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Hysteresis operators - a new approach to evolution 
differential inequalities 

PAVEL KREJcf 

Dedicated to the memory of Svatopluk Fudfk 

Abstract. The hysteresis effects mppemr in a nmturml way in mathematical problems leading 
to evolution differential inequalities. This observation is formulated by means of hysteresis 
or relaxation - hysteresis operators. Examples (phase transitions, elmsto - plastic vibra­
tions) illustrate the typical situations where these operators can be used. 

Keyword*: relaxation - hysteresis operators, evolution differential inequalities, free bound­
ary problem, elmsto - plastic vibrations 

Classification: 35R45, 47H15, 35R35 

The theory of evolution differential inequalities and the mathematical theory of 
hysteresis phenomena are known not to be independent (cf. e.g. [12]). We continue 
in this direction and our aim is to show that a large class of evolution inequalities 
can be not only considered as partial differential equations with hysteresis operators, 
but also this approach can have nontrivial applications, since hysteresis operators 
exhibit particular memory effects and the structure of the memory has been recently 
extensively studied. In many cases the knowledge of the memory structure provides 
some more information about the solution. 

In Sections 1 and 2 we introduce the notion of a relaxation-hysteresis operator and 
investigate its properties. In Section 3 we show briefly an example of transfonning 
the one-dimensional one-phase Stefan problem into an equation with hysteresis and 
we outline the proof of existence and uniqueness of the solution. In Section 4 we 
give a survey of results concerning linear and nonlinear elasto-plastic vibrations. 
Let us note that the nonlinear-elasto-plastic constitutive law generates the same 
hysteresis effects as the Preisach model of ferromagnetism. 

1. Relaxation-hysteresis operators 
In the theory of elasticity the mechanical properties of a material are characterized 

by the stress-strain relation (constitutive law or Hooke's law). For sake of simplicity 
we treat here only one-dimensional models, i.e. the stress a and the strain e are 
supposed to be scalar quantities. Indeed, generalizations concerning the vector 
(tensor) case are possible. 

Following [12] the constitutive law for a serial visco-elasto-pkstic model can be 
written in the form 

(1.1) („' _ e>)(a „z) + $(a) _ $(x) < 0 Var 6 !>•, 
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where the prime denotes differentiation (with respect to the time) and the function 
$ : R1 —> [0, + oo] with a nonvoid domain D# = {x £ Rl; #(x) < +00} is assumed 
to satisfy the requirements 

(1.2). 
(i) # is convex lower semicontinuous, 

(ii) 0 € D # , *(0) = 0. 

Let us mention typical special cases: 

(1.3). 

(i) Pure hysteresis. D# is closed, $ = ID* (indicator function), i.e. 
$(x) = 0 for x € D* (pure elasto-plasticity), 

(ii) Pure relaxation. D* is open, $ continuously differentiate in D*. Then 
(1.1) is equivalent to the equation a1 4* $'(<r) = e1 (pure visco-elasticity). 

In general, the domain D* is an interval (we exclude the trivial case D$ = {0}) 
with boundary points —00 < a < b < -foo. We denote by D# the interval (a, 6), 
where b = b if b $ D+ and b = -foo if b € D* and analogously for a. Notice that in 
the case 4-oo > b $ D* we have $(x) /* 4*oo as i / J . 

1.4. Lemma. There exists a sequence {$„} of convex continuously differentiable 
functions on D# such that <pn = # n are absolutely continuous, \<pn(z)\ < )$'(*). 
a.e., $n(0) = y>n(0) = 0, $n(x) —> 00 /or z € D*\D* an<f # n —> $ in D$ 
locally uniformly. 

PROOF : The derivative <p = $ ' is a nondecreasing function in D*, <p(x)x > 0 a.e. 
For x € D+ we define y>n as the solution of the equation 

~<p'n(x) + <pn(x)~<p(x), <pn(0) = 0, if s > 0 , 

—<Pn(*) + <Pn{*)~<p(x), 9«(0)=0, if * < 0 , i.e. n 

<pn(x) = n / en(»-*V(y)<iy = / e^VO* - y/n)dy for x > 0 
Jo Jo 

and similarly for x < 0. If 6 € .0*, then we put <pn(x) = y?n(o) + n(x - 6) for x > b 
(penalization) and analogously for a 6 D#. The functions <pn are absolutely contin­
uous, nondecreasing and converge to <p in L]oc(D+). We put $n(x) = /0* *Pn(v)dy 
and the proof follows easily. • 

1.5 Existence Theorem. Let <r0 € D* and e € Wl*2(0,T) be given such 
thai d*(<r0) ^ «. Then there exists a 6 Wl>°°(0}T)t cr(t) € 0 * for every t € 
[0,T], cr(0) = <To, satisfying (1.1) almost everywhere. 
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PROOF : Let $ n be the sequence from Lemma (1.4). We denote by an the solution 
of the equation. 

(1.6) an + <pu(an) - e\ an(Q) - <70. 
In its domain of definition the solution of (1.6) belongs to W2*1 and satisfies the 

relations 

(1.7) («) <sign<rn + \<pn(an)\ = s'signtrn, 

(••) ^nsign<rn + |y>nKKI - /signer^ 

(»••) an an + <p'(an) a? - e'Vn. 
Integrating (1.7)(i),(ii) from 0 to i we see that the following estimates hold: 
(1.8) 

(0 M*)l + / |V»K)I dT < j |£»| dT + «70 
Jo Jo 

(«) W.(*)l + I* \v>n) <\dT < j * |e" I dT + |v»_(-„)| + |e»(0)| 
Jo Jo 

where <p~(ao) = -hnj*|-*j<r0|. <p(*) for <r0 £ 0, ^-(0) — 0. The hypothesis 
0$(<ro) ^ 0 guarantees that |(^_(cr0)| < +oo. Consequently, there exists a con­
stant c > 0 independent of n such that 

(1-9) (0 k « K ( i ) ) | < c, #«K( i ) ) < <rn(i) <pn(an(t)) < c, 

(«) M0l + K.(0l+/V..(.-)l*-<« 
Jo 

These estimates imply the global existence of the solution of (1.6) in [0, T] for 
every n. Moreover, we can choose a subsequence (we denote it again by {<?»}) and 
an element a € Wrl»0O(0lT) such that 
(1.10) 

an-~> a uniformly in C([0, T]), 
crn -> a1 in Jt.F(0, T) strong for 1 < p < oo and almost everywhere, 
#J,-»V in L°°(G,T) weak-star. 
Using (1.6) and the convexity «f wn we obtain 

(1.11) (a'n - e')(an -x) + *n(<7n) - *n(*) < 0 V* 6 D* 
We check that a(t) € .D* for every i € [0,T]. Indeed, let us suppose a(t) f D+ 

for some i. We introduce the convex closed set M — {* € -D*;$(*) _S c + 1}» 
where c is the constant from (1.9)(i). We have dist(<r(i), M) > 0, hence there exists 
6 > 0 such that (1 - 6)a(t) $ M. We find n0 such that |<rn(i) - <r(i)| < 6\a(t)\ and 
*«((1 - 6)a(t)) > c for n > n0. Consequently, #»(<r«(i)) > w«((l - *)*(*)) > c, 
but this contradicts (1.9)(i). 

Therefore, a(t) € -D# and it remains to verify that a is a solution of (1.1). We 
have either an(t) 6 D+ for every n sufficiently large, hence wn(«rn(i)) -» $(*(*)), 
or <rn(i) f§ JD# for infinitely many n, and for such n we have #«(<7»(*)) £ *»(*(*))• 
This implies for every i € [0,T] lhninf«^oo<M*n(<)) > *(>(i)). We take the 
limit in (1.11) and the proof is complete. • 
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1.12. Uniqueness and Continuity Theorem. Let ei,e2 € W2*1^^) be 
given *ni let aua2 be the corresponding solutions of (1.1) with initial conditions 
<7i,<7j € D#, respectively. Let us denote f, = Cj - <7,, t = 1,2. Then we have 

(i) ((J — ?2)(ai — a2) > 0 almost everywhere, 

(-) 16(0 - 6(01 < i-«{||ei - e»|li.lfl, 16(0) - 6(0)1} 
for every t € [0,T],ti/fcere 1110(1(0,1] denotes m&x{\w(s)\, s € [0,t)}, 

(iii) £\&-&\*zJ*Wi-4\* + M-*l\. 
PROOF : 

(i) We put simply x = <72 in (1.1) for a\ and vice versa and sum up. 
(ii) Let t € [0,T] be fixed. If at(t) = c73(t), then the assertion is trivial. Thus, 

let for example o'i(t) be greater than <72(i). The continuity of a% implies that 
only two cases are possible: 

a) ai(s) > a2(s) for every s € [0,t], hence &(*) — £2(s) < ei(s) - e2(s) 
for every s € [0,t]. By (i) we have (}(*) - (2(s) > 0 a.e. in [0,t], i.e. 
&(*) ~ &(*) > Ci(0) - 6(0) and (ii) follows immediately, 

b) 3t0 € [0,t) such that <?i(to) = <72(t0). We take the maximal to with 
this property. Using the argument from a) in [to,t] we obtain an analogous 
conclusion. 

(iii) By (1.10) it suffices to consider the case w = wR. In other words, we may 
assume that D* is open and $ is continuously differentiable in _D*, and 
<7i,<72 are solutions of (1.3)(ii) with right-hand sides ei,e2, respectively. 

The set M = {t 6 (0, T), <7i(t) ^ <72(t)} is open and can be described as the union 
of open disjoint intervals (a*, bk). Fbr t $ M we have a\(t) — a2(t) — e\(t) — e'2(t\ 
hence (J(t) = (2(t). For t € (a*, bk) we have e.g. <7i(t) > a2(t), hence (J > $ 
in (a*,&*), and 

/** 16 -&!<** = / V i -eiJilt-^i^J-^i^ + ̂ ^a^-^ak)) 
• ' • A • '•* 

< / |e#, - e2| dt + K(a*) - a2(ak% 
J** 

but <ri(a*) / <72(a*) only if ak = 0. Therefore, 

/ V , - 6 I * = / Ki-fil*< / l*',-*il*+k?-*2l 
JO JM JM 

and the Theorem is proved. 

(1.13) Definition. Let a : Rl -» D*\{x;<9#(x) = 0} be a given nondecreas-
ing a-Lipschitz continuous function with a < 1, a(0) = 0. The operator / • : 
W*>l(%T) -> Wl>°°(0,T) given by the formula 

/•(eX<) = <K*),t€[0,n 
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where a is the solution of (1.1), <r(0) = a(e(0)), is called relaxation-hysteresis oper­
ator (or RH-operator) corresponding to the convex lower semicontinuous function 

As an immediate consequence of (1.12) we have 

(1.14) Corollary. Every RH-operator can be extended to a Lipschitz continuous 
operator C[0,T]) -+ C([0,T]) ani W1»1(0,T) -+ W1»1(0,T), with the Lipschitz 
constant I in both cases, if the norm in Wlfl(0,T) is given by the formula ||e||i,i = 

(1.15) Remark. Let (p = $ ' be bounded in the interior of £+ (say, |^(*)| < M 
a.e.), and let t € (0, T) be a Lebesgue point of a1. Putting z -= cr(t - h) in (1.1) and 
dividing by h we obtain for h - • 0+ 

(a' - e > ' < M\v% hence |<r'(t)| < |e'(t)| + M a.e.. 

In particular, /* maps W1,F(0, T) into itself for p > 1 and by Lemma 3 of [10] this 
mapping is continuous for 1 < p < oo. 

(1.16) Example. In the situation of (1.3)(i) we have an explicit formula for the 
operator /* (see [4], where such operators are of large importance). If D* = [a, 6], 
then for a piecewise monotone input e we have 

/•(«HÖH 

f min {6, /#(e)(t0) + e(t) - e(t0)}, t 6 [t0,ti], if 
e is nondecreasing in [to,ti], 

max {a,/*(e)(to) + e( t ) -e( t 0 )} , t € [ t 0 , t i ] , if 
e is nonincreaaing in [to,ti] 

with obvious modifications if a = — oo or 6 = -f oo. In particular, for [a, 6] = [-h, h] 
and a(x) = signx • min{|x|, h] we obtain the Prandtl hysteresis operator fk (cf. 
[5],[6])-

2. Properties of RH-operators 

a) Monotonicity. 

(2.1) Lemma. Let eue2 € Wl*l(Q,T) be given. Using the notation from (Lit) 
we have 

(i) for every convex continuously iifferentiable function G 

!<?(£, - 6) < ((J - ei)C(e. - ct) «.e., 
(ii) for every increasing continuously differentiate function p, nondecreasing 

function g and $ = ID* 

0«tti) - M6))'(*(*i - **) - tJ<6 - 6 ) ) > 0 «.e. 
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PROOF : Both inequalities are consequences of (1.12)(i). For a\ > <r2 we have 
G'(e\ - e2) > G'(£\ - <J2) and £{ > f2 and analogously for o\ <a%^<j\ = <r2, so 
that (i) follows immediately. For $ = I£># we have especially £{(̂ ,- — x) > 0 for 
every x € D*, hence p(i\)*(o\ — #2) > 0> 4 6 / ( ^ l — 0*2) < 0 «-»d we use the 
same argument as above. • 

(2.2) Remarks. 

(i) For G(x) = | x 2 the inequality (2.1 )(i) can be rewritten as 

(*i -*a)(*i - 4 ) -> 5S^ 1 "~a^ ae* 

(ii) Putting g(x) = signx in (2A)(ii) we obtain the Hilpert inequality (cf. [13]) 

I146) - .46)1 < (46) - 46))'sign(e1 - ea). 

(iii) For $ = JD# we have £'(a - x) > 0 Vx € !>•. 

Choosing x = cr(t ± /*) the Umit as /i —*• OF yields «JV = 0 a.e. 

b) Energy inequalities. 

(2.3) Lemma. 
(i) Let e € Whl(0, T) be given, a = /*(e). Then for every 0<3<t<T 

we have 

C„e>dT>\c\t)-\c\s). І 
(ii) Let e belong to W2>1(0,T). Then for almost every 0<3<t<T we 

have 

i *'edT>^\t)-^(s). 

PROOF : Part (i) is a special case of (2.2)(i) with e2 = 0 . Part (ii) follows 
immediately from (1.7)(iii) and (1.10). • 

c) Dependence on parameters. 

We assume that the set of parameters Q C RN is a bounded open do­
main with a Lipschitzian boundary. For 1 < p < 00 we define the space 
i'(a;c([o,T])) 

= {w 6 Lp(Q;L°°(0,T));w(x,')i8 continuous in[0,T]for a.e.x € 0} , which is 
a closed subspace of LP(U; L°°(0, T)) and hence it is a Banach space with the 
norm 

(jf M-V)^,-,*) '. 
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For e € 1/(12; C([0,T])) we can define the value of a RH-operator by the 
formula 

(2.4) /#(*)(*> t) = h(e(x, •))(<) for a.e. x 6 ft. 

By Theorem (1.12)(ii) the operator h defined by (2.4) maps Ip(ft;C([0,T])) into 
itself Lipschitz continuously. The problem of differentiability with respect to pa­
rameters is solved in the following lemmas. 

(2.5) Lemma. Let e , ^ - 6 I/(ft;C([0,T])). Then £-h(e) € Lp(ft; I°°(0, T)) 
and the inequality 

l^/*(eX*,OI<!l|^-(s.-)lllo,.] 

holds almost everywhere in ft x (0, T). 

PROOF : We denote a = /*(e), x = (x2,...,xjv), x = (xi,x) € 0. For a.e. x 
and every s, xi, xi we have 

| e (3 i ,M)-e (* i»M)l < J | |^(6,*,0ll[o,.]> 

hence (1.12)(ii) yields 

(2.6) K*i,*,«)-»(*i ,*.*)l < f* ll^-«i,x,-)ll[o,i]^i-

The function Ci ~*" ll^"(£i,*,*)ll[o,*l is integrable for a.e. x, hence (T(-,X,<) 
is absolutely continuous for a.e. x and every f. We choose xi to be a Lebesgue 
point of •^(•,-M) and of 6 - ||^(6,-v)ll[o,«l. Dividing (2.6) by (xt - x x ) 
and taking the limit as xi -+ xi we obtain the assertion. • 

(2.7) Lemma. Let e € L2(Q; C([0, *])) be such that 

£-(., 0) € L2(ft), gjj§j € L2(Q; JD*(0, T)), a « / , (*). 

TTiefi we fcave 

/7„£Hi«^/„[<£<-")'-<&-»')1-
/or almost every 0 < s <t <T. 

PROOF : By (2.5) | ^ belongs to L2(Q; L°°(0, T)), hence the integrals are 
meaningful for a.e. 0 < s < t < T. For a.e. (xi, x), (xi, x) € ft (2.2)(i) yields 

(<x(xi, x, r) - CT(XI , x, r))( ^ ( x i , x, r) - —(xi, x, r)) > 
i ft 

> g ^ ( f l r ( a ? - » * > r ) ~ * ( * - » * > r ) ) 2 

for a.e. r € [0, T]. Integrating both sides of this inequality f dr and divid­
ing by (xi — x\)2 we can pass to the limit as xi —• Xi for a.e. (xi,x) € ft. 
We integrate over ft and the proof is complete. • 
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d) Parallel confìgurations of RH-opeгators. 

Let us consider a measurable space (P,^), \f*\(P) < oo. Let {$?1p € P} 
be a system of convex lower semicontinuous functions Rl —> [0,-foo]. Then the 
operator FP : C([0, T]) -» C([0, T\) defined by the formula 

(2.8) Fp(e)(t)= / Up(e)(t)dfi(p) 
Jp 

is called parallel configuration (cf. [12]). A typical example is the Ishlinskii operator 

(2.9) F(*)(t)= [°° fh(e)(t)ri(h)dh, 
Jo 

which is the parallel configuration of PrandtPs operators fh (see (1.16)) with a 
density rj € Ll(Qy oo), which is commonly assumed to be nonnegative. 

We can imagine numerous nonlinear versions of (2.8). Let us mention e.g. the 
Preisach operator 

(2.10) W(e)(t) = W(e(.)) + f ° tfk, 4(e)(0) dh, 
Jo 

where ^*(e) = e — /*(£) and ft0,,a are given functions. 
The properties of Ishlinskii and Preisach operators are studied e.g. in [1], [2], [5], 

[6], [9], [11J. 
Very important are the memory effects which enable us to improve in this special 
case the inequality (2.3)(ii). We have (see [6]) for e € W2*l(0y T) 

(2.11) jy(e)'e"dT > \F(e)\t)e\t)^\F(e)\s)e\s)^\1(M 

fora.e.0<« < * < T, 
where F is the operator (2.9) and 7(r) = infess{f;(/i); 0 < h < r} . 

Notice that for 7 = 0 (2.11) follows from (2.3)(ii) by integration, since 
(2.2)(iii) yields a2 = <r'e'. 

The last term in (2.11) is an estimate from below for the dissipation of the "en­
ergy" §JF(e)'e' and the quantity 7 expresses the "measure of convexity" of 
hysteresis loops generated by F. 

3. One-phase Stefan problem as an equation with hysteresis 

In the classical formulation (cf. [3]) the one phase Stefan problem is characterized 
by the system (for sake of simplicity we consider here only the one-dimensional case) 

!

©* ~ ©** = 0\ if T>t>s(x), 

»€(0,1)» 

6 = 0, if s(x)>t>0, 



fo, 
Putting tt(ar,t)=< t 

I M* 
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(3.2) 9,(x, s(x)) s'(x) = -*(*) , s(0) = 0 

(3.3) es(o,t) = 5(e(o,t)-e,(t)), 
where *, 6 are unknown functions, k > 0,6i > 0 are given functions, 6 > 0 a 
given constant. 

This system represents a mathematical model for the evolution of the interface 
t = s(a?) between ice (t < s(x)) and water (t > s(x)) and the distribution 
of the temperature 6 in the water. 

if t<s(x) 

s)B(x,T)df, if t>s(x) 

we check easily that formally the inequality 

(3.4) / [(ut + k)(u -1;) + tt«(ttx - vz)] d*+ 

+ ft(u(t,0) - Ti(t))(tt(t,0) - t,(t,0)) < 0, 

where Ti(t) = f* BI(T) <*T, holds for every v 6 W*'2(0,1) such that v > 0 
a.e., with the initial condition 
(3.5) tt(x,0) = 0. 

In [3] we can find the proof of the existence and uniqueness of a solution u, tit € 
L°°(0,T;Z,2(0,1)) such that ti^ti,, € I2((0,1) x (0,T)), t* > 0 a.e., of 
(3.4), (3.5) (at least for k =const., Oi = const.), so that it is natural to consider 
(3.4) as a weak formulation of (3.1) - (3.3). 

Let us denote K(x) = — fx k(£) df, and ty(a?, t) = /0 ux(x, r) dr — tK(x), 
where u is the solution of (3.4), (3.5). Formally we have 

(3.6) wt = ti, - K(x) 
(3.7) ti;(x,0) = 0, u>(l,t) = 0 
(3.8) 10,(0,0 - - * ( 0 ) + Ku(0,t) - Ti(t)). 

Putting (3.6), (3.7), (3.8) into (3.4) we obtain 

(3.9) / [tt,(ti - v) + wt(us - vx)] dx - [wt(u - v)]l
Q < 0 

for every 0 < v € W1,2(0,1). Comparing (3.9) to (1.1) we see that we have 
(3.10) ti = f(wx) in a weak sense, 
where / = /# is the pure hysteresis operator corresponding to $ = ID+, 
D* = [0, +oo) and the initial condition < /(e)(0) = (e(0))+. 

From (3.6), (3.8), (3.10) we deduce the equation 

(3.11) t " t ~ / K ) , = -K (* ) 
with initial and boundary conditions (3.7) and 
(3.12) wt(0, t) = -K (0) + 6 ( /K)(0 , t) - Ti(t)) 
Let us note that (1.16) yields an "almost explicit" formula for the operator / . 

The theory developped in Sections 1 and 2 enables us to prove 
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(3.13) Theorem. Let 61 € L2(0,T),fc € L2(0,1) be given. Then the prob­
lem (S.ll), (S.7), (S.12) has a unique solution w € C([0,1] X [0,T]) such that 
wxUwti € I 2 ( ( 0 , l ) x ( 0 , T ) ) , / K ) „ / K ) t € L°°(0,T;X2(0,1)) and (S.ll) holds 
almost everywhere. 

Sketch of the proof. We can use for example the space-discretization method. 
We show here only formally how to derive the apriori estimates for the approximate 
solutions. The details concerning the convergence are omitted. 

Notice that the uniqueness follows directly from (2.2) (i). 
Multiplying (3.11) by wtl integrating J0 J0 dxdr and using (3.12), (2.3)(i) 

we obtain 

(3.14) / / w\dxdT + \ f f2(wx)(x,t)dx+ 
Jo Jo * Jo 

+ / / (u. , ) (0,r)(- i t - (0) + 5(/(tt.,)(0,r)-r,(T)))<iT< / / -K(x)wtdxdr. 
Jo Jo Jo 

Similarly, multiplying (3.11) by wxxt we obtain after integration from (2.7), (3.12) 

(3-15) 

/ / w\tdxdt+\ I (f(wt)x(x,t)fdx+ f f(wx)(0,r)wxt(0,r)dr 
Jo Jo -* Jo Jo 

<~ J I k(x)wxt(x,T)dxdT+ J Ti(T)u;xf(0,T)dT. 
Jo Jo Jo 

Since wxt < f(wx)t a.e. and TI(T) > 0, it follows from (3.15) 

(3.16) 

J* J' w\tdxdt + \ J^/KM*,.))'^ + \f(wx)(0,t) 

<- ( J k(x)wxi(x,r)dxdr- / e,(r)/(u>,)(0,T)<iT + r,(i)/(u>,)(0,t). 
Jo Jo Jo 

Finally, we differentiate (3.11) with respect to i, multiply by wtt and (2.3)(ii) yields 
after integration 

(3.17) 

/ / wi
tidxdt+\ J (f(wx)t(x,t)fdx 

Jo Jo - Jo 

+ b J /(u>,).(Q, r)(/(u»,).(0, r) - 8,(r)) *r <\ J (/(».)i(*. 0))2dx = 0 

since u>z((z, 0) < 0 in (0,1). 
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From (3.14) - (3.17) we derive the estimate 

rT rl 

I I (wlt + u*it)dx dt < const., 
Jo Jo 

ax / (f(wx)x)
2 +(f(wx)t)

2dx < const., 
' jo 

max 
Jo 

which are sufficient, taking into account the compact embedding 
{v € L~(0 , r ;L 2 (0 , l ) ) ;v« ,v . , € L°°(0,T;£2(G,1))} — < - C([0,1] x [0,T]) and 
the monotonicity (2.2)(i) of / , for passing to the limit in (3.11). 

4. Elasto-p last ic vibrations 

Forced longitudinal vibrations of a beam are governed by the equation of motion 

(4.1) utt - ax = g(x, *), x € (0, TT), t € (0, T) 

where u,cr are the displacement and the stress, respectively, and g is a given forc­
ing term. The material is assumed to obey the constitutive law for the parallel 
configuration of elasto-plastic elements 

(4.2) a = f°° <rh rj(h) dh, 0 < r? € L*(0, oo), 
Jo 

(4.3) (*h-e')(ah-x)<0i V|x| < h, 
(4.4) \<rh\ < h, ah(0) = signe(0)min{/i, |e(0)|}, 
(4.5) e = ux. 

For sake of simplicity we choose the boundary and initial conditions in the form 

(4.6) u(0, t) = «(*-,*) = 0 
(4.7) u(ar,0) = u0(x), ut(x>0) = ux(x) 

The existence of a unique solution of (4.1) - (4.7) under appropriate assumptions 
in [0, w] x [0, T] for an arbitrary T > 0 follows from the classical theory 
of evolution differential inequalities (cf. [12] for further references). On the other 
hand, the system (4.1) - (4.5) can be written in the form of a single equation 

(4.8) Utt-F(ux)x~g(x,t\ 

where F is the Ishlinskii operator (2.9). Making use of the estimate from below of 
the dissipation of "energy" (2.11) we can prove under the hypotheses 

(4.9) infess{t?(h); 0 < h < r } > 0 for every r > 0, 
/•OO f-OQ 

(4.10) / / rf(h)dhdt = +oo 

the following stronger results. 
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A. A unique w-periodic solution of (4.8), (4.6) exists provided g is ^-periodic with 
respect to t and i; decays sufficiently slowly (cf. [5], [7]). 

B. For p = 0 (free vibrations) the solution of (4.6) - (4.8) decays to the equi­
librium as i -* oo and the rate of decay is |ti|(x,r)| + |F(ti*XxtOI -S CA 
(cf. [8] for different boundary conditions). We cannot expect that u t —• 0 as 
t —> -f oo ; the deformation in the equilibrium depends on the initial conditions and 
need not vanish. This phenomenon can be easily observed in the case of ODE's 
with hysteresis operators as well as the relation between 17 and the rate of decay of 
the solution (see [6]). 

C. We can introduce a nonlinear perturbation to the constitutive law, e.g. a — 
F(e) + ^(^) or a = F(i>(e))> where ^ is an increasing smooth odd function. 
This corresponds to different nonlinear-elasto-plastic constitutive laws. It can be 
shown that we can write them in the form a = W(e) with a special Preisach 
operator (2.10). When solving corresponding problems we make use of an analogy of 
(2.11) which remains valid provided we guarantee the convexity of hysteresis loops. 
Typically this is true only for small amplitudes of vibrations, so that we have no 
existence results in such cases except for not too large data - see [9]. 
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