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Remarks on delta-convex functions 

E V A K O P E C K Á A N D J A N M A L Ý 

Abstract. We construct a delta-convex function on R2 which is strictly differentiate at 
0, but this property possesses none of its control functions. Further, we prove that if 
a function JOT on an open convex subset A of a normed linear space X is controlled by 
a bounded continuous function kg on each bounded closed set E contained in A, then 
A is delta-convex on A. We construct various counterexamples showing that this result 
is the best possible generalization of its finite-dimensional counterpart, which is due to 
P. Hart man. 

Keywords: Delta-convex functions, differentiability, normed linear spaces * 

Classification: 26B25, 46A55 

Introduction. 
Let A be a convex subset of a normed linear space X. A function H: A —* R is 

termed delta-convex on A if H can be expressed as a difference of two continuous 
convex functions on A. Let H and h be functions on A. We say that h is a control 
function to H on A, or, that h controls H on A, if both the functions h — H 
and h + H are continuous and convex. Then, of course, h is also continuous and 
convex and H is continuous. We may define equivalently delta-convex functions on 
A as those functions, which have control functions. The family of all delta-convex 
functions on A is the linear span of the set of all continuous convex functions on A. 

A diflSculty of the concept of delta-convexity consists in the fact that in general 
we cannot found a "canonical" control function to H, which would be controlled by 
all control functions to H. 

The notion of delta-convex function was introduced by A.D. Aleksandrov [1] in 
n-dimensional case. It was observed by L. Zajfcek [4], that the infinite-dimensional 
version of this notion allows to characterize the sets of Gateaux nondifferentiability 
of continuous convex functions on separable Banach spaces. 

A survey of results in the theory of delta-convex functions and mappings (see Re­
mark 17 below) can be found in an important article by L. Vesely and L. Zajfcek [3]. 

In this paper we solve Problem 3 and Problem 5 from [3]. In Section 1 we show 
an example of a delta-convex function H on R2 such that the function H is strictly 
differentiable at 0, but none of its control functions is (Erechet) differentiable at 0. 

In Section 2 we compare local and global delta-convexity . A function H is said 
to be locally delta-convex on an open set A, if every point z € A has an open convex 
neighborhood V in A such that H is delta-convex on V. P. Hartman [2] proved 
that if A C R n is an open convex set and H is a locally delta-convex function on A, 
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then it is delta-convex. We show that analogous statement is not true in infinite-
dimensional spaces even if A is bounded and H is locally delta-convex on the whole 
space. A further example shows that there is a function H on P such that H is 
delta-convex on each bounded convex subset of P but H is not delta-convex on P. 
The only positive result remains: If a function H on a normed linear space X is 
controlled by a bounded continuous convex function on each bounded convex set, 
then H is delta-convex on X. The same result holds for mappings (cf. Remark 17). 

Differentiability. 
Let X be a normed linear space. We denote B(a, r ) = {x E X : \x — a\ < r}. Let 

F be a function defined on an open set A C X. A continuous linear functional L is 
said to be a strict derivative of F at a point a if for every e > 0 there is S > 0 such 
that for each x,y G Af\ -B(a, 6) we have 

\F(y)-F(x)-L(y-x)\<e\y-x\. 

If a convex function is difierentiable (= Frechet differentiate) at a point a, then it is 
strictly differentiable at a ([3, Prop. 3.8]). This cannot be said about delta-convex 
functions. An example of a delta-convex function on R 2 which is differentiable at 
0 but not in the strict sense in given in [3, Note 6.4]. Such a function cannot be 
controlled by a function differentiable at 0. 

In this section we construct a delta-convex function H on R 2 such that the func­
tion H is strictly differentiable at 0, but none of its control functions is differentiable 
at 0. 

Examp le 1. Find a sequence {kj} of positive integers such that cos(27r/fcj) > 

1 - 2~-,~3 and denote 

M = { (2"j cos(27rk/ki), 2~~j sin(2<Kk/kj)) : j € N , k € { 1 , . . . , kj}} . 

Set 
F(z) = | z | + 4 | s | 2 . 

For each z £ R 2 \ {0} we define 

G,(«) = F(z) + {?{'), - " *> = (8|*| + l ) - j ^ - - 4 | - | 2 • 

Since F is convex and Gz is a tangent function to F at 2, we have Gz < F on R2 . 
Set 

G(x) = sup{Gz(x): z € M} 

and 
H(x) = G(x) - \x\. 

Obviously G is a convex functions on R 2 . It follows that the function H is delta-
convex. In what follows we will derive further properties of the functions G and H. 
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Lemma 2. Let M be as in Example 1 and x € R2 . Suppose 0 < |x| < 1. Then 
there is z € M such that 

\z\ < 1*1 < 2|-| 
and 

\x\\z\ 81 

PROOF : Find j € N such that 

2-'" < |x| < 2 " i + 1 . 

Further find z € M such that |z| = 2~~3 and the angle between the radius vectors of 
z and x is less than 27r/kj, i.e. 

|fi|>cos(2./^) 

Then we have 

1*1 < 1*1 < 2|z| 
and 

Lemma 3. The function G from Example 1 satisfies 

\x\ + |*|2 < G(x) < \x\ + 4|x|2 = F(x) 

for all \x\ < 1. 

PROOF : Fix x € R 2 with 0 < |x| < 1. The inequality G(x) < F(x) is obvious. 
Find z € M as in Lemma 2. Then we have 

G(x) > Gx(x) = (8 | - | + 1 ) - - ^ - - 4 | - | 2 > (8 | - | + 1)(1 - i | - | ) M - 4|*|» 

=- |x| + | - | (8 |* | - i | x | - |x | | - | - 41*1) > |x| + 2|- | |x| > |x| + |x | 2 . • 

Lemma 4. Let G, Gz be the functions from Example 1. Let r € (0,1). If 

0 < \z\ < - and |x| > r , 

then 

Gz(x)<G(x)-j. 

PROOF : Under the assumptions, using Lemma 3 we obtain 

G,(*) = (8|*| + l ) ^ - 4 | * | 2 

<|*|+8|x||-|<G(*)-£. " 
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Lemma 5. Let G, Gz be the functions from Example 1 and w € & > ® < M < Jg> 
Then 

G(w) = sup{G*(u>): * € Mw) , 

where 
Mw = {* € M : |*| < 2|to|, (ti>, *) > |*|H(1 - 8|*l)> • 

PROOF : Choose * € M \ Mw. We will distinguish two cases. 
(a) Assume that |*| > 2\w\. Then 

G,(w) = (B\z\ + l ) ^ - l \ z ? 

<\w\+8\w\\z\-A\z\2<\w\. 

(b) Assume that \z\ < 2\w\ and 

{»,-)<(i-8 |* | )MM. 

We obtain 
G > ) = (1 + 8 | * | ) ^ - 4 | * | 2 

<H-64| * | 2 H-4 | * | 2 <| tx ; | . 

In both cases (a) and (b), using Lemma 3 we conclude that Gz(w) < G(w) — \w\ . 
The assertion easily follows. • 

Lemma 6. Let H be the function from Example 1. Then the zero functional is a 
strict derivative of H at the origin. 

PROOF : Choose e € (0,1/4). Let a, y be points of B(0,e2). We will estimate the 
quantity 

\H(y)-H(x)\. 

We will distinguish two cases. 

(a) Let us assume that \y — x\ > e(\x\ + |y|). Then we obtain 

|F(y) - H(x)\ < \H(y)\ + \H(x)\ < 4(|x|2 + |y|2) < 4(1*1 + |y|)2 

<4(W + |y|)^-l<8£ |y-x| . 
(b) Let us assume that |y — a:| < e(\x\ -f |y|). Fix * € M. Denote 

,.._I*L U . _ M 2 
x = r-j* , y = J-TZ. 

Assume * € Mx (for the notation see Lemma 5). Then 

I** ~*\2 = jj-ll-l*--1-!-.' = ]^y(-l*l'l-l' -2\*\\*\(*,*)) 
< 2|*|a(1 - (1 - 8|-|)) - 16 |z||*|2 < 32e2(|*| + |y|)2 
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and 

|y* - Vl < IV* - **l + I** - *| + |x - vl < (2e + %/32)e(|x| + |y|) < 8e(|x| + |y|). 

Similarly we have 

| y * - y | < 8 e ( | x | + |y|) and | x * - x | < 8e(|x| + |y|) 

assuming that z € My. Now, let z 6 Mx U My. Then 

v (y - s» *) ( y > y - s ) + (*>•?-*) I 
I(G.(V)-ІVІ)-(G.(*)-|*I)I = (8W + 1)J 

M И + ІVІ 

< 

si2iÍLz£i£) _L (v-*.**--*) , (y-g ,v*-y) 
8 m \z\ + |x| + |v| + |x| + |v| 

(sN + g ^ + ^ i - ^ ^ l y l x , . 
It easily follows 

|ff(y) - H(x)\ < Bup{|(G,(v) - |vl) " (<?,(x) - |x|)| : : £ M , U M , } < 24e|y - x| . 

The estimates in (a) and (b) show that the zero functional is a strict derivative 
of H at the origin. • 

Theorem 7. The function H from Example 1 is delta-convex on R2. The func­
tion H is strictly differentiable at 0, but none of its control functions is (Frichet) 
differentiate at 0. 

PROOF : Most of the required properties is proved in Lemma 2 - Lemma 6. It 
only remains to show that none of the control functions to H is differentiable at 
0. Assume that h is a control function to H which is differentiable at 0. We may 
assume that h(0) = h'(0) = 0. Find r, 0 < r < 1, such that 

|A(x)| < - | x ] if | x | < 3 r . 

Denote 

«*(t)-(r,«), te[-2r,2r], 

rt*) = l«.)l, 
7(t)--G(«*)), 
*(t) = /.«(<)). 

The function 7 is piecewise linear, as by Lemma 4 

G(f(ť)) = max{G,(€(0): - € M, \z\ > -}. 
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We find points t,-, — r = to < t_ < • • • < t m = r, such that 7 is linear on each 
interval [tj__,t,-]. Then 

(1) 7-(<i) = 7+(*i-i) 

for each i = 1 , . . . , m. Since h is a control function to H, the function K + 7 — y> is 
convex on [—2r,2r]. Hence for each t = 1 , . . . , m we have 

(2) K'_{U) - K'+(t.-i) + 7 l (* i ) - 7+(*i-i) ~ ¥>'(*.) + ?'(*.-.) > 0 . 

Using convexity of K we obtain 

* ' - ( r ) < i ( * c ( 2 r ) - « ( r ) ) , 
(3) [ 

- « + ( - r ) < ; K - 2 r ) - i c ( - r ) ) . 

Prom (1), (2) and (3) it follows 

m 

v/2 = / ( r ) - .p ' ( - r ) = _ _ > ' ( i . ) - V'(*i-i)) 
t = l 

m 

< __> ' - (* . ) - «+(*•-!)) < «'-(r) - < ( - r ) 
t = l 

< i « 2 r ) - «(r) + « ( -2 r ) - n(-r)) < 1, 

which is a contradiction. • 

Local and global deltaconvexity. 
Is every locally delta-convex function delta-convex ? The answer is positive in the 

finite-dimensional case ([2]). In this section we will study various related questions 
in case of infinite dimension. We present several "negative" results, which show 
why the final result cannot be stronger. 

Let us introduce a notation: if x € J2, then x3 stands for the j - t h coordinate 
of x. We denote by e% the element of I2 with i-th coordinate 1 and remaining 
coordinates 0. 

Lemma 8. Let X be a normed linear space and R > 0. Let H be a function on 
B(0, R). Suppose that there exists a bounded control function h to H on B(0, R) 
Then H, h-H andh + H are bounded on B(0,R). 

PROOF : Denote F = h — H, G = A + B . From the convexity of F and G we 
obtain existence of continuous linear functionals / , g on X such that for each x € A 
we have (f,x) < P(x) - F(0) and (g,x) < G(x) - G(0). Then, of course, / and g 
are bounded on B(0, R) and for each x € B(0, R) we estimate 

F(0) + (/ ,x) < F(x) = 2h(x) - G(x) < 2h(x) - G(0) - (g,z). 

Similarly we conclude that G and H = |((y — F) are bounded on B(0, R). • 
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Lemma 9. Let X be a norrned linear space and R > 0. Let H be a function on 
B(0,2R). Suppose that there exists a bounded control function h to H on B(0,2R) 
Then H is Lipschitz-continuous on H(0,H). 

PROOF : It is well known (see e.g. [3, Lemma 1.9]) that any bounded convex 
function on B(0,2R) is Lipschitz-continuous on H(0, R). If we apply this result to 
the functions h -f- H and h — H (which are convex by the definition of a control 
function and bounded on H(0,2R) by the preceding lemma), we deduce that H = 
| ( ( l i -f H) — (h — H)) is Lipschitz-continuous on H(0, R). • 

Lemma 10. There exists a bounded nonnegative delta-convex function H on P 
such that H(x) = 0 if \x\ > 1 and none of the control functions to H is bounded on 
B(0,1). 

P R O O F : If x e I2, we define 

F(x) = supflxl,*1 - i , 2(x2 - i ) , 3(x3 - i ) , . . . ) } 

and 

G(aO = max{l,F(a:)}. 

The functions F , G are convex on P. If y € J2, then 

F(z ) =max{ | a ; | , a ;
1 - i , 2(z2 - i ) , 3(x3 - i ) , . . . , m ( x m - i ) } 

holds for all a: € -B(y, | ) and m = max{j : yJ > | } . This proves the continuity of 
F and G. Hence the function H = G — F is delta-convex. Obviously H is bounded 
and H = 0 outside H(0,1). Denote 

1 A lx , * * . - , 
"^ = 4 ^ , vfc = (~ + - ) e f c , k = 5 ,6 ,7 , . . . . 

Then 

F( t*) = l , F(u*) = j , 

and thus 

\H(vk)-H(uk)\ = l>±\vk-Uk\. 

It follows that H is not Lipschitz-continuous on B(0, | ) , and thus, by Lemma 9, 
none of the control functions to H is bounded on B(0,1). • 

Example 11. Let 0 C P be an open convex set. We will construct a function H 
on P such that H is locally delta-convex on P\ but it is not delta-convex on 0 . 

Without loss of generality we may assume that 0 € 0 . Denote U = {|x : x € O}. 
Let us find a sequence {£*} of points of U and 8 > 0 such that the balls B(xk, 26) are 
contained in U and pairwise disjoint. By a slight modification Lemma 10 we obtain 
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for every k G N a delta-convex function JET* such that Hk = 0 outside B(xkt \S) 
and none of the control functions to Hk is bounded on £(:£*, \S). Set 

oo 

# = v>. 
* = 2 

Obviously H is locally delta-convex on P. Assume that there is a control function h 
to H on O. Using the unboundedness property, we find Uk € U such that |u*| < j~S 
and /*(#* -f u*) > max{h(2xk), k}. From convexity of h on the line connecting 2u*, 
Uk + Xk and 2xk we get /i(2u*) > k. Since u* —> 0, the function h is not continuous 
at 0, which is a contradiction. 

Theorem 12. There exists a function H on P which has the following properties: 
With every point z € P we can associate a continuous convex function hz on P such 
that hz is bounded on each bounded subset of P and controls H on a neighborhood 
of z. Nevertheless, H is not delta-convex on £(0 ,3) . 

PROOF : For t, j = 1,2,.. . we denote 

Zij = e,-+ 2 " , " 1 e i , 

Bi = B(ei,2-i-1), 

Bij = B(zij,2"i-2). 

Let 

H(x) = 

( : 0 otherwise. 

It is easy to see that there are control functions hzioH with the required properties. 
(Notice that the function max(|a;| - l ,2 |x | - 2) controls max(l — |x|,0).) We will 
show that H is not delta-convex on B(Q, 3). Let us assume that there is a control 
function h to H on JB(0,3). By Lemma 8, h is unbounded on each ball B , . Now, 
for every t € N we find a point #, € £ , , so that h(xi) > max{/i(2e,),i}. Set 
y»- = 2(xi — ei). From the convexity of the function h we obtain h(yi) > i (the point 
Xi belongs to the segment connecting y, and 2cj). Since |y»| < 2""', we have 

lim y,- = 0 and lim h(yi) = oo, 
,*—*oo ,*—*oo 

which contradicts the continuity of h at the point 0. • 

Remarks 13. 1. If we do not require hz to be bounded on bounded sets, then the 
assertion easily follows from Example 11. 

2 . A similar example as in Theorem 12 can be constructed in each infinite-di­
mensional normed linear space. 
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Theorem 14. There exists a function H on P which is delta-convex on each 
bounded convex subset of P, but it is not delta-convex on P. 

PROOF : Let us specify Example 11 so that 0 = P and lim \XJ\ = oo. We obtain a 
function H, which is not delta-convex on P. Nevertheless, H is delta-convex on an 
arbitrary bounded convex set M C P, as H coincides on M with a sum of a finite 
family of delta-convex functions. • 

Lemma 15. Let H, h be functions on an open convex subset A of a normed lin­
ear space X. Suppose that h is convex and continuous. If every point of A has 
a neighborhood U such that h controls H on U, then h controls H on A. 

PROOF : It is an obvious consequence of the fact that every locally convex function 
is convex. • 

The following theorem is an infinite-dimensional generalization of Hart man's re­
sult on locally delta-convex functions. 

Theorem 16. Let Ha be a family of functions on an open convex subset A of a 
normed linear space X. Suppose that for every bounded closed convex set E C A 
there is a bounded continuous convex function /*# on E which controls each Ha on 
E. Then there is a continuous convex function h on X which controls each Ha on 
A. 

PROOF : We may suppose that 0 E A. Let p be the Minkowski's functional of A, 
defined by 

p(x) = inf{A € (0, +oo): A""1* e A} . 

and 

vex function on A 

and convex on [0,1). Set 

Then q is a continuous convex function on A, as the function y t—> is increasing 
i - y 

Ek = {x € A : q(x) < k} . 

The sets Ek are obviously bounded and closed subsets of X and 

A~{jEk. 

Fix k € {0 ,1 ,2 , . . . }. Denote 

hk = hEk , 

Mk = sup hk+s , 
£fc+8 

mk = inf hk+z , 
Ek+* 

ck = Mk + (k - 2)(M* - mk) = mk + (k - 1)(M* - mk), 

fk(x) = hk+z(x) + (Mk - mk)q(x) - ck , 

wk(x) = 5(M* - mk)(q(x) - (* + 1)). 
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Then fk is a convex function on .Ejfc+3. We will estimate /*(#) for some positions 
of x: lix e i£fc+3 \ -Cjk+2, then 

fk(x) <Mk + (k + 3)(M* - mk) -ck< 5(Mk - mk) < Wk(x), 

if x £ Ek-~2, then 

fk(x) <Mk + (k- 2)(Mk -mk)~ck = 0 

and if x 6 i£*+i \ Ek-i, then 

/ik(-c) >mk+(k- l)(Mk - mfc) - ck = 0 > u;*(x). 

Set 
f max{0, /*(a;), wk(x)} if x e EM , 

M * ' lu>*(*) if xeA\EM. 

Then g* = 0 on J5*_2, 0* = fk on K*+i \ JE^-i and g* = «>* on A \ Ek+2- It follows 
that gk is a continuous convex function on A which controls each Ha on each convex 
subset of .Ejfc+i \ Ek-i. Set 

oo 

^ = ]Tg*. 

Since for every bounded set K we can find n 6 N such that gk = 0 on K if k > n, 
we deduce that h is a continuous convex function on A. By Lemma 15, h controls 
each Ha on A. • 

R e m a r k 17. Let X and Y be normed linear spaces. Let H be a mapping of an 
open convex set A C X into Y. Following [3], we say that H is delta-convex, if there 
is a convex continuous function h which controls H, this means that h controls every 
function Ha : x H-> (/a ,H(a;)), where {/<*} is the collection of all linear functionals 
on Y with | | / a | | < 1. From Theorem 16 we immediately see that the following result 
is true: 

Corollary 18. Let X and Y be normed linear spaces. Let A be an open convex 
subset of X and H : A —• Y be a mapping. Suppose that for every bounded closed 
convex set E C A there is a bounded continuous convex function hs on E which 
controls H on E. Then H is delta-convex on X. 
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