w (i,j = i,..,«). 

Theorem 2. Z/' there exist me N and real numbers 

(4) m2 < r S s < (m + I)2 

such that, for each x e R'\ 

(5) rl ^ H(x) ^ si 

then equation (3) has an unique 2n-periodic solution. 

Proof. Let H be the (Hilbert) space of (equivalence classes of) mappings x from 
J = [0, 2n] into K" such that 

i ixOi i 2 -£* 2 0) 
i= 1 

is (Lebesgue) integrable over J, with the inner product 

(-v, >') ( 2 n ) - j [ f A-KÔ íODdř 

and let 

d o m L = ( x e H:x is absolutely continuous and 27r-periodic as well as x' and 
x e H}, 

L : dom L cz H ~> H, x -> x." 
It is a known result that L is self-adjoint and that 

a(L) = {-m2 :meN}. 
Moreover, if x, x' e K", 

|| grad G(x) - grad G(x') || g sup | | H(z) | | | | x -xf | |-g k\\ x - x' | | 
2 6 R " 

with | | . | | the Euclidian norm in R" and some k > 0, and hence 

|| grad G(x) | | ;£ * || * || + *', xeR", 
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whiph implies that the mapping N defined by 

Nx = —gradG(x(.)) 

maps H into itself. Hence, if we find a solution x e dom L of equation 

(6) Lx - Nx = y, 

it follows from the continuity of x, grad G and y that x" will be continuous and 
27r-periodic, and thus will be a classical 27r-periodic solution of (3). Conversely every 
classical 27r-periodic solution of (3) satisfies (6) and our problem is thus reduced 
to the unique solvability of (6). It is shown in [13] that Nhas a Gateaux derivative 
given by 

(N'(x) u) (t) = - H(x(t)) u(t) a.e. in [0,2TT], 

and hence N'(x) is symmetric and bounded. Also, by (5), 

In 2n 

-s(2ny' \\\u(t)fdt ^ -(27t)-'J uT(f)H(.v(r)) u(t)dl ^ 
0 0 

In 

S-r(2nTx f || ii(f) ||2 dr, 

o 

which implies that 

-(m - f l ) 2 1 < -si S N'(x) £ -rl < -m2L 

Thus the assumptions of Theorem 1 hold with k -= — (m + I)2, /< = — m2, q => — s, 
p = — r and the result follows from direct application of Theorem 1. 
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