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Fractional integrals on spaces of homogeneous type

VACHTANG M. KOKILASHVILI, ALOIS KUFNER

Dedicated to the memory of Svatopluk Fu&fk

Abstract. The paper deals with conditions on the measure y under which the fractional
order integral T., and the fractional maximal function Afy defined on the homogeneous
measure space (X, p, s) are operators acting continuously between Lebesgue, Lorents and
Orlics spaces. The weighted as well as the non-weighted case is considered.

Keywords: fractional integral, fractional maximal function, measure space, function spa-
ces, weighted norm estimates

Classification: 42B99, 43A15, 47B99

0. Introduction.

In the paper one of the possible variants of an integral of fractional order on
spaces of homogeneous type is proposed. For such integrals various estimates are
obtained - of pointwise as well of integral character. One of the fundamental results
is a full description of measures u, for which the fractional order integral

(0.1) T,f(z) = /x (P 9)" fw)du, 0<7<1,

defined on the homogeneous type space (X, p, u) represents an operator acting con-
tinuously from LP(X, ) into LY(X, u) with ¢g~! = p~1 — 4, i.e., for which a result
of the type of the well-known S.Sobqlev theorem (see [1]) holds. Further, some
analogues of the well-known weight theorems of B. Muckenhoupt and R.Wheeden
(2] and of D.Adams [3] about classical Riesz potentials are proved.
1. Preliminaries and basic facts.

Let X be a space with measure y, equipped with a quasimetric p, i.e., with a
mapping

P: X xX —[0,00)
such that
(i) A(z,y) > 0if and only if z # y;
(i) p(z,y) = p(y,z) for every pair of z,y € X;
(iii) there exists a constant 7 > 0 such that for every z,y, 7 from X the following
inequality holds:

oz,2) £ "{P(’ay) + o(y,2)}.
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- 512 V.M .Kokilashvili, A.Kufner

Let all balls B(z,r) = {y € X : p(z,y) < r} be u-measurable and assume that
the measure 4 fulfils the doubling condition

0 < uB(z,2r) < cuB(z,r) < 0

with ¢ independent of z and r.

A space (X, p, u) which satisfies all conditions mentioned above is called a space
of homogeneous type (see, e.g., [4]).

Let w : X — R be positive a.e. and locally integrable. Such a function will be

called a weight function. Denote by L%,(X,u)(1 < p < oo) the space of functions
f : X — R for which

) 1/p
(L1) 1l e = ( [ ison w(z)au) <oo.

For w = 1 we shall write L%, (X, ) = LP(X, u). Further, denote

w(E) =/ w(z) dp.
E
In the sequel, we shall consider Lorentz spaces. For 1 < p < 00,1 < s < 00
denote
00 1/s
(s / (w{z € X : |f(z)] > A})*/Pr*1 d,\)
[}
(1.2) Nl zze cx) = for1<p<o0,1<s<00,
supMw{z € X : |f(z)| > A7,
A>0
for 1 < p < o0, 8 =00.

Obviously LYP(X, u) = LE(X, ).

Further, let ® be a Young function, ie., ® : R — [0,00) is an even, convex,
cortinuous function such that ®(0) = 0, #(t) > 0 for t # 0 and }x:_xgé(t)/t =
Jim t/8(t) = 0.

Denote by L¥(X, u) the weighted Orlicz space, i.e., the linear hull of the set
U [ 8 u() du < o)
equipped with the (Luxemburg) norm
(A8) . Ufllzzcen =inth>0: [ 807 f@) w(z)du <1).

The Young function
U(t) ~ sug(|t|a ~®(s)), teR,
>
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is the so—called complementary function (with respect to &).
The norm

1|8 x.e) = sup /X f(2) g(z)du - /X ¥(g(2)) wlz) du < 1}

is equivalent to (1.3).
Now, let ® be a Young function satisfying the so—called A,-condition, i.e.,

B(2t) < cd(t), teR,

and set
B(\t)
= ow‘ R ETON
I(®) = lxm logsup‘b('\t)

olog X 20
The numbers i(®) and I(®) will be called the lower and upper index of ®, respec-
tively.

The monographs [5], [6] and [7] are useful references for the theory of the spaces

mentioned above.
Analogously to the well-known A, classes of weight functions introduced by
B.Muckenhoupt we consider, for 1 < p < oo, the following classes:

1.1. Definition. The weight function w belongs to the class A,(X) for1 < p < o0
if

sup(uB(z,7)"" / w(y) dy-
z€X B(z,r)

r>0

p-1
~((#B(z,r))" / )W""""(v)dy) <oo
B(z,r

and w belongs to Al (X)) if there exists a positive constant ¢ such that for any z € X
andr >0

(uBGer)™ [ o0)dy S e mpind o)

These classes have been considered in [9] and [10] in connection with establishing
weighted estimates for maximal functions defined on spaces of homogeneous type.
The properties of the class A,(X) are analogous to those of the B.Muckenhoupt
classes. In particular, if w € Ap(X), then w € 4,_,(X) for a certain sufficiently
small ¢ > 0 and w € A,, for any p; > p. We shall use these properties in Section 3.
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Example. It can be easily verified that for a fixed point a € X

(#B(a, p(a,2)))’ € 4(X) & -1 < 6<p~1,
(sB(a, p(a,2)))’ € Ay(X) & -1 <6 <0.

For a locally integrable function f : X — R and for 0 < § < 1, we introduce the
fractional maximal function

- p-1
Myf(e) =mup(uB(e,r))* ™ [ 1f0)ldo.

Proposition A (see [10]). Let 1< p < B,¢7) = p~' — B. Then the following
two conditions are cquivalent:

(i) There is a constant c > O such that for any f € LL(X, i) the inequality

(froawsorrent ot "“)m <e( [ veree) d“)n/,

holds.
(ii) we A,.,.#(X), r=;5
Proposition B (see [10]). Let g = (1 — B)~!. Then the following two conditions
are equivalent:
() wiz : Mp(fuwP)z) > A} < A1 (fi |f(2)] du)"
with & constant c independent of f and X > 0.
(ii) w € Ay(X).

The proofs of these assertions are the same as for the case of fractional maximal
functions defined in R®. One only has to use the properties of the class A,(X) and
(instead of the Besicovitch covering lemma) the covering lemma from [4].

Finally, throughout this paper the letter ¢ will be used to denote a positive con-
stant, not necessarily the same at each occurrence.

2. The non—weighted case.

In this section we give a full description of such measures ; for which the operator
T, acts continuously from L?(X,pu) into L9(X, ps) with ¢~! = p~! — 4. First, we
will prove a lemma stating a pointwise estimate for the function T, f(z). Estimates
of this type for Riesz potentials were obtained in (11}, [13].

Denote ' B

z) = ,up"_(""_'"l_
™0 r

2.1. Lemma. Let xs assume that §)(z) is finite u-a.c. Further, let0 <A <1,1<
P < My~). Then there exists & positive number c such that for every r > 0 and
z€eX .

(21) (=)l <c (r"Mo!(z)ﬂ(z) +r17NP My, f(z)(g(,»l—a/p) .
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PROOF : Let r > 0 be arbitrary and write T, f(z) in the form
e = [ @) ele )™ dut
B(z,r)
+f e de=hi+ b
X\B(=z,r)

Denote ’
Dy(z,r) = B(z,27%r)\ B(z,27*"'r), £=0,1,2,....

Then for I; we have the estimate

Ll < ,/a(. ) 1FWI(e(z, )" du =
=3 [, N

< Z(z-' Y B, 2 M) s (O TE

<a ZT"‘"‘"r”"(Z"‘r)Mo f(z)z) <
k=0

< "My f(z) Q(z).

Now let Vi = B(z,2**'r)\ B(z,2%), k = 0,1,2,.... Then estimating |I;| we
obtain:

L) < /x ey et )T =

- Z o Az

Va(z,r)

< 3 B, 2 Ne Bz, 2.
k=0

: / ()l dos <
B(z,2%+r)

< e DTN My FlaNRU M =
k=0

oo
= e NP 3 MNP My, f(2) Q)N <
k=0

< ear?NPMy , f(2)(Q(2))' M,

since by our assumption we have y — A\/p < 0.
Now Lemma 2.1 follows immediately from these two estimates for I, and I;. =



516 V.M.Kokilashvili, A.Kufner

2.1. Theorem. Let the function S(z) be finite p-a.e. and let0 <A <1, 1<p<
%, 1<r<ooand % = % — 3+ 2. Then for every function f € LP(z, u) such that
My, f € L™(X, ) the following estimate holds:

- A - A
(22) IR YTy Fllzecxay < elMaspfIT e Al r CRl -

PROOF : Taking

(M @\ 1
== (525) am
in (2.1), we obtain that

(2.3) (@) T f(2)] S o(Mayp ()P X (Mo f(2)) 727/
for every z € X.

Now inequality (2.2) follows if we take the g-th power in (2.3) and apply Holder’s
inequality to the right-hand side of the inequality obtained. n

One of the fundamental results of this section and, in fact, of the paper is given
by

2.2. Theorem. Let1 < p < 47!, ¢~ = p~! — 4. The following two conditions
are equivalent:

(i) Ty maps continuously LP(X, i) into LI(X, ).
(ii) There ezists a constant ¢ > 0 such that

(24) uB(z,r) <cr
foranyz € X and r > 0.

PROOF : The implication (ii) = (i) follows easily from Theorem 2.1 if we take
there A = 1, r = co. Indeed, from Hélder’s inequality we have

Myspf(z) S fllercxm
and the remaining conclusion follows from (2.2).

Now we show that (i) = (ii). For an arbitrary ball B(a,r) in X, take f(z) =
XB(a,r)(z)- Then in view of (i), we have

q 1/q
(./B(c,r) (/B(.,r)(P(z'y)y d“) dl‘) < o(uB(a,r))"/?

with a positive constant ¢ independént of a and r. Since z,y € B(a,r), we have
77 uB(a,7)uB(a,r)(uB(a,r))'/? < (uB(a,r))"/?
and the equality ¢~ = p~! — v implies (ii).
So Theorem 2.2 is proved. ]
Using the well-known Hunt’s interpolation theorem for Lorentz spaces (see, e.g.,

[6]) and the considerations from the second part of the proof of Theorem 2.2, we
prove a more general assertion.
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2.3. Theorem. Let1<p< 7y}, g~ =p~! - 9,1 < s < co. Then the operator
T, acts continuously from LP*(X, u) into LY*(X, p) if and only if condition (2.4) is
fulfilled.

Moreover, it can be shown that condition (2.1) is equivalent with the continuity
of T, as an operator from L?*(X, u) into L1°°(X, u). Here we shall prove only a
particular case.

2.4. Theorem. Let 0 <y <1,¢g=1/(1~47). Then inequality (2.4) holds if and
only if there is a constant ¢ > 0 such that for each f € L}(X,p) and A > 0

(2.5) sz [Ty f(2)] > A} S A" f s x,0)-

PROOF : Let us note that if (2.1) holds and if p =1, A = 1, and r = 00, then by
the argument used in the proofs of Lemma 2.1 and Theorem 2.1 it is possible to
obtain instead of (2.3) the estimate

(26) . TS @) < &2 (Mo S @) UM Wr ) »

where the constant c; is independent of z.
Further, form inequality (2.6) and from Proposition B we derive that

plz : IT f(2)] > A} < pfz : Mof(z) > T A WA (x ) S
< A" flLs (x,0):

Theorem 2.4 is proved. -
From the weak inequality (2.5) we conclude with help of the interpolation theorem
of O’Neil [13], that the following assertion holds:

2.5. Theorem. Let (2.1) hold and let ¢ = 1=. Suppose that f has & compact
support. Then

feLllogt LY (X,p) > Tof € L* ' (X,p) for0<s<1
and
00
/ (ufz: [Ty f(2)] > A}V (log ) dA < 00 for 1 < 8'< o0
1
3. The weighted case.
In this section we give a full description of measures for which weighted estimates

for the fractional integral (0.1) bold, using the method of G. Welland [14].
We start with a lemma.
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3.1. Lemma. For any ¢,0 < € < min(y,1 — v), there ezists @ constant ¢, > 0
such that for any nonnegative function ¢ : X — R and for any point z € X the
following inequality holds:

(3.1) T,4(z) < c.‘/ My $(z) Myye( X)(Q(z))*.

PROOF : Let r be an arbitrary positive real number. Similarly as in the proof of
Lemma 2.1, we write the integral as the sum of two integrals:

T = [ ot ) dut
[ e de
X\B(z,r)

For 0 < € < 4 we then have

S/ sy s

j=0/Dj(z,7)

[ etz ) du=

. IB(=,r)
< 3 2-i-1p)7-1 dy <
2 JULE

2
< Cl(C)r‘ Z 2—!5(“3(2, 2_,".)).’_‘_1 .
J=0

) / #(y) dp(Q(z))1—(—) <
B(x,3~ir)
< ca(e)r* My— $(z)((2)) -,
On the other hand, for 0 < € < 1 ~ 7 we have

IR
X\B(z,r)
=3 $y)(p(z,v))" " du <

J=0 Vi(s,r)

< Z(?r)v—l /3(, o #(y)du <

=0
ko iey\ ()
Scy(e)yr Z 9-je (E%ri’_'l) (uB(z, Pr))THe1.
j=0

o Hndus
B(s,2r)
S cale)r™* M, +ed(z)(Q(z)) AN,
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Consequently, we obtained that for any ¢, 0 < £ < min(7,1 — ), there exists a
constant ¢, > 0 such that for every nonnegative function ¢ and for any z € X and
r > 0 we bhave

(32) Tyh(z) < colr My-ed(21(2) + 7~ Mys ez} (2)),

where
. n(z) = (A=)~
and
va(z) = (Q(z))'~(+9).
Taking

= (Mﬁ.m)»z(s))"’

T \ My—ed(z)vy(z)

in (3.2), we obtain (3.1). :
Lemma 3.1 is proved. . [

3.1. Theorem. Suppose that 1 < p <77',¢q7! = p~! — v and the function (z)

is finite p-a.c. Then for each w € Ap(X), =1+ #, there exists such a constant

¢ > 0 that for arbitrary f from LL(X, u) the following inequality holds:

(3.3) ( /x |T.,(fw")(=)l’(n(-"))'("”w('-‘)dz)m <
<e ( /x | f(z)l’w(z)dz)ll,.

PROOF : If w € Ap(X) then w € Ap_,(X) for sufficiently small positive 1.
Therefore it is possible to choose €,0 < € < min(7,1 — 7), in such a way that
simultaneously w € Ap, Withﬁ1=1+7ﬁ—_-f(mmdw64,, with B3 =1+
=gy 1 we take

1 1 1 1
—_— - - 1+€),?=—— —€),
ol ( 7 5 (v-e)
thenweobhinthdweAlﬂ.h"ndweAH?./r"
g _ 24 and 2,
=" mn=
we have
. —
P2
Put

Fiy(z) = (Myse(F0TY(2))1/2(w(z)) /7t
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and

Fy(2) = (My-o(fw")())"* (w(z))' /7.
Further, (3.1) together with Holder’s inequality implies the estimate

/X IT(fu?) ()N T Dw(z) dp < e jx Fi(z)Fy(z)du <
<eo ([ (Mrrutsor@pmiruta) du)""
1/p2
([ -ty enmro@an) =
X
1/p
- ( [0t sy )entz) dﬂ) ’

- 1/p2
([ MetporEyntras)
x
Finally, using Proposition A we conclude that
IT(Fw ) 2) " Neg xS lflizx,m)-

Theorem 3.1 is proved. ]

3.2. Theorem. Assume that there ezist two positive numbers a; and a; such that
foreveryz € X andr >0

(3.4) ayr < pB(z,r) < agr.
IFl<p<~™l, g~ =p~! — 4, then the inequality

(3.8) NTy(Fo")Lyxm < el fllzz xm
holds for any f € LL(X,p) with a constant c > 0 independent of f if and only if

(3.6) ' weA,,,p=1+§.
PROOF : It is clear that the implication (3.6) => (3.5) holds if (2.4) and, a fortiori,
(3.4) is fulfilled. The implication (3.5) = (3.6) follows from the pointwise inequality

@7 M,(fw)z) < aTy(|f|w")(=)

and Proposition A. ]

For Riesz potentials, Theorem 3.2 is due to B. Muckenhoupt and R.L. Wheeden
[3). It was proved by using the above described method by G. Welland [14]. For
anisotropic potentials an analogous problem was solved by V. Kokilashvili and M.
Gabidzashvili [15] where besides (3.6), also another necessary and sufficient condi-
tion for (3.5) was found.
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3.3. Theorem. Suppose that (z) is finite p-a.c. in X. Then assume that &,
and @3 are Young functions for which the following conditions are fulfilled:

1<i(®)=p<I(#)=P<oo

and
1<i(P)=¢<I($)=Q < o00.
If0Sy<1,g7'=p71 —4,Q7' = P71 — 4 and w € Aj4q/y then

17 Ty (f(ew) Mo x ) < ooty

with ¢ independent of f and € > 0.

We omit the proof of Theorem 3.3 since it can be derived from Theorem 3.1 in
the same way as for anisotropic potentials in [16].

It is obvious how we can obtain an analogue of Theorem 3.2 for weighted Orlicz
spaces.
Proposition C (see [17]). Suppose that1l < p < g < co and v is a posilive measure
on X such that all balls are v-measurable.

Then for the validity of the inequality

69) (fonseya)" se( [ irera)”

with a constant c > 0 independent of f, it is necessary and sufficient that
(3.9) vB < c1(uB)/P-M1
with ¢; independent of the ball B.

3.4. Theorem. Let 1 < p < ¢ < 0o. If the function Q(z) is finite v-a.c. on X,
then the following inequality holds

610 ([ @, ser a.,)”' <o( [ 1w du)"'.

with a constant ¢ independent of f.

PROOF : Assume that 0 < ¢, min(y,1 — 7). Obviously

1-p
ql_ql—p(7+e)>q>P'

Now choose the number ¢ such that also the inequality

= ——— >
@ 91 (7 C)—P
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is fulfilled.
As above we put
p=— and pz=%.
So we have
1 1
—+—=1
) 2

Using Lemma 3.1 and Hélder’s inequality we obtain the estimate
[ @, e do <
x
1/m
<a ( -/x (My—cf(z))™/? dv) . ( /x (Mysef(z))™? dv)

Hence it follows that

1/p2

([ @aner-ouz,scoye dv)”' <

< e1y/IMy—efllin x IMrteSllien -

Now, taking into account the choice of the numbers ¢, and g2, we conclude by
Proposition C and the last inequality that (3.10) is valid.

Theorem 3.4 is proved. s

From Theorem 3.4 we deduce

3.5. Theorem. Let 1 < p < g < 0o and let the condition (3.4) be fulfilled. Then
the following two conditions are equivalent:

(i) Ty acts continsously from L*(X, u) into LY(X,v).
(ii) Ineguality ($.9) holds.

For the classical Riesz potentials, Theorem 3.5 was proved by D.Adams [8].
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