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Dedicated to Professor Miroslav Katetov on his seventieth birthday 

Abstract. Let K be an infinite cardinal such that 2 &K = K. We prove that the Cantor 
cube 2K contains a dense subgroup D of cardinality K such that for every subset E of D of 
cardinality K we have |E| = 2K. 
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0. Introduction. In [3], Priestley showed that there is a countable dense D c 2 ( , where t de­
notes the cardinality of the continuum, such that no infinite set E in D converges uniquely to a 
point in 2*. Simon [41 generalized this by showing that there is a countable dense D c 2 { such 
that for every infinite subset E c D we have IEI = 2t: the proof is combinatorial and complicated. 
He also observed that such a result cannot be obtained for every uncountable cardinal: it is con­
sistent that every infinite subset D of 20)i contains an infinite subset E converging to a unique 
point in 2°>i. 

Let K be an infinite cardinal. As usual, we put log K = min{u. < K: 2M- ;> K}. We consider 2K 

endowed with its canonical Boolean group structure. The aim of this note is to prove the follow­
ing: 

0.1. THEOREM: Let K be an infinite cardinal such that 2loS * = K. Then 2K contains a dense 
subgroup G of cardinality log K such that for every E c D of cardinality log K we have IEI = 2K. 

Since log t = co, this generalizes Simon's result in two ways. 

1. The Construction. If G is a group and A £ G then «A» denotes the subgroup of G gener­
ated by A. A group is called Boolean if every element has order at most 2. Observe that such a 
group is abelian. A subset A of a Boolean group G is called independent if for every a e A we 
havea*«A\{a}». 

Our construction depends on the following two simple results. 

1.1. LEMMA: Let G be a Boolean group and let A Q G be infinite. Then there is an indepen­
dent B c A such that IBI = IAI. 
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PROOF: Let B be a maximal independent subset of A. For every x 6 A\B there is a finite Fx Q 

B such that x € «FX». Since G is Boolean, if F £ G is finite then so is «F». Consequently, for 
every finite F c B mere are at most finitely many x € A\B such that Fx = F. Since A is infinite, 
this implies that IB! = IAI. D 

1.2. LEMMA: Let G be a Boolean group and let A c G be independent. Then every function f: 
A —> {0,1} extends to a homomorphism f: G —> {0,1}. 

PROOF: Since A is independent, it follows easily that f can be extended to a homomorphism f: 
«A» -> {0,1}. In addition, since G is Boolean, there is a subgroup H c G such that «A» © H = 
G (let H be a maximal subgroup of G with the property that «A» n H = {0}). Now define f: G 
-> {0,1} by 

f(x+y) « f(x) (x € «A», y e H). 

Then f is clearly as required. D 

Now let K be an infinite cardinal such that 2loB K = K. For convenience, put a = log K. Let G be 

any Boolean group of cardinality ji. Observe that by lemma 1.1 there is an independent subset A 

of G of cardinality u.. Since 2M- = K we can enumerate the set {A c G: IAI = u and A is indepen­

dent} as {A :̂ £ <; K} (repetitions permitted). Let {E :̂ £ < K} be a partition of K into pairwise 

disjoint sets of cardinality K. We identify 2K and the product n,*<ic2--£. Since the density of 2K is 

equal to u. (Juh£sz 12,4.51), for every t, < K there is a function f̂ : A^ —> 2E$ such that f(A£) is 

dense. By lemma 1.2, we can extend f£ to a homomorphism f̂ : G —> 2E£. Now define f: G —> 

n^<K2E^by 

f(x)s = f£(x) ($<K). 

Observe that f is a homomorphism. Put H = f(G). Observe that H is a closed subgroup of 
n$<K2E$. 

1.3. LEMMA: H has weight K. 

PROOF: First observe that the weight of H is at most K, being a subspace of n$<K2Et Con­

versely, pick an arbitrary ^ < K. By construction, H can be mapped onto 2 ^ which has weight 

K. From this we conclude that the weight of H is at least K. O 
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It now follows from Hewitt and Ross [1, 25.22] that H is both topologically and algebraically 

isomorphic to 2K. Since, as was remarked above, the density of 2K is equal to u. and f(G) is dense 

in H, we obtain lf(G)l > jx. On the other hand, lf(G)l < 1G1 = \i. We conclude that lf(G)l = u.. Now 

let B c f(G) be of cardinality u.. Clearly, ill < 2K.There is a set A c G of cardinality |i such that 

f(A) = B. By lemma 1.1 there is a ̂  < K with A^ c A. By construction, f(A£) can be mapped 

onto 2 \ We conclude that 

IBI>lf(A£>!>2K. 

We are done. 
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