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A central limit theorem for non stationary mixing processes 

DALIBOR VOLNÝ 

Abstract. For a non stationary a-mixing sequence of random variables it is given a neces­
sary and sufficient condition for the central limit theorem. The condition is expressed by 
uniform integrability of squares of certain normalized partial sums of the process. 

Keywords: Central limit theorem for weakly dependent random variables, a-mixing 
(strong mixing) sequence of random variables 

Classification: 60F05 

Let (Xi;)J__j be an a-mixing (strong mixing) sequence of square integrable random 
variables, EX{ = 0 for all i. We denote Sn = J2]=i xhal = ESl- I n t h e w h o l e o f 

the paper conditions A and B are supposed to be fulfilled. 

A. an —> oo as n —• oo. 
B. max EX?/a* —:• 0 as n —> oo. 
~~ -<i<* 

In [2], [3] and [4] it has been shown that if (Xi) is strictly stationary, then 
Sn/an weakly converge to the normal distribution N(0,1) if and only if the random 
variables Sn/an are uniformly integrable. Here we give a necessary and sufficient 
condition for the CLT for processes which are not stationary. In proving the result 
we shall use ideas from [4], 

We say that J C { 1 , . . . , n} is an interval if together with any t < k, J contains all 
j € N for which i < j < k. By *"„,*, k < n, we denote a partition {In,i,*, • • 4»In,*,*} 
of { 1 , . . . ,n} into intervals; Snjik denotes Ei€/„,i,fc

 Xu a n d °».i.* = ES*J>*' 

Proposition. Let K be a set of positive integers and let for each k € K, there exists 
n(k) € N so that 

SnJJalj^k6JCJ~l1...,kin = n(k),n(k) + h.--, 

are uniformly integrable, 

anjk-+oo as n —» oo for each k £ K, 1 < j < k. 

Then for each n > n(k) there exist mutually independent random variables Zn,i,*, • • •> 
--'n,*,* such that 

Zlj,k/°lj,k>k € £J = 1 , . . •, &, n = n(k), n(k) + 1 , . . . , 

are uniformly integrable and 

U ^ i i _ _= . i*| |a - * 0 w n ^ o o / o r each k € K,j = l,...,k. 
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Hence, \\.f^ - ^ £ * = 1
 zn,j,kh -* 0 as n -> oo /or eacfc k € /C. 

PROOF : The proof is based on the same idea as the proof of Theorem 1 in [4] so 
we shall give a sketch only. 

Let q be a positive integer whose value will be specified later. By removing 
(k — 1) • q numbers we replace each block Inj,k by a smaller block I' fc C In,j,k so 
that random variables S'n j k = Ylier Ki,i = 1, • • . , &, are mixing with coefficient 
a(q). When considering n large enough only, random variables Sn

2 */<7n , k
 a r e 

uniformly integrable and close to S2 , k/an j k m ^i norm. Given K < oo and 
H G N sufficiently large we can find random variables Snjtk which attain only H 
values, so that ESnjtk = 0, |Sn,;,*,/<7n,j,* < K, and Sntjtk/<?nj,k are sufficiently 
close to Snj k/vnjyk in -L2 norm (hence to Sntjtk/antjtk>> too). Given K and H fixed 
we can find q sufficiently large so that there exist random variables Znjtk,..., ZHtktk 
which are mutually independent and for each j , 1 < j < k, Znjtk/anjtk is close to 
Snjtk/anjtk in L2 norm and has the same distribution. From this the Proposition 
follows. • 

Q. For each k € N and n greater or equal than a positive integer n(k) there 
exists a partition 7rn>,v of {1 , . . . , n} such that it holds 

(i) lim anjtk = 00 as n —> 00, for each k € N, j = 1 , . . . , fc, 

(ii) lim 00 —> lim max an •• * /a n = 0, 
k—*oo n n—*ool<j<k ' ' 

(iii) Snik/anik,k € N,j = l , . . . ,k , n = n(k),n(k) + 1 , . . . are uniformly 
integrable. 

It should be noted that according to the Proposition, from C follows 
(iv) for each k € N, £ * = i al,j,k/al -* 1 as n -> 00. 

Theorem. Lei (K,) be an a-mixing sequence and conditions A,B are fulfilled. 
Then Sn/an ~> N(0,1) if and only if C holds. 

PROOF : 

1. Let condition C hold (and A,B as well). 
According to the Proposition, for each n € N there exist a positive integer k(n) 

and mutually independent random variables Z„,i,. •. , -£n,*(n) such that k(n) —> 00 
*< » - 00, 11^ - £ £ & > Zn,j\\2 - 0 as n - oo, ZlJEZ^j = 1 , . . . , *(»), n = 
1,2 , . . . are uniformly integrable, and j r E ( Y ^ " l Znj)2 —> 1 as n —> oo, 

max A^EZ2
 4; —> 0 as n —> oo. For the triangular array of random variables Zn , 

i<i<*(«) " '' 
the Feller-Lindeberg condition is fulfilled, hence ^ £)^a ^»,J -» N(0> 1), therefore 

S n K ^ N ( 0 , l ) . 

2. LetSn /<rn~->N(0,l) . 

From conditions A,B it follows that max (<r?,, — a2A/a2 —» 0 as n —> oo. Hence 
i < i < » ~ i ' ' 

we can find numbers 0 = 0(n) < l(n) < • • • < k(n) = n, n = ib, fc 4* 1 , . . . such that 
a){n)l*l ^j/knsn-+oo,Q<j< k. We put InJtk = {(; - l)(n) + 1 , . . . , j (n)} , 
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and Sn,j,k = E , € / n i A Ki,0 < ; < k. Let k € N be fixed. From [1], Theorem 5.4 
it follows that S2/an are uniformly intergrable, therefore Sfitn\/rf(n)

 a r e uniformly 
integrable, too. From this we get that S2 jk/(a'n/k) are uniformly integrable. From 
the Proposition it follows that there exist random variables Zn,j,k<> 1 < j < &, such 

that Zn.i,*, • • .,Zn>k,k are mutually independent for each n, | | - ^ ' * S^lta ~f 0 
as n —• oo, and k • Z2 • k/^n are uniformly integrable. From this it follows that 
EZn-k/a

2
n -> 1/k as n -r* oo, so <Jn,j,klan -> * A as n - • oo, 1 < j < k. In this 

way,conditions (i) and (ii) of C are fulfilled. 
The uniform integrability of Snj;)k/

an,j,k ls guaranted for each k fixed only, how­
ever. We shall show that there exist positive integers n(k) such that condition (i) 
of C holds. 

From the assumptions it follows that S^n)l^j(n) ~"* N(0,1) as n —• oo, hence 

7" E i = i £n,.\* -» N(0, \ZJ/k) as n -> oo, therefore Sn,j,k/<Tn,j,k ~+ N(0,1) as 
n —• oo. Let X be a random variable with distribution N(Q, 1), for m = 1,2,. . . 
let K! < K2 < ••• < Km < ••• < oo, K[x(IK| > Km)'X2) < 1/m. For k = 
1 ,2, . . . we can thus choose k(n) such that for n > k(n), E[x(\Snjtk\/<7nj,k > Km) * 
Sn,3,klan,3,k\ < 2 / m > m = 1, • • • > *>j = ->•••>&• Now, we can show that for each 
e > 0 there exists K < oo such that E[x(\Sn,j,k\/<7n,j,k > Km) ' Snj,k/an,j,k\ < £ 

for each k = 1,2,... , j = 1,2,... ,n = n(k),n(k) + 1 , . . . : For e > 0 given there 
exists m € N,2/m < e. For k > m and n > k(n) it is £[x(|Sn,j,*|/0n,i,* > 
Km)-Sljk/crn'jk] < 2/mJ = 1 , . . . k. There are only finitely many positive integers 
k smaller than m and for each k fixed, S\jk/anjk are uniformly integrable; from 
this the existence of suitable K follows. • 

R e m a r k s . FVom the Theorem, the result for strictly stationary processes easily 
follows. 

The divisions of { 1 , . . . , n} into intervals In,j,k need not be equidistant; it can be 
seen on an example of a sequence of random variables which are mutually indepen­
dent and have distributions N(0,1/y/n) 

The Author thanks Professor Dr.K.Yoshihara for his kind encouragement and 
many helpful comments. 
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