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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,2 (1988) 

ON THE DIFFERENTIAL AND RESIDUAL ENTROPY 

Miroslav KATĚTOV 

Abstract: We introduce and examine the residual entropy and the regu­
larized residual entropy defined for metric spaces equipped with a finite 
(respectively, € -finite) measure and satisfying certain conditions. It is 
shown that the differential entropy is equivalent, in a specified sense, to 
the regularized residual entropy. 

Key words: Differential entropy, residual entropy, regularized residu­
al entropy, regularized Renyi dimension. 

Classification: 94A17 

Let P=<Q,£, ̂ t> be a metric space endowed with a probability measure <U, 

with respect.to which j> is measurable. We define the residual entropy rE(P) 

as the "remainder" of the epsilon entropy H^(P), i.e., as the limit (provid­

ed it exists) of H.j(.P)-RD(P)|log fc |, where RD(P) is a certain modification 

of the Renyi dimension of P. Based on rE(P), the regularized residual entro­

py RE(P) and the residual entropy density V(P) are introduced for P=<Q,j>,<u> 

with ft 6*-finite. It is shown that RE(P) and V(P) do exist for a fairly 

wide class of spaces. Furthermore, properties of rE, RE and S? are examined 

in some detail. 

The concept of the differential entropy, originally defined for probabi­

lity measures on Rn possessing a density, is examined in a general setting, 

namely for the case of a pair (<tt, 9) of 0 -finite measures with ju* absolute­

ly continuous with respect to >> . It is proved that the differential entropy 

and the regularized residual entropy RE are, in a sense, equivalent. Namely, 

if >> satisfies a separability condition, then the differential entropy of 

(.««-,>>) can be expressed, in a specified sense, by means of RE; on the other 

hand, RE can be expressed, for a fairly wide class of spaces, by means of the 

differential entropy. 

The article is organized as follows: Section 1 contains preliminaries. 

In Section 2, €? W-spaces are introduced, some concepts previously defined 
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for W-spaces are extended to tfW-spaces, and some simple facts are proved. In 

Section 3, the residual entropy rE is introduced and examined, and partition-

regular spaces, on which the behavior of rE is fairly reasonable, are consi­

dered. In Section 4, the regularized residual entropy RE is examined. In Sec­

tion 5 we introduce and examine the residual entropy density. Section 6 con­

tains the theorems on the mutual reducibility of the differential and residu­

al entropy. 

1.1. The terminology and notation is that of £6] with slight modifica­

tions (see 2.5). Nevertheless, some definitions and conventions will be re­

stated. 

1.2. The symbols N, R, TT, R+, Tf have their usual meaning. The letters 

m and n (possibly with subscripts) always denote natural numbers. We put 0/0= 

=0 and, for any bclR, 0.b=0. - We write log instead of log2, and we put log 0= 

= - oo , L(x)=x log x for all xcR +. For xcR, we sometimes write exp x inste­

ad of 2*. 

1.3. A mapping f: X — * ^ > where CC is a class, is called a function or 

a functional; as a rule, the word "functional" is preferred if X is a proper 

class or consists of functions or spaces, etc. 

1.4. If a set A is given, then, for any XcA, iw is the indicator of X, 

i.e. ix(x)=l if x#X, ix(x)=0 if xcANX. 

1.5. If Q «t 0 is a set and A is a €?-algebra of subsets of Q, then a 

tf-additive function <u. : Jl —* Tf+ satisfying fi(0)=O is called a measure on 

Q (in £33 such functions were called IF-measures, whereas "measure" meant a fi­

nite measure). A measure on Q is called finite or bounded if j&Q < co , <T-fi-

nite or 0 -bounded if there are An* dom(utsuch that U(An:n€N(=Q andf4An<<© 

for all n. - The completion of a measure (** is denoted by fZ or £ (U,3 . If ̂ u, 

and V are measures, then ft, 6 >> means that dom ft=dom V and ftXit^X for 

all Xcdom ft, <a c >> means that dom ft c dom .a and »X= ftX whenever Xcdomft* 

1.6. Notation (cf. £63, 1.6). A) If Q + 0 is a set, then £*(Q), jfc(Q) 

and JH#f(Q) will denote, respectively, the set of all f:Q—*TF, the set of 

all measures on Q and its subset consisting of C -finite measures. - B) If 

fte JML(Q) and f,gc#(Q), we write* f=g(mod fu) iff there is a set Zcdom ft 

such that f*Z=0 and f(x)=g(x) whenever x c Q \ Z . - C) If <a* il(Q) and f c 

• f(Q) is ^-measurable, we put tfl^^ig cf(Q):g=f(mod p,)1 and call Ifl* 

a function (mod ft). We put ?'£f4.1=-C£f1|t4,:f c^(Q) is ji-measurableJ. -

D) If ftc JH(Q), F,G c*£(*,l, then we put F4G (respectively, ¥< 6) iff, for 

- 320 -



some fcF, gcG, f(x)c\g(x) (respectively, f(x)<g(x)) for all x c Q (thus, 

e.g., - q > < Cf.l(M.<c3o means that some g=f (mod (U-) is finite). - E) If 

ft c JWQ) and F c #Cftl, then sup F denotes the least bcTT such that F£b, 

and similarly for inf F. - F) If ftc ,AKQ), F= [fl^ c flTf ̂ J , we put 

/ F d fi = /f dft . - G) If ftc .AC(Q) and f:Q-* T is a mapping, then ^ • f l 

denotes the measure Y i—*» ft(f~ Y). 

1.7. We use the usual convention concerning expressions of the form 

€ i—* F(£ ) . If a term F( C ) contains a variable £ , then the expression 

c >—• F(C ) denotes the mapping defined as follows. Let x be an element (from 

a given class explicitly described or clear from the context). If the term 

F(x) denotes exactly one element y, we put f(x)=y; if not, then f(x) is not 

defined. Thus, e.g., if ft c Jli(Q), then the expression f h-> / f d (u,,where 

f i^(Q), denotes the functional y such that (1) dom <f =-ff ey(Q):/f d (uu 

exists!, (2) if fcdom<y , then y(f)=/f d ft. 

1.8. Let ftc JH(Q). If F= tfj^c $tpA , F2T0, then the function 

X H-^/w f d ft, defined on dom f+ , is a measure. Its restriction to dom ft 

will be denoted by f. ft or F. ft . If Xcdom jK , we put X.ft =ix. ft . - Ob­

serve that if ft c -*Lf(Q) and 0*F<<» , then F.ft « i L f ( Q ) . 

1.9. If Q is a set, K «• 0 is a countable set, X. , kcK, are subsets of 

Q, UXk=Q and XinX.=0 if i,jcK, i+j, then (Xk:kcK) will be called a par­

tition of the set Q (a ft-measurable partition if QcT, ft is a measure on T 

and all X. are in dom $*,). - Observe that "partition" has a*different meaning 

in the expressions "partition of a «fW-space" (see 2.5) and " %, -partition" 

(see 2.10). 

1.10. Conventions and notation. Let f be a tf-additive function, pos­

sibly also assuming the value -co or oo , on a setQ + 0(this means that dom? 

is a €?-algebra Ji of subsets of Q, T(0)=O and *(A)= X(lf(An):nc N) when­

ever (A :ncN) is a partition of A c A and all A are in A ) . Then (1) a set 

X c Q will be called t-null if there is a set Y c dom X such that Y 3 X and 

rZ=0 whenever Zcdom-tf.., ZcY, (2) if XcQ and, for some Yc dom x , the sym­

metric difference X & Y is ?-null, we put ni (X)= t(Y). The function 1? , 

also denoted by 1x1, is tf-additive; it will be called the completion of x. 

1.11. A tf -additive function x on Q is called bounded (or finite) if 

«ttX:Xcdom X \ is bounded; € -bounded (or cf -finite) whenever there is a 

partition (AR:ncN) of Q such that, for any ncN, A Rc dom x and ixX:X • 

c dom X , XcA i is bounded. 

- 321 -



1.12. Definition. There are various slightly differing definitions of 

absolute continuity (of measures, etc.). We choose a fairly broad one: let 

(i* be a C-finite measure on Q and let % be a C-bounded tf -additive func­

tion on Q, Then x is said to be absolutely continuous with respect to (C& if 

(1) every (JL -null set is x -null, (2) domffcc domi? , and (3) there is a T -

null set A such that if Xcdom^T, then X=YoZ, where Y<tdom|S>, Zc A. 

1.13. Fact and notation. If ^ c A t f f(Q), f € ^ ( Q ) is ^-measurable, f(Q)c 

C R and Jt d <u, exists, then X i—* J\, f d y. , defined on dom ̂ , is an ab­

solutely continuous (with respect to (C& ) €T-bounded 6?-additive function. 

Its restriction to dom<o, will be denoted by f.̂ u, or F. jO. where F= CfL,,-

1.14. We shall need the Radon-Nikodym theorem in the following form. 

Theorem. Let ^ be a (T-finite measure on Q and let nc be a € -bounded 

^-additive function on Q. If x is absolutely continuous with respect to («*, 

then there exists exactly one function (mod (U) F such that ^X= /x F d ft for 

all X« dom fl * 

1.15. Notation. The function (mod (UL ) F from 1.14 will be denoted by 

d*c/d(u,or by D£t, (ut,!. 

1.16. Fact and notation. Let ft be a measure on Q. If 0^TcQ, then the 

function X »~-*inf( (uY.Yc dom ^ ,YaT=X) defined on «|Yr*T:Yc dom <««,$ is a mea­

sure on T. It will be denoted by ^ * M provided there is no danger of con­

fusion. - We put f*e(0)=0 and < * e ( T M ^fT)(T) if 0*TcQ. - Cf. 13], 7.4 

and 7.5. 

1.17. Fact. If (Ci is a measure on Q and 0-#TcQ, then £ f * M J = f * M . If, 

for i=l,2, (M,. is a measure on Qi and 0+T.eQ., then >* = (**̂ T, V = fltl, 

where T=Txx T2, >>= ̂ x » 2, >>i= ^ M , p. = p^* fy- - Cf. £3], 7.6. 

1.18. Notation. The Lebesgue measure on Rn, n=l,2,..., will be denoted 

by .AR or simply A . If Qc Rn, Q # 0 , we often write A n or A instead of 

XnlQ provided there is no danger of confusion. 

1.19. Conventions and notation. If<Q,«> is a semimetric space (i.e. p 

is a real-valued function on Qx Q satisfying £>(x,y)= p(y,x)£ 0, £>(x,x)=0) 

and TcQ, then<T,*>> will denote the set T endowed with the semimetric 

pl*(Tx,T). The symbol Rn, n=l,2,..., will also denote the space <R n, JD> , 

where f is the .^-metric, i.e., fi>((xi),(yi))=max(lxi-yi\ ). Thei^-metric 

on a set QcR n will be denoted by o» (unless explicitly stated that p is us­

ed in a different sense). If Pi = (Qj* $*i^ are semimetric spaces, then Pj* P2 

denotes the space <Q1><Q2,rt>> , where ^>((x1,x2),(y1,y2))=max(p1(x1,y1), 

f2(x2,y2)). 
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1.20. Notation. If S is a set endowed with a topology (in particular, if 

S is a metric space), then £(S) will denote the collection of all Borel sub­

sets of S. 

1.21. Notation. If §=(xk:ksK) is a non-void indexed set of nonnegative 

reals and X xR < oo , we put H( £ )=H(xk:k&K)= S(Lxk:k€ K)-L(2(xk:k4K)). 

If (tt is a finite measure on a countable set Q and {x}6dom^4 for all xeQ, 

we put H((tfc)=H(e4.fq}:qeQ). 

1.22. The following simple facts concerning the functional H will often 

be used. 

1.22.1. If x k>0, k=l,...,n, then H(x p ... , x n ) . * C S . x k ) . l o g n. 

1.22.2. Let xk. > 0 for k«K, j 6 Jk (where K and Jk are non-void sets). 

Let Z(x k.:k6K,j€J k)<co . Then H(xR. :kc K,j € Jk)=HCg(x..: j« Jk):k* K)+ 

-^2(H(xkj:j6Jk):k6K). 

1.22.3. If K*0, x kt0 for k«K and 0 < 2 xk<t5© , then H(xk:k€K) z 

>- L ( S x k ) - ( Z x k ) A o g sup(xk:k*K); in particular, if IExk=l, then H(xk:k « 

CK)>- log sup(xk:k€.K). 

1.22.4. Let K be a non-void set. Let xk, yk, where k«K, be non-negative 

reals. Let 2, yk= 2£ xk < oo . Let j* Jc K and let x.2 xk for all k* K. Let y.= 

=xk for k&K\J, y^-x., yk--xk for keJ, k*j. Then H(yk:k6 K)_S H(xk:kcK). 

Recall that W-spaces (also called semimetric spaces endowed with a fini­

te measure) are defined as follows: P=<Q,^> ,(*>> is a W-space if Q ^ 0 is a 

set, (U. is a finite measure on Q and p is a i(i4 * (*}-measurable semimetric 

on Q. - In the present article, we will also consider «fW-spaces, obtained by 

replacing "finite" by " 6 -finite" in the above definition. The reason for 

introducing this broader class of spaces lies in the following facts: (1) the 

regularized residual entropy (see 4.2) can be defined in a very natural way 

for tfW-spaces, (2) the theorem (see 6.9) on expressing the differential ent­

ropy (see 6.1) by means of the regularized residual entropy is valid in full 

extent only if tfW-spaces are taken into consideration, (3) such natural ob­

jects a s < R n , p , . A > are €TW-spaces, not W-spaces. 

2.L Definition. Let Q be a non-void set. Let (4. be a £*-finite measure 

on Q and let m be a t(**x^c.1 -measurable semimetric on Q. Then P=<Q,^ , $JU> 

will be called f» W-space or a semimetric space endowed with a <T-finite measu­

re. If, in addition, (U Q < oo , then P is called W-space (or a semimetric 

space endowed with a finite measure). 
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2.2. Notation and conventions. If P=<Q,f ,^>is a CfW-space, we put 

wP= {LQ. If wP=0, we call P a null space. - The class of all tf W-spaces and 

that of all W-spaces will be denoted, respectively, by % W) and 730 • A 
$W-space P=<Q,^ ,<**> will be called metric if jp is a metric (cf. £41, 1.5). 

If, in addition, every Borel set is in dom jZ , then P will be called weakly 

Borel. 

2.3. Let P= <Q,f ,^>be a €W-space. If S= <Q,^ ,v> and p *& {* , then 

we call S a subspace of P (a pure subspace if v=X.ft where Xtdom (<Z ) and 
write S * P. If F= £ f ] ^ t $ I pi andQ*F<oo , then <Q,p ,f .<*> is a *W-

space, which will be denoted by F.P or f.P. If Xtdom jjl , we put X.P=ix.P. -

Cf. £41, 1.6 and 1.7. 

2.4. Fact. Let P=<Q,f ,<-«.>€ Glty . Then S=<Q,£,*>>£ P iff S=f.P 

for some fii -measurable f t ̂ (Q) satisfying 0 A CfJ** 61. 

2.5. If K40 is a countable set, Pk, ktK, and P are 6fW-spaces and 

Z(Pk:ktK)=P (i.e., Pk=<Q,ij> ,<i*k> , P= <Q, $>,£*> and (* = -£.4«.k), then we 
will say that (Pk:ktK) is a partition of P (a pure partition if all Pk are 

pure subspaces of P). Cf., e.g., (61,1.12. - Remark. In £2] - £5J, the term 

" o>-partition" was used for what is now called partition, whereas "partition" 

meant a finite partition. 

2.6. Fact. If P * GWQ , (Pk:ktK) is a partition of P and S4P, then 

there are S k*P k such that 2.(Sk:ktK)=S. - Cf. £61, 1.13. 

Proof. Let S=s.P, Pk=-"k-P (see 1.14). Put g^sf^, Sk=gk.P4Pk. Clearly, 

Xsk=s. 
2.7. Let U=(Uk:kcK) and V=(V.:jtJ) be partitions of a 0W-space P. 

If there exists a disjoint collection (1 :k*K) such that UJ k=3 and, for 

each ktK, 2(V. : j * Jk)=Uk* then V i s said to refine U . - Cf., e.g.,£6], 

1.14. 

2.8. Fact. If % and Vare partitions of a 3W-space P, then there ex­

ists a partition of P refining both U and V . - Cf. £21, 1.36. 

Proof. Let U=(U k:ktK), tf =(V..:j t3). By 1.14, there are fR and g. 

such that Uk=fk.P, Put tW-fkg*, f = ( h k . . P : k t K , j t J ) . Then T is a partiti­
on of P refining both U and V*. 

2.9. Let P=<Q,f, £*>t*1&0 and let * > 0 . We put *#P=<Q, t * f , t ^ \ 

where (**f)(x,y)=0 if p(x,y)*e, and (**f)(x,y)=l if y(x,y)> t> . - Cf. 

161, 1.17. 

2.10. Let P=<Q,-J>,f*>t6rtt0 , % > 0. Then (X^ktK), where K*0 is 
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countable, X k e d o m £ , will be called an e-covering of P if diam X k* e for 
all ktK and <fc(Q\UXk)=0. If, in addition, X ^ X.=0 for i*K3, then (Xk:ke 
• K) will be called a disjoint e-covering of P (an e -partition if there is 
no danger of confusion with the partition in the sense of 1.9 or 2.5). - Cf. 
£41, 1.19. 

2.11. If P=<Q,p ,f4>is a W-space, then the infimum of all H( jiLX.:k e K), 
where (Xk:k«K) is an e-partition of P, will be denoted by Hft(P); if there 
is no % -partition of P, we put He(P)=oo . - Cf. £43, 1.19. 

Remark. The functional H$(P), often called the epsilon entropy, has been 
examined in £73 (to be precise, the H€(P) defined above coincides with the 
functional in L73 up to a multiplicative constant). 

2.12. A functional y : 730 —*• R+ satisfying the conditions stated in £63, 
1.19 is called a Shannon functional (in the broad sense). - The conditions 
just mentioned include the fundamental equality <£<Q,l,<u.> =H((C*t) for any 
finite <Q,1, $*> e WQ . Due to this equality, Shannon functionals (b.s.) ha­
ve been called extended Shannon semientropies (in the broad sense) in £2l,l3l 
and 151. 

2.13. In this article, we consider, in fact, only one Shannon functional, 
namely IV, also denoted by E; for its definition see, e.g., 14], 1.13. - The 
letter E will be sometimes used in a different sense, namely to denote the 
functional (P, ,P2) *-̂  d(P1+P2) defined on UL , the class of all {?vf^> * 
c 720 x 320 such that P-*P, P 2*P for some P c 7M) . Recall that if P= 
= <Q,0 ffA,>€9fp , then d(P) denotes the infimum of all b*"R+ such that 
t^LK^H(x,y)€QxQ:^(x,y)>bJ=0. 

2.14. We restate two important properties of E. - A) If (S,T) is a par­
tition of P « 930 , then E(P)*E(S)+E(T)+H(wS,wT)E(S,T). If S-IPc ?-#, then 
E(S)*E(P). - See £41, 2.3. 

2.15. Proposition. If P= <Q,f „fc> is a metric W-space, then either (1) 
E(e# P)=H^(P) for all e > 0, or (2) E(* * P)=Ht(P)= <*> for all sufficien­
tly small e > 0 . - See 141, 2.18. 

2.16. If p* is a 0-finite measure on Q and 0 - M c Q, then T is called 
thick in<Q,f-v> if there are XRc dom £4 , ncN, such that (ttXn< ao , UX n= 
=Q and (<*rT)(XnnT)= <w,Xn for all m N . 

2.17. Fact. Let T be thick in<Q,{*>. If Xcdom (U, , ̂ *X>0, then TnX 
is thick in <X, *> , where * is the restriction of <u. to -CYcdom p . :Yc Xi. 

2.18. Fact and notation. Let P= <Q,f, £*> be a £ W-space. Let 0*TcQ. 
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Then <T,«,**cM> is a 8W-space, which will be denoted by P M , 

This follows easily from 1.17. 

2.19. Lemma. Let P= <Q,<p , <u,> be a weakly Borel metric W-space. Let T 

be thick in <Q, <*> .Then, for any <? > 0, H/P M ^ H ^ P ) . 

Proof. We can assume ^tQ>0. Put p = ,u.rT. Let d > 0. Put a=H$(P), b= 

=Hj(PrT). If (XR:n€N) is a <f-covering of P, then,clearly, (Xnr»T:ncN) is a 

cT-covering of PM; hence b^a. Suppose b<a and let b<c < a . Then there is a 

cf-partition (Y :ncN) of P M such that H(*3 YR:n€ N)<: c. Clearly, there are 

sets U € domju. such that Y = U o T, S.U = "3Y . Put X = U n Y n . Since P is weakly n ~ n n ' ~ n n n n n ' 

Borel, X e domft. It is easy to see that f£X =>*Y , (X :neN) is a cT-covering 

of P and H(^Xn:n€N)=H(i.5Y :n£N)^c. This is a contradiction. 

2.20. In [1],[9] and [10], the dimension and the upper (lower) dimension 

have been introduced for random variables with values in Rn. For W-spaces, 

dimensions of various kind have been introduced in 15] and 16); they are, in 

fact, generalizations of concepts defined in [ l ] , [ 9 . i and 110]. We are going 

to restate (see 2.21 and 2.24) some of the pertinent definitions and some sim­

ple facts. Then we introduce (2.26) the regularized Rerryi dimension RD(P). 

2.21. Let cf be a Shannon functional and let P e tip . Then <̂  -uw(P) 

(respectively, cj-iw(P)) denotes the upper (lower) limit of ^(cT^cP)/ 

/|logd*l for 6 — * 0. We put <y-ud(P)= ^-uw(P)/wP, y -id(P) = g>-iw(P)/wP. 

If <y-ud(P)=<? -id(P), we put 9-Rw(P)= 9-uw(P), </-Rd(P)= cp-Rw(P)/wP. We 

call <y-Rd(P) and 9~Rw(P) the (exact) Renyi <y-dimension, and the ̂ -weight 

of P, respectively. If <y=E, the prefix " cp " is, as a rule, omitted. - See 

[5], 2.1. 

2.22. Fact. If (S,T) is a partition of a W-space, then iw(S)+iw(T) £ 

*iw(P) £iw(S)+uw(T).6uw(P)£uw(S)+uw(T). - See [ 5], 3.1. 

2.23. Lemma. Let P be a W-space and let beR +. If ud(S).£b for all pure 

S£P, then ud(T)£b for all T£P. 

Proof. Let T=f.P. Let mcN, m>l. Put Vk= -Cx^Q:(k-l)/m<f(x)^k/m} for 

k=0,...,m, Sk=(k/m).Vj<.P, S= 5L(Sk:k=0,... ,m). Then ud(Vk.P)£b, hence ud(Skk 

* b and therefore,by 2.2, uw(S)£b.wS. Clearly, T£S, w(S-T)6m"1.wP. Hence 

ud(T) £ uw(T)/wT6 b.wS/(wS-nf .wP). Since m=2,3,..., has been arbitrary, we 

have shown that ud(T)£b. 

2.24. Let <$ be a Shannon functional and let P be a W-space. Then y-UW(P) 

(respectively, g>-LW(P)) denotes the infimum of all b€^ + for which there is 

a partition 11 of P such that if (Vk:k«K) refines U , then 2(<y-uw(Vk): 
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: k % K ) * b (respectively, -£(cj- -Cw(Vk):ktK) * b ) . We put <y-UD(P)= </-

-UW(P)/wP, <?-LD(P)= <y-LW(P)/wP). - If y=E, then the prefix " y " is, as a 

rule, omi t ted . - See £6], 3.1. 

2.25. Proposition. Let y be a Shannon functional and let P=<Q,p, ^c> 

be a W-space. Then (1) if (Pk:keK) is a partition of P, then cp-UW(P)= 

= .£(<y-UW(Pk):k*K), 9-LW(P)= 2(<y-LW(Pk):kCK), (2) the functions X *-* 

l-^cf-UW(X.P) and X t~* *f -LW(X.P) are measures. - See £61, 3.2. 

2.26. Definition. Let 9* be a Shannon functional. Let P be a W-space. 

If <p-UD(P)= cp-LD(P), we put 9>-RD(P)= <y-UD(P), y-RW(P)= <f -UW(P). We will 

call y-RD(P) (respectively, <y-RW(P)) the regularized (exact) Renyi <f -dimen­

sion (respectively, the qp-weight) of P. If c/-UD(P) -t» <f -LD(P), we will say 

that <y-RD(P) does not exist. - If y =E (which is the case considered in this 

article), we omit the prefix " <jp ". 

Remark. The properties of RD will not be examined in this article. We 

state only some simple facts to be used in the sequel. 

2.27. Fact. Let (S,T) be a partition of a W-space P. If both RW(S) and 

RW(T) exist, then RW(P)=RW(S)+RW(T). 

This is an immediate consequence of 2.25. 

2.28. Proposition. Let P be a W-space. If RD(P) exists and is finite, 

then RD(S)<«o for all S£P. 

Proof. By 2.25, UW(T)4UW(P)< co for all T*P. For any T*P, put <T(T)= 

=UW(T)-LW(T). By 2.25, <T(S)+<f(P-S)=cf(P)=0 for all S£P. This implies <f(S)= 

=0, which proves the proposition. 

2.29. Lemma. Let P=<Q,p,ft> be a W-space. Let Rd(P)=b -& 00 and let 

ud(T)£b for all pure T*P. Then RD(S)=Rd(S)=b for all non-null S4P. 

Proof. By 2.23, ud(S)*b, hence uw(S)£b.wS for all SAP. Suppose 

uw(S0)<b.wSQ for some SQ 4P. Then, by 2.22, uw(P) £ uw(SQ)+uw(P-S0)< b.wP, 

which contradicts Rd(P)=b. Hence Rd(S)=b for all non-null S6P. Consequent­

ly, Rw(S)=b.wS, RW(S)=b.wS for all S£P. 

2.30. Proposition. Let P=<Rn, p,£*> be a W-space and let fx be absolu­

tely continuous with respect to the Lebesgue measure. Let w P > 0 . Then (1) 

RD(P)=n; (2) Rd(P)=n if H(pA z:zeZ
n) < co , where Z is the set of all inte­

gers, Az= «Cx=(x1,...,xn)*R
n:zji4 x i< zi+l for i=l,...,n|, (3) Rd(P)= 00 if 

H(j2Az:zeZ
n)=c»» 

Proof. For (2) and (3), see £53, 2.9. To prove (1), consider any parti­

tion of P of the form (X .P:n€N) with Xn bounded. 
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3.1. Definition. Let y be a Shannon functional (b.s.) and let P be a 

W-space. Assume that <jp-RD(P) exists and is finite. Then the limit (provided 

it exists) of <y(<f* P)-(g>-RW(P)) jlog <f I for cf--> 0 will be denoted by 

r'cp(P). We put r<y(P)=r'c/ (P)+L(wP) and call r<y(P) the residual y-entropy 

of P; if <f =£, then the prefix " <y M in " o/ -entropy" will be, as a rule, 

omitted. 

3.2. Remarks. A) In this article, only the case <p =E is examined. - B) 
Clearly, if P e W) , wP=l, then r'<y(P) and r <y (P) coincide (provided they 

exist). - C) The functional r'<y seems to be more natural than r y . On the 

other hand, (1) under certain fairly mild assumptions (see 3.9), Xt—*rE(X.P) 

is additive whereas r'E satisfies the equality r'E(Xt/Y).P)=r'E(X.P)+ 

+r'E(Y.P)+H(w(X.P),w(Y.P)) and cannot be additive; (2) in many important ca­

ses, rE <Q,tp ,X,(t«,> can be expressed in the form /x F d (* , where F depends 
only on <Q,{> , <<*> (see 5.1, 5.3 and 4.4). - D) It is possible to introduce 

another kind of residual entropy, say r<jp(P), replacing RD and RW by Rd and 

Rw in 3.1. This notion, however, is less appropriate since, e.g., there are 

W-spaces of the form P=<R,tj> ,f .-A> such that RD(P)=1, rE(P)= -ft log f d A 

whereas Rd(P)= oo and therefore rE(P) does not exist. 

3.3. If P is a W-space, rE(P) need not exist, and even if rE(S) exists 

for all S^P, the function X *-*» rE(X.P) can fail to be additive; for perti­

nent examples see 3.12 and 3.41. However, under some not too restrictive con­

ditions, X*—*rE(X.P) is additive (see 3.9) and, under certain additional as­

sumptions, even C-additive (see 3.35). 

3.4. Fact. Let p= <Q,t© ,<u.>e W> - Let (S1,S2)=(X1.P,X2.P) be a pure 
partition of P. Then, for any <f > 0, H^P)+L(wP) -*Hf(S1)+L(wS1)+Hf(S2)+ 

+L(wS2). 

Proof. We can assume that H-(S.)<oo . Let i£»>0. Choose ^partiti­

ons (X.n:n»N) of Si, i=l,2, such that H(px J L n:n*N)<H r(S i)+*/2. Clearly, 

(Xin:i=l,2; n c N ) is a cf-partition of P, hence H ^ P ) £ H ( ^ X i :i--l,2;n« N)+ 

+L(wP)=H(£tXln:n 6 N)+L(wS1)+H((lXX2n:n * N)+L(wS2) < Hr(S1)+Hr(S2)+L(wS1)+ 

+L(wS2)+iJ» . Since & > 0 has been arbitrary, the assertion is proved. 

3.5. Notation. If P € tiff , RD(P) exists and is finite, we put, for any 

/ > 0 , y(<r,P)=E(<r*P)-RW(P)Ilogcf| +L(wP). 
3.6. Fact. Let (S,T) be a pure partition of P « «0and let RD(P)=RD(S)= 

=RP(T)=t, 0 < t < c o .Let rE(P), rE(S) and rE(T) exist. Assume that the sum 
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rE(S)+rE(T) exists. Then rE(P)4rE(S)+rE(n. 

Proof. By 3.4, we have y<cf ,P) * y(<r,S)+y(<f ,T) for all <f> 0. Since 

Y ^ »p)» if(<f ,S) and if(<fj) converge to rE(P), rE(S) aand rE(T), respec­

tively, we get rE(P)ArE(S)+rE(T). 

3.7. Definition. A) If <u, and V are measures on Q, * c ft , and, for 

any X c d o m ^ , there is a set Yc dom v such that the symmetric difference 

X *± T is ît-null, we will say that ^t is a faithful extension of » . - B) A 

metric €• W-space P= <Q,<p,f-t> will be called almost Borel if &<Q,rti>cdom ft 

and (Sis a faithful extension of /u.r:J5 <Q, *>> . 

3.8. Lemma. Let P= <Q,p , fi*> be an almost Borel metric W-space and let 

E(<>* P)<oo for all fe > 0. Let (S,T)=(X.P,Y.P) be a pure partition of P. 

Then E(cT* S)+E(<f* T)-E(<f* P)-*» H)wS,w#* for <r—*- 0. If, in addition, 

R0(P) exists and is finite, them ^(cf ,S)+y(<f" ,T)- y<cT,P)--*- 0. 

Proof. I. We can assume that X is Borel and Y=Q\X. Let «^>0. By well-

known theorems, there is a closed X * c X such that j£(X\X*)< •£• . Since X* 

is closed, there is an oC > 0 such that tu.(Y\Y*)< & , where Y* = 

* {y €Y: p(y,X*) > cc} . - Let 0 <S< *, . By 2.15 and 2.11, there exists a 

cT-partition (UR:ncN) of P such that H(^Un:ne5 N ) < E(<f* P)+ & . Put Kx= 

= * n c N : U n n X * # 0 | Ky= {nct4:Unn Y « . f 0J, M=N \ (Kxu K y ) . Then U ^ X , n C K x u 

uM, form a cf-partition of S whereas U r%Y, ncKyUM, form a <jT-partition of 

T. Clearly, U nc (X\X*)u(Y\ Y») whenever nCN, hence Z C ^ U ^ n c M)< 2 i K 

For ncN, put aR= £>Un, bp= ftOJ^X), cR= f&(u"nnY). Then we have Z(Lbn:nCM)+ 

+ !£(Lcn:ncM)= 2.(Lan:ncM)+ Z(H(bn,cn):ncM) * X(La n:niM)+ SXa^.ncM) £ 

tC,2.(Lan:n€M)+2^ , hence H(bn:neN)+H(cn:ncN) .4H«an:nt N)-H(wS,wT)+2^ . 

Since H(aR:n€ N)<E(cT* P)+* , we get (*) E(<T* S)+E(/*T)*E(tf* P) -

-H(wS,wT)+3n>» . Thus, for any i > > 0 there is an oc> 0 such that the ine­

quality (.*) is satisfied whenever 0 < <F < oc . On the other hand, by 3.4 and 

2.15, E(cT*S)+E(<fx T)?E(cT*P)-H(wS,wP). This proves the first assertion. 

- II. If RD(P) exists and is finite, then, by 2.27, RW(P)=RW(T), which easily 

implies the second assertion. 

3.9. Proposition. Let P= <Q,f ,**^ be an almost Borel metric W-space. 

Let E ( * * P ) < c o for all «, > 0. Let (S,T) be a pure partition of P. If both 

rE(S) and rE(T) exist, then rE(P)=rE(S)+rE(T), unless rE(S) and rE(T) are in­

finite and rE(S)= -rE(T). If both rE(P) and rE(S) exist, then rE(T)=rE(P) -

-rE(S) unless rE(P)=rE(S)= - <*>. 

Proof. To prove the first assertion, observe that the existence of 

rE(S) and rE(T) implies that RD(S) and RD(T) exist and are finite. Hemce, by 
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2.27, RW(P)=RW(S)+RW(T). By 3.8, this implies y(<T,S)+ y(cT,T)- y(<r,P)-* 

— > 0, from which the assertion follows at once. The proof of the second as­

sertion is similar. 

3.10. We are going to present some examples showing that rE can behave 

rather irregularly (though being additive in the sense described in 3.9) even 

on fairly simple almost Borel metric W-spaces. The examples also show that 

the class of metric W-spaces P satisfying RD(P)<ca? is too broad to allow a 

sufficiently rich theory of the residual entropy (or of the regularized resi­

dual entropy RE, see Section 4). Hence we have to choose a suitable subclass 

for which a reasonable theory of this kind can be developed. Probably the 

subclass we introduce (see 3.19 and 3.20) is too narrow, though. 

3.11. In 3.12 - 3.14 the following notation will be used. The set {0,1}^ 

is denoted by Q. If p=(pn:ntN), l/2£p n<l, then Stpl = <Q,<uCpJ> will denote 

the product of probability spaces <|0,ty > > 0 » where *> {0l=p , D 4lJ=q =1 -

-p . Instead of fi.Cp.1 we often write merely ft . If, in addition, a=(a :n 6 

6 N), a > 0, a ni
a
n +i»

 a
n — * 0 for n — * co , then SCp,al will denote the W-

space<Q,§>a, ^tpl> where ?a(x,y)=am if x=(xR), y=(yn),
 x

m *fr ym
 ar»d xi=yi 

for i< m. - If n*N, z*40,ttn, then A(z) denotes the set 4x=(x ) * Q:x-=z. 

for i< n|. The collection of all A(z) will be denoted by A , and that of all 

A(z), ze$0,lin, will be denoted by An-

3.12. Example. For ntN let Pn=l/2,
 a

n=2~
n. Put p=(pR:ncN), a=(aR:n 6 

C N ) , P= <Q,tf> ,^4>=SCp,aJ. We are going to show that rE(S) exists for no non-

null S4P. 

Let S*P, S=f.P, wS>0. Let 2" n + l>oT^ 2"n. Then, clearly, E(<T*S)= 

=E(an*S)=H(w(A.S):Ae-ah). Hence, by 1.22.1, (1) E(<T* S)f*n.wS and, by 

1.22.3, (2) E(cf*S)>n.wS-L(wS). This proves that Rd(S)=l.Consequently, RD(T)« 

=Rd(T)=l for any non-null T4P; - If S=f.P<frP, then E(<f* S) is constant on 

each interval (2~ ,2"n3 and therefore the oscillation of y(cf,S) on 

(2~n+1,2~n3 is equal to that of wS|log<f) , hence to wS. Since, by (1) and 

(2), 0 r̂ if (cf,S)^L(wS), this proves that if(cf,S) has no limit for <f—• 0. 

3.13. Example. Let C T O . Let P=SCp,b3, where p is as in 3.12, bR= 

=exp(-c~1n). It is easy to show that, for any non-null S*P, (1) RD(S)=Rd(S)= 

=c, (2) rE(S)=o> i f o l , rE(S)= - o* if c<l. 

3.14. Example. For n*N, let qn=(n+2T , pn=l-qn, h(n)=H(pn,qn), sn= 

= £(h(m):m<n), an=exp(-sn). Put P=<Q,«y,^> =SCp,aJ. Then (1) Rd(P)=l, 

(2) Rd(S)41 for any non-null pure S4P, and therefore (3) RD(S)=Rd(S)=l for 

any non-null S-»P, (4) rE(A.P)=L(fiA)-sn. ̂ 4 A for any A « A hence 
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rE(P)=0, (5) there is a disjoint countable collection AC c .It such that 

(*(P\UX)=0, S(rE(A.P):A * X ) < 0 . 

Since the example is merely illustrative, we omit the proof (which is 

rather long and not quite easy) of the facts just mentioned. 

3.15. Before introducing partition-regular spaces (see 3.20) we consider 

(in 3.16 - 3.18) the case of metric W-spaces satisfying RD(P)=0, which turns 

out to be quite simple. 

3.16. Proposition. If P is a W-space and RD(P)=0, then rE(P) exists and 

is equal to lim Ed/** P)+L(wP). 

Proof. Clearly, E(<,f* P) is a non-decreasing function of <f and 

ijr(c/\P)=E(<r*P)+L(wP). 

3.17. Proposition. Let P=<Q,^ ,$*> be a non-null metric W-spaqe such 

that RD(P)=0 and ftCx|=0 for all x€Q. Then r£(P)=a>. 

Proof. We can assume that wP=l. Suppose that rE(P) < oo , hence 

sup E(cf* P)<a <co . Then, for any n=l,2,..., there is an n -partition 

(XR m:m€N) of P such that H(p.Xn m:m§ N)< a. By 1.22.3, we have 

- log(sup ft,Xm n:m%N)<a, and hence, for some m=m(n), <c*X m/R\> 2~
a. Put 

Yn=Xn m(n)* If no X * Q is in i n f i n i t e ly m a nY Y
n»

 tnen A(U(Y k:k> n):n€N)=0, 

whereas p.( U(Y k:k> n)) * 2~a for all n. Hence there is a point yfiQ and an 

infinite KCN such that y€Y. for all k€K. For n*N, put Z = U (Y, :k€K,k>n). 
-a -1 

It is easy to see that #*Z >2 for all n€N and diam Z 42n , hence H Z = r n n * n 
= 4yj. Since ^*4yl=0, we have got a contradiction. 

3.18. Theorem. Let P= <Q,j>,f*> be a metric W-space and let R0(P)=0. 

Put A=4xeQifA4x\>0|, B=Q\A. Then (1) for any subspace S=f.P4P, rE(S)= 

=H(f(a)p,fa$:aeA) if w(B.S)=0, and r£(S)=<0 if w(B.S)>0, (2) the function 

X i—• rE(X.P) is a measure defined on dom jj&. 

Proof. If <t*B>0, then, by 3.12 and 3.16, E(*T* (B.P))~* <x> , so that 

E ( c T * P ) — • cx> , rE(P)= oo . - Let $*B=0. Then (4al:a€A) is an e-partition 

of P for any €> >» 0 and therefore sup E(flf# P)*H(|tA-Cal:a€ A). On the other 

hand, if KcA is finite non-void, choose a positive <t<inf 4j> (x,y):x€K,y« 

«K,x4iy|. It is easy to see that E(cf# P)2H(f*fxt:x€K). Since clearly 

H(f*4ai:a€ A)=sup(H(^4.4a|:a4K):Kc A finite), this proves the assertion (1) 

for S=P. The general case of (1) and the assertion (2) are easy consequences. 

3.19. Convention. Let t and b he positive reals, let m€N and let 

f:(0,b)—>R+ satisfy t(<?)—»1 for of—*0. We will say that a semimetric space 
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S= <Q,f> satisfies PR(t,m,b,f) if, for any X c Q with diam X=<T< b and any 

n?m, there are Y.cX, i=l,...,k*ntf(«r), such that l/Y.-X and diam Y ^ / n , 

i=l,...,k. We will say that a W-space P= <Q,p ,$*v> satisfies PR(t,m,b,f) if, 

for any Xedom (Z with diam X= cf < b and any n>m, there are Y.*dom ft , i= 
• l - . - . - k A n ^ W ) , such that fC(XSUYi)=0 and diam Y i . 4 < f / n , i=l,...,k. 

3.20. Definition. Let 0 < t < o o . A semimetric space S (respectively, a 

W-space P) will be called partition-regular of order t if, for some m, b and 

f, S satisfies PR(t,m,b,f) (respectively, P satisfies PR(t,m,b,f) and R3(T)=t 

for all non-null T4P). 

3.21. Fact. Let 0 < t < co . Let P= <Q,j> ,^> be a weakly Borel metric 

W-space and let Rd(P)=t. If, for some b, m and f, there is a Q'c Q such that 

f£(Q\Q')=0 and<Q',{&> satisfies PR(t,m,b,f), then P also satisfies 

TR(t,m,b,f) and is partition-regular of order t. 

Proof. Choose a positive <f < b such that log|f(cf)|< 1. Let S=<Q,p ,»>* 

& P. Since Rd(P) < oo , we have E ( e , * P ) < oo for all %, > 0 and therefore, 
by 2.14 B, E(cf*S)< oo . Consequently, there is a cf-partition (X :p*N) of 
S such that H(i*X :p*N)=c < oo . Since<Q',f> satisfies PR(t,m,b,f), there 

exist, for any p«N and any n>m, sets Y ., i=l,...,k(p)4 n f(J"), such that, 

with K = -Cl,...,k(pH,we have Q'fiX = U(Y p i:itK ) and diam Y .*<r/n. Cle­

arly, we can assume that Y .cdom ^ (since Y . can be replaced by the sets 
Y p i A Q ' ) . For any p*N, put Zpl=Ypl, Z p.=Y p ivU(Y p j:j< i) for i=2,... ,k(p). 

Clearly, (Z ̂ p e ^ i c K ) is a (<f/n)-partition of S. By 1.22.2 and 1.22.1, 

we have H( 5J Zp.:p€ N,ieKp)4c+2CpXp.log k(p):p«N), hence H(vZ .:pcN,ic 

» K )Ac+wS.(t log n+1). Consequently, E((oT/n) # S ) 4 c+wS.(t log n+1) and 

therefore Tim (E((cf/n)*S)/wS.|log(ef/n)|)4t. It is easy to see that this 
n-*oo 

inequality implies lim (E(«# # S)/wS. |log fc|)6t, hence ud(S)4t. Since SAP 
*-*0 

has been arbitrary, this proves, by 2.29, that Rd(T)=t for all non-null TAP. 

3.22.Facts. A) If a semimetric space (respectively, a W-space) is par­

tition-regular of order t, then each of its subspaces (respectively, each of 

its non-null subspaces) is partition-regular of order t. - B) If, for i=l,2, 

S. is a semimetric space partition-regular of order t, then S,M S2 is parti­

tion-regular of order t,+t2. - C) If, for i=l,2, ?. is a W-space partition-re­
gular of order t.̂  and Rd(T)=t,+t2 for each non-null TAP,*P 2, then P,>c P2 is 

partition-regular of order t,+t2. 

3.23. Fact. The space Rn, n=l,2,..., is partition-regular of order n. 
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3.24. Proposition. Let S be an m-dimensional C -submanifold of Rn 

equipped with the ^-metric. Then every compact Tc S is partition-regular 

of order m. 

The proof is straightforward and can be omitted. Observe that S itself 

need not be partition-regular (however, cf. 4.22). 

3.25. Lemma. Let P be a partition-regular W-space of order t. Then the­

re is a function f :R+—* R+ such that f(^)—* 1 for / « ^ 0 , a positive real 

b and an mcN such that if S*P, 0< <f< b, n« N, n>m, then y(c/Vn,S)«* 

-* Y(*\S)+wS.log f(<f). 

Proof. Let P= <Q,f ,**> satisfy PR(t,m,b,f). Let S= <Q,§> ,*> & P and 

let 0<cT<b, n>m. Let ̂ > 0 . By 2 A 5 , there is a cf-partition (Xk:k«N) of 

S such that H(i»Xk:keN)<E(c/'3icS)+ & • Since diam Xk AcT, there are \^ e 

«dom p , j=l,...,p(k), p(k)^ntf(cf)» such that diam Y^acf/n, ̂ ( X ^ N 

\U(Yk-:j=l,...,p(k)))=0. Clearly (Ykj:kcN,j=l,...,p(k)) is a (cT/n)-parti-

tion of S. By 1.22.2 and 1.22.1, H(^ Yk^:k*N,j=l,... , p ( k ) ) . 4 H ( v X k : k « N ) + 
+log(ntf(cr)).Z(7Xk:keN)<E(cT.*S)+^+wS.t log n+wS.log f(cT). Hence 
E((cT/n)*S);£E(cr*S)+wS.t log n+wS.log f(cf), and therefore tf(cT/n,S) * 

*y(</\S)+wS.log f(cT). 

3.26. Theorem. If a W-space P is partition-regular, then the residual 

entropy of P exists. 

Proof. Put t=Rd(P)=RD(P). Let P satisfy PR(t,b,m,f). Put s=lim ^ftV.P). 
Clearly, we can assume s>- oo . Let -co < u<s and choose «, > 0 such that 
u + 2 & < s . Choose c>0 such that 2c<min(b,l), wP.|log f(cf)|< o for 
cf c (0,c). - We are going to show that y(cT,P)2u whenever 0<cf<c. Choose 
t?«(0,cf) such that 1^-cfU X implies |logij -log «f|< * .(t.wP)-"1. Sin­
ce Tim ip(z,P)>u+wP.(t+l)t, , there is a positive | such that | <, tf , 

z-*»0 
d*+ § < c, %f (| ,P)> u+2 & . Choose p* N such that (p-1) 14k cf > p § > d*. 
Clearly, pf <c. By 3.25, we have if(pf ,P)ry(f ,P)-wP.log f ( p p . Clearly, 
y(cr,P)>E((pf )*P)-wP.t|logcT|+L(wP)= y(pf ,P)+wP.t(|log pf | -

- |logcf|) £ Y ( P - | ,P)- JV . Hence, Y ( C / * , P ) 2 y(<r,P)-2 * > u whenever 
cf«(Q,c). Since u<s has been arbitrary, this proves that lim y(cf,P)=s. 

Remark. The proof is similar to a part of the proof of Theorem 1 in £81. 

3.27. The concept of residual entropy appears implicitly in £83, where 

the behavior of * i—• Ht(P)=E(%*P) is examined for the case P=<R
n,f><,ft>i 

f-tRn=l, p*c(x,y)=or(x-y), * being a norm on Rn. Ifi£83, two theorems are 
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proved, which can be stated, in a modified form and using the terminology of 

the present article, as follows: (1) If QcR n is a unit cube, £4.=Q.A , then 

Hf(P)~n|log «. | converges, for S -** 0 , to -log AtyneCtf), where S r = i x e 

6 Rn: *(x) 61/2|, 9©(r) depends on X , O * ^ * ) * ! , andte(**)=0 if x is 

the -C^-norm. - (2) If ft»t>.& , p is continuous and satisfies certain 

conditions (which we do not restate), then Hg(P)-n|log e | converges to 

- J p log p da - log A S^+Hix)- - In the terminology of the present artic­

le, the theorems assert that, under the assumptions mentioned above, rE(P) 

exists, and provide a formula for its value. 

Observe that, apart from the fact that we explicitly introduce the resi­

dual entropy rE, the difference of approach in the present article and in that 

by Posner and Rodemich lies, among other things, in the following fact. In 

£83, the class of metric spaces under consideration contains Rn, n=l,2,..., 

equipped with any metric generated by a norm (and, in fact, all of their sub-

spaces); certain assumptions, not quite weak, are made concerning the measure. 

In the present article, the class of metric spaces for which a reasonable the­

ory of the entropy rE is available, consists of partition-regular ones, whe­

reas the assumptions on the measure are fairly weak. 

3.28. Fact. Let P=<Q,^,<u,>e W) De partition-regular. Then rE(P)=oo 

iff E(«f* P)=oo for some cf> 0. 

Proof. Let P satisfy PR(t,b,m,f). Choose a positive c such that 

|log f(cf)|<l if 0-fitcr<c. Let 0<<T< min(t,c). Then, by 3.25, for any n«N, 

n>m, we have y(cT/n,P)$ if(cT ,P)+wP, hence rE(P) 4k if(cT,P)+wP. Consequent­

ly, if ¥(cT,P)<a> for all cf> 0, then rE(P)<co . - Clearly, if E(cT*P)= 

= co for some cT> 0, then t|r(«,,P)=<» for all positive fe&cT. 

3.29. Fact. If x ^ O , £ xR < oo , H(xR:neN)< oo , then, for any % > 

>0, there exists a positive <T such that S(Ly :n«N) < * whenever 0 * y n ^ 

£x n for n€N and sup(y :n€N) < J*. 

3.30. Fact. Let P* « 0 , let <f > 0 and let E(cf* P)< co . Then, for 

any t* > 0, there is an i% > 0 such that E(cT* S)< c- whenever wS < 1^* 

This follows easily from 2.15 and 3.29. 

3.31. Fact. Let P=<Q,^> , $*>€ HQ be partition-regular. Then, for any 

•» > 0, there is a # > 0 such that, for any positive tf < & and any S&P, 

rE(S)6if(<r,S)+*. 

This immediately follows from 3.25. 

3.32. Proposition. Let P=<Q,f> ,^*> be a partition-regular W-space. If 

rE(P)<oO , then (1) rE(S) < <x> for all S4P, (2) for any t * > 0 , there is 
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an i£ > 0 such that rE(S) < & whenever S6P, wS < i^. 

Proof. The first assertion immediately follows from 3.26 and 3.28. - Let 

6> > 0. Choose a i> > 0 satisfying the condition stated in 3.31. Choose a 

positive cf < # . By 3.30, there is an -̂  > 0 such that E(<f* S)< * when­

ever wS < ^ • Then, for any S&P satisfying wS < i£ , we have rE(S)6y<«r,S)+ 

+ * , i|r(<r,SHE(<r* S)+L(wS), E(<T#S)<€. , hence rE(S) 62e+L( ifc). This 

proves the proposition. 

3.33. Lemma. Let P= <Q,t© , fi,>e W0 be partition-regular. If rE(P)<a< 
< oo , then there is a positive & such that rE(S) < a whenever S.6. P and 

w(P-S)< *. 

Proof. Let P satisfy PR(t,b,m,f). Choose & > 0 such that rE(P)< a-4<£*. 

Choose cT > 0 such that <f < b,y(<T,P)< a-4t* and wP.log f(cT)< n* . Choo­

se e > 0 such that £ t|log / | < <£• , |L(wS)-L(wP)| < & if w(P-S) < * . 

- Let S£P, w(P-S)< & . Clearly, E(<T* $)&E(<T# P), and hence y(<T,S) £ 

£E(<r*P)-wS.t|log <T |+L(wS)= Y(<T,P)+w(P-S).t|log <T|+L(wS)-L(wP) £ 

£ y(cf,P)+2<£ * By 3.25, we have, for any n>m, ijKo'Vn.S) 4 y<d*,S)+wS. 

.log f(<T), so that i|r(«T/n,S) 6i|f(<r,P)+3^ < a-o*. Hence rE(S)* 

lim n»<<r/n,S)^a-i^< a. 
n-*«» 

3.34. Lemma. Let P= <Q,^,£*> be a partition-regular almost Borel met­

ric W-space. Let rE(P) < oo . If S4P, S n*S, n*N, and w(S-SR) — + 0, then 

rE(Sn)-i»rE(S). 

Proof. By 3.32, rE(S)< oo . If rE(S)= - oo , then the assertion imme­

diately follows from 3.33. Let rE(P)=aeR. Let - £ > 0 . By 3.32 and 3.33, the­

re is an fc>0 such that (1) if T&S, w(S-T) < €* , then rE(T)<a+i*> , (2) if 

U6S, wU < e , then rE(U) < & . Hence, for n sufficiently large, rE(S ) < 

< a + ^ , rE(S-Sn) < i> . Since, by 3.9, rE(Sn)+rE(S-Sn)=rE(S)=a, we have 

rE(S )>a-i9» . Since 1*>0 has been arbitrary, the lemma is proved. 

3.35. Theorem. Let P=<Q,p tfju}be a partition-regular almost Borel me­

tric space. If rE(P) < oo , then the function X*~>rE(x.P), defined on dom J5E, 

is 6f-additive and bounded from above. 

Proof. By 3.9 and 3.34 , the function Y #-* rE(X.P) is «*-additive. By 

3,32, 3.33 and 3.9, it is bounded from above. 

3.36. Definition. A metric €?W-space P will be called totally bounded 

if, for any e > 0 , there is a finite e-covering of P. 
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3.37. Proposition. If a metric W-space is totally bounded, then 

E(/j|tP)<o0 for all & T 0. If, in addition, P is partition-regular, then 

rE(P)<oo. 

Proof. The first assertion is obvious. The second assertion follows 

from 3.26 and 3.28. 

3.38. Proposition. Let P=<R n,f ,A> and let XcRn, Xcdom A , A X < 

< oo . Let A consist of all sets of the form - fxcRn :z . * x . < z.+l for i=l,... 

...,n} where (Zp...,zn)c Z
n, Z is the set of all integers. Then rE(X.P)=0 if 

H(A(AnX):A4A)<oo , rE(X.P)=oO if H(A(Ar*X):AeA)= oo. 

Proof. I. Let X be a cube la,blm, Put S=X.P, c=b-a. Let m=l,2,... and 

let cT=c/m. If YcRn, Ycdom A , diam Y-fccT , then evidently A Y * * 0 - Hen­

ce, by 1.22.3, for any o^-partition (Yk:kcK) of S, we have H(AYk:kcK) £ 

> -L(cn)-cn log ©Tn. On the other hand, clearly, there is a <f-partition 

(Uk:kcK) of S such that H(AU k:kcK)= -c
n log <fn -L(cn). This proves that 

E(o"#S)= -cn log ofn-:L(cn) and therefore y(<f,S)=0 for o"=c/m, m=l,2,... . 

By 3.26, this implies rE(S)=0. - II. Let X be bounded. Let Q be a cube cont­

aining X. Let 3C be the collection of all YcQ such that Ycdom A , rE(Y.P)= 

=0. By 3.35, the function Y i-*rE(Y.P) is C-additive; hence 3rC is a 6*-al-

gebra of subsets of Q. By I, rE(Y.P)=0 whenever Y is a cube contained in Q. 

Consequently, ft contains all A-measurable subsets of Q and therefore 

rE(X.P)=0. - III. Let XcR n be an arbitrary A-measurable set satisfying 

H(A(Ar*X):A c A ) < oo . For m=l,2,..., let A denote the collection of all 

cubes of the form |xcRn:2mxcAi, where A c A . Clearly, H ( A ( A A X ) : A « ^ ) < 

< oo . Hence, E(CTJ|I(X.P))<OD whenever 0^=2^, mcN, and therefore 

E(<f*(X.P))<oo for all cf > 0. By 3.26 and 3.28, this implies rE(X.P)<oo. 

Consequently, by 3.35, the function Yv-*rE(Y.P), where Ycdom A , YcX, is 

r-additive. Combined with II, this implies rE(X.P)=0. - IV. Let XcRn, X « 

C dom A , H ( 3 U A A X ) : A C A ) = O O . Put S=X.P, Suppose that rE(S) < oo . Then, 

by 3.28, E(fmS)<,oo for all rfV 0. Let cf=l/3. By 2.15, there is a <f-par­

tition (Xk:kcK) of S such that H(A X^kc K) < oo . Clearly, for any kcK, 

there are at most 2n sets A c A such that XknA»^0. By 1.22.2 and 1.22.1, 

this implies that H(A(XknA):kcK,A c A)*H(AX k:kc K)+aAX< oo . Since 

H(AA:Ac A)&H(A(Xk/\A):kc K , A c A ) , we have got a contradiction. 

4.1. Fact. Let P= {Qfm , (+> be a € W-space. Then there exists at most 

one be!" such that the following condition holds: ( # ) for any neighborhood 

G of b in IT, there exists a pure partition 9 of P consisting of W-spaces and 
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such that if (S. :ktK) is a pure partition refining (P , then all rE(Sk) 

exist, the sum £(rE(Sk):k€ K) exists and is in G. 

Proof. Suppose that (;* ) is satisfied for b=b, and b=b2 where b,-+» b2. 

Let G. be a neighborhood of b., i=l,2, and let G,nG2=0. Then there are pure 

partitions <P, and iP2 consisting of W-spaces and such that .2(rE(Sk):k& 

&K)eG. whenever (S.:kcK) is a pure partition refining &.. Let ^.= 

=(X.k.P:k6Ki), i=l,2. Put Y k j=X l knX 2 j for k« K p j * ^ . Then S(rE(Ykj.P): 

• k*Kp jcK 2)6G 1 5 .S(rE(Yk..P):k€ ̂ jjc K2)€ G2, which is a contradiction. 

4.2. Definition. Let P= <Q,^> ,^> be a efW-space. If there exists a b 6 

& R such that the condition (*:) from 4.1 holds, then this b will be denoted 

by RE(P) and called the regularized residual entropy of P. 

4.3. Proposition. Let P be a metric W-space. Assume that either (1) 

R0(P)=0, or (2) P is almost Borel partition-regular and rE(P) < ao . Then 

RE(S)=rE(S) for all SAP and the function X*-> RE(X.P) is 0-additive. 

Proof. In the case (1), the assertion follows from 3.18. In the case 

(2), rE(S) exists for all S 4 P by 3.26, and Xt--»RE(X.P) is «r-additive by 

3.35. Let SAP. It is easy to see that S is almost Borel partition-regular. 

By 3.35, rE(S)«<x> . Hence X»-.»rE(X.S) is ff-additive and therefore RE(S)= 

=rE(S). 

4.4. Proposition. If P=<R n,f ,A> and Xedom A , then RE(X.P)=0. 

Proof. Put S=X.P. Consider the pure partition )f =(Cn,n+U.S:n=0,- 1, 

...) of S. By 3.38, we get 2£(rE(Uk):k€ K)=0 for any pure partition (Uk:k * 

6K) refining Sf. 

4.5. Example. Choose a >0 such that an<l> 2i (a :n« N) < c» , 

£a n|log anl*co : Put X= - £x *R + : n .#x<n+a n for some n«Nj, P=X.<R
n,p% ^ > . 

By 3.38, rE(P)=co whereas, by 4.4, RE(P)=0. 

4.6. Remark. By 4.3, there is a lot of spaces for which RE and rE coin­

cide. On the other hand, 4.5 provides a very simple example of a W-space for 

which RE and rE are distinct and the behavior of RE is more reasonable than 

that of rE. These facts, and even more the connection (see Section 6) with 

the differential entropy (see 6.1) provide the motivation for introducing the 

regularized residual entropy. 

4.7. Proposition. Let P=<Q,tJ>,ft> be a 6T W-space. If RE(P) exists and 

is finite, then all RE(S), SAP pure, exist and are finite. 

Proof. If T c &WQ , then $ (T) will denote the collection of all pure 
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partitions (L:keK) of T (where, to avoid proper classes, K is taken from a 

fixed collection of indexing sets). If $ e <$ (T), then $ (T, T ) will 

denote the collection of all $ e $ (T) refining J . - Let S=X.P£P. Let 

(J, denote the collection of all GcFsuch that, for some &€ $ (S), 

S(rE(Uk:keK) exists and is in G whenever (U k:k«K)« $(S,«f). Evidently, 

all G ( Q . are non-void. It is easy to see that if G1}G2 e £. , then G,a G?e 

e (J. .We are going to show that <£ contains sets of arbitrarily small di­

ameter. This will imply that fKG:IT e CQ.) is a one-point set. 

Put a=RE(P). Let fr > 0 and let A be a neighborhood of a, diam A < 6 • 

There is a 9 e $(P) such that if (Uk:keK)e $(P,3>), then 2(rE(Uk):kc K)a 

eA. Put tf =(X.Uk:keK). If, for i=l,2, (V^
i):keKj[)e *(S,<f), then V ^ , 

keK., and (Q\X).Uk, ke K, form, for i=l,2, a pure partition of P refining 

(P . Hence, Z (rE(v£A) ):k e ̂ )+ S rE((Q \ X).Uk:ks K)« A for i=l,2, and 

therefore | 2(rE(V(^
1)):keK1)- _£(rE(v£

2)):kcK2)| < & . We have shown that 

S(rE(Vk):keK) exists for any (Vk:ke K)e §» (S,y) and that the set of these 

Z(rE(Vk):keK) is of diameter 4 & . Thus, we have proved that 0(!T:G * £ ) 

contains exactly one point, say b. It is easy to prove that RE(S)=b. 

4.8. Proposition. Let P=<Q,«> >{<4> be a CW-space. Let (X .P:ngN) be a 

pure partition of P. Assume that, for any neN, RE(XR.P) exists. Then RE(P)= 

= S(RE(Xn.P):neN), unless neither RE(P) ncr 2(RE(Xn-P):ne N) exists. 

Proof. Put a =RE(X .P). - Assume that 2Ca R:neN) exists and put a=2fan. 

Let G be a neighborhood of a in FL Clearly, there are neighborhoods G of a , 

neN, such that if * neG n, then 2 xn« G. For any neN, let (Ynk-keN) be a 

pure partition of X .P such that if a pure partition (Z.:jeN) refines (YRk: 

:k§N), then -E(rE(Z.): je N) exists and is in G. Then U =(YRk:ne N,ke N) is 

a pure partition of P, and it is easy to prove that, for any pure partition 

(Tk:keK) refining U , we have 2.(rE(Tk):k*K)eG. This proves that a=RE(P). 

- Assume that RE(P) exists and put a=RE(P). We are going to show that 

2,(a :neN) exists and is equal to a. Let G be a neighborhood of a; for any 

neN, let G be a neighborhood of a . Then there are pure partitions 33 = 

=(Bnk.P:keN) of Xn.P, neN, and Jln=(Ak.P:ke N) of P such that Z(rE(U n): 

:n«N)tG n for any (Un:neN) refining 33n, neN, and S(rE(Vn):neN)e G for 

any (V :neN) refining Jl . Clearly, there is a pure partition (Zk.P:keN) of 

P refining A and such that, for any neN, (Zk.P:keN,ZkcX ) is a pure par­

tition of Xn.P refining & n . Put yn= Z(rE(Zk.P):k«N,ZkcXn), y= 2(rE(Zk.P> 

: k # N ) . Then y= X y n , yeG, y niG n > Since the neighborhood GR (of an) and G 

(of a) have been arbitrary, this proves S a - a . 
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4.9. Proposition. Let P= <Q,^» ,^> be a tfW-space. If RE(S) exists for 

each pure S4P (in particular, if RE(P) exists and is finite), then the func­

tion X »->RE(X.P), defined on dom^C , is 6f-additive and absolutely continu­

ous with respect to <u-. 

This follows at once from 4.8 and 4.7. 

4.10. Definition. A efW-space P=<Q,^ tp> will be called (1) RE-regul-

ar if there are pure subspaces P such that X ( P :neN)=P and, for each niN, 

RE(S) exists for all pure S-4Pn, (2) strongly RE-regular if all Si P are RE-

regular and the following continuity condition is satisfied: 

(#) if S£P, S n A S n + 1 6 S for all neN and w(S-Sn)-> 0, then there are X|< c 

e dom <Su , keN, such that UXy-Q, X.nX.=0 for i+ j, and, for any keN, 

RE(Xk.S) and all RE(Xk.SR) exist, RE(Xk.Sn)-^ RE(Xk-S). 

4.H. Fact. Let P c tf VQ . If P is RE-regular, then so is each of its 

pure subspaces. If P is strongly RE-regular, then so is each of its subspaces. 

4.12. Fact. Let P « «r VQ and let (PR:neN) be a pure partition of P. If 

each P is RE-regular (strongly RE-regular), then so is P. 

Proof. The assertion concerning RE-regularity is evident. - Let P be 

strongly RE-regular. Then, clearly, each subspace of P is RE-regular. Let P = 

=Yn.P; we can assume that Y. n Y.=0 for i 4. 3. Let S&P, S n 4 S n + 1 . 6 S for all 

meN, w(S-S )—* 0. Then, for each n, Y - S * Y ^ . S . * Y .S, w(Y .S-Y.S) —* 
' m ' ' n m n m+1 n ' n n m 

—»- 0 for m — • GO , and therefore there are X .edom (2 , keN, such that 

U(Xnk:k*N)=Q, XnirtXnj=0 for i * j, and RECOC^n Yn).Sm)~* RE((Xnf<rt Yn),S) 

for m — • CD . Put Z n k=X n kAY n. Clearly, U(Zn|<:(n,k)e N*N)=Q, Z^nZy-fl 

for (n,k) 4-(i,j). This proves that the continuity condition from 4.10 is sa­

tisfied. 

4.11. Proposition. If P=<Q,$ , (tt> is a strongly RE-regular 6fW-space 

and f:Q —*• R+ is (Z -measurable, then f.P is strongly RE-regular. 

Proof. By 2.3, f.P is a €TW-space. For ncN put Xn=-|x*Q:n^f(x)< n+1}. 

Put S=f.P. Clearly, Xn.S £ n.(Xm.P). By 4.11, Xm.P, hence alsd n.(Xn.P) is 

strongly RE-regular. Therefore, by 4.11, X .S is strongly RE-regular. Since 

S= -£(Yn:neN), where YQ=X0, V r V l ^ U ( X k : k * n ) > S is stron9ly RE-regular 

by 4.12. 

4.14. Proposition. Let P=<Q,g> ,(*> be a CTW-space. If there are strong­

ly RE-regular subspaces P R £ P such that !E(P :n«N)=P, then P is strongly 

RE-regular. 

Proof. Let Pn
s*n.P. Put Xn= {xe Q:fn(x)> Of. Put gn(x)=l/fn(x) if x*X n, 
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gn(x)=0 if x e Q \ X n . Then Xn.P=gn.Pn, hence, by 4.13, each Xp.P is strongly 

RE-regular. Put Y0=XQ, Y - ^ V l * U(X k:k*rO. Then P= X(Yn.P:n € N), YR.P= 

=Y .P), hence Y .P are strongly RE-regular. By 4.12, this implies that P is 

strongly RE-regular. 

4.15. Lemma. Let P=<Q>9 ,̂ t> be a metric W-space. If RD(P) < oo , then 

there is a pure partition (P :neN) of P such that all P are totally bounded. 

Proof. Since RD(P) «< eo , there is a pure partition (S :ncN) of P such 

that the Rehyi dimensions Rd(S ) exist and are finite. Let n€N. Since Rd(S_)« 
-k 

<. oo , there exists, for any k=l,2,..., a (2 )-partition (X(n,k,j):jeN) of 

S such that HQ£X(n,k,j):j6 N) -< oo . For any n and k choose m(n,k) such that 

£(Y(n,k))> f*vQ-2~k, where Y(n,k)=U(X(n,k,j):j^m(n,k)). For teN put 

Z(n,t)=H(Y((n,k):k>t). It is easy to see that all Y(n,k).P are totally boun­

ded and fu( U(Y(n,k):n e N,k€ N))= (A Q. From this, the assertion follows at 

once. 

4.16. Proposition. Let P= <Q,rf> >(<4.> be a metric W-space. If P is almost 

Borel partition-regular or RD(P)=0, then P is strongly RE-regular. 

Proof. By 4.14 and 4.15, it is sufficient to prove the proposition under 

the assumption that P is totally bounded. - Under this assumption, the conti­

nuity condition from 4.10 is satisfied; this follows from 3.34 and 4.3 if P 

is partition-regular, and is an easy consequence of 3.28 if RD(P)=0. Since, 

by 4.3, RE(S) exists for all S.&P, we have shown that P is strongly RE-regu­

lar. 

4.17. Remarks. A) I do not know whether every RE-regular €fW-space is 

strongly RE-regular. - B) If a 6W-space is given, it can be quite difficult 

to decise whether it is strongly RE-regular. Therefore we introduce (see 4.18) 

a fairly wide class of tfW-spaces contained in that of strongly RE-regular 

ones and defined in terms not involving the behavior of RE. 

4.18. Definition. A metric €?W-space P will be called piecewise parti­

tion-regular if it has a partition (P :n€N) such that all P are partition-

regular W-spaces. 

4.19. Theoren. Every piecewise partition-regular metric £ W-space is 

strongly RE-regular. 

This is an immediate consequence of 4.16 and 4.14. 

4.20. Fact. Every subspace of a pieeewise partition-regular €» W-space 

is piecewise partition-regular. If P is a tf W-space, P= .£(Pn:n€N) and all 

P are piecewise partition-regular, then so is P. 

- 340 -



4.21. Fact. If P=<Q,^> ,(4.> is a piecewise partition-regular 6f W-space 

and f:Q —*• R+ is (E-measurable, then f.P is piecewise partition-regular. 

Proof. Put X n=4x€Q:n6f(x)<n+l}. Clearly, Xn.(f.P)i (n+l)P, 

^(Xn.(f.P))=f.P. By 4.20, this proves the assertion. 

4.22. Proposition. Let<Q,<p> be an m-dimensional C -submanifold of so­

me R (endowed with the ZQO -metric). If P=<Q,«> ,/<̂ > is a 6f W-space and 

RD(S)=m for all non-null pure S^P, then P is piecewise partition-regular. 

This is an easy consequence of 3.24 and 4.20. 

4.23. We conclude this section with some simple facts which will be used 

later and an example of a partition-regular space P for which X t—*rE(X.P) is 

not additive. 

4.24. Fact. Let <Q,{*> be a tf-bounded measure space and let T be thick 

in<Q,(i*> . If i> , neN, are measures on T and !£•>> = {*?!, then there exist 

measures (* on Q such that 2!(t*n= {* , T> = (* P T for all n€N. 

Proof. If Xcdom ^ , put ft X= *P (XnT). It is easy to see that 

X ^ n = ^ > ^n r T = V 

4.25. Proposition. Let P= <Q,<p ,̂ t> be a-W-space and let T be thick in 

<Q,(u,> . Let 9 be one of the functionals Rd, RD, rE. Then y ( P ) = y ( P M ) un­

less neither <j> (P) nor Gp(PrT) exists. 

Proof. I. If <f =Rd, then the assertion follows from 2.18. - II. Let <f= 

=RD and assume that <p(?) exists. For any partition (P :ncN) of P, 

(P nrT:neN) is a partition of PfT; by I, Rd(Pnr T)=Rd(PR) whereas Rd(P) ex­

ists. This proves RD(P r T)=RD(P). - III. Let 9 =RD and assume that g>(PrT) 

exists. If (Sn:ntN)=«T,5> ,pR>:n 6N) is a partition of PfT, then, by 4.24, 

there is a partition (P :neN) of P such that S -P f T, hence, by I, Rd(P )= 

=Rd(Sn) provided Rd(Sn) exists. This proves that RD(P)=RD(P M ) . - IV. The 

assertion concerning rE is an immediate consequence of II, III and 2.18. 

4.26. Proposition. Let P= <Q,^> ,^t> be a tf W-space and let T be thick 

in<Q,<u,> . Then (1) RE(P)=RE(P r T) unless neither RE(P) nor R E ( P K ) exists, 

(2) P is RE-regular (respectively, strongly RE-regular) if and only if so is 

PM. 

Proof. The assertion (1) follows from 4.25 and 4.24. The assertion (2) 

is an easy consequence of (1) and 4.24. 

4.27. Proposition. Let P=<Q,rt>,ft> and S=<Q,<y,p> be weakly Borel me­

tric W-space. Assume that there is a measure ij such that both jE and >X are 

faithful extensions of 71 . Let <f be one of the functionals Rd, RD, rE. 
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Then (1) for any / > 0 , H^(P)=H^(S), (2) y(P)=^(S) unless neither y(P) nor 

cy(S) exists. 

Proof. I. Clearly, it is sufficient to consider the case jZ= <cc , y*= 
= 9 . Furthermore, if we put 1̂ 'X= (*X whenever X e d o m ^ n dom i> , then 

\* is a measure, V 3 ?l and D0*n (** and v are faithful extensions of r^* 
Hence we can assume that dom ij, =(dom ft)<t(dom p ). - II. If (X m e N ) is a 

<f-partition of P, then there are Y fidomij such that (*(Xn A Y )=0, hence 

(W.Xn= *iY . Put Vfl=YnnXn. Clearly, diam V £ </* , Vne dom i£ . It is easy 

to see that ^V n= (U.Xn and ij(Vir\Vj=0 whenever i 4* j. Put Z n =V n \ cJ (V k : 
.k + n). Then (Z :n*N) is a cT-partition of S, &Z =(O.Xn. This proves that 
Hj(P)2rHj(S). The proof of Hr(S)iHf(P) is analogous. - III. The proof of (2) 

is analogous to that of 4.25 and can be omitted. 

4.28. Proposition. Let P=<Q,® ,<*,> and S= <Q,g> ,-*> be weakly Borel 

metric W-spaces. Assume* that there is a measure \ such that both (L and t> 
are faithful extensions of \ . Then (1) RE(P)=RE(S) unless neither RE(P) nor 

RE(S) exists, (2) P is RE-regular (respectively, strongly RE-regular) if and 

only if so is S. 

Proof. The first assertion follows easily from 4.27 and the fact (which 

is easy to prove) that every pure partition (T :ni N) of P or of S is of the 

form (X .P:n*N) or, respectively, (X .S:n*N) where X 6 dcm i£ . The asser­

tion (2) is an easy consequence of (1). 

4.29. Fact. Let P= <Q,^ ,p*> 6 71Q and let b«R +. If rE(P) exists, then 

rE(b.P)=b.rE(P)+wP.L(b). If RE(P) exists, then RE(b.P)=b.RE(P)+wP.L(b). 

Proof. For any d" > 0, we have y(<f ,b.P)=E(<T* (b.P))-RW(b.P)|log d* | + 

+L(b.wP)=b.E(<T# P)-b.RW(P)|log <f |+b.L(wP)+wP.L(b)=bY(<f ,P)+wP.L(b). This 

proves the first assertion. The second assertion is an easy consequence of the 

first. 

4.30. Example. Let Q= 10,1.1, P=<Q,<p ,A> . Let ScQ and let both S and 

T=Q\S be thick i n < Q , . A > . Define (64 as follows: if XcQ, YASfcdom(.Ar S) 

and X A T * d o m ( & M ) , put (*>X<( TitS)(XAS)+( M T)(XAT))/2. Clearly, <u, is 

a measure, pi A rQ, P'=<Q,f ,fi> is a partition-regular weakly Borel met­

ric W-space. Obviously, H^P^-trH^P) for all cf > 0; consequently, Y(«/,P').£ 
4y(<f ,P) for all cT> 0. Since, by 3.26, rE(P') exists, and, by 3.38, rE(P)= 

=0, we get rE(P')-6 0. On the other hand, since both S and T are thick in 

<Q,A> , we have, by 4.25 and 3.38, rE(PrS)=0, rE(Pf T)=0. Since ^ f S= 

=UrS)/2, f*rT=(AM)/2, we get, by 4.29, rE(P>S)=w(P r S).L(l/2)=.(l/2)= 

=1/2, and similarly rE(P> T)=l/2. Since, by 4.25, rE(S.P')=rE(P'f S), 

rE(T.P')=rE(P'r T), we get rE(S.P')+rE(T.P')=l whereas rE(P')*0. 
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5.1. Fact. Let P=<Q»f >(k>be a$W-space. Then there is at most one 

function (mod ft) F=If1*, such that Oft) f i s Jl-measurable and the functions 

X*-*RE(X.P) and Xt-*/x F dj* coincide. 

Proof. Suppose that both F=ifl^and G^gl!^ satisfy (*) and F4»G. Cle­

arly, either (l)£ix 6Q:f(x)>-g(x)i^0 or (2) jMx«Q:f(x)< g(x)|^0. It is 

sufficient to consider the case (1). Then there are reals r and s and an X 6 

4domji£such that 0*^X<c© and f(x)> r>s>g(x) whenever xeX. Clearly, 

both / x fdp.and L g d ^ exist, hence, /x fdfi=RE(X.P)=/x gd^t.This is a 

contradiction since Jx fd£t£r.p,X, / x gd p,6s.(*X. 

5.2. Definition. If P= <Q,<j ,(U-> is a $W-space, then Fe ^C^lsatis­

fying the condition (*) from 5.1 will be called the residual entropy densi­

ty or the RE-density of P and will be denoted by V(P) (or V r e s(P) if there 

is a danger of confusion with the dimensional densities introduced in C 61, 4.1 

and 4.9). If no F satisfying ( * ) exists, we will say that V(P) does not 

exist. 

5.3. Proposition. A HfW-space P is RE-regular if and only if V(P) ex­

ists. 

Proof. I. Let P= <Q,«> ,(*> be RE-regular. Then there are pure sub-spaces 

Pn=An.P, n€N, such that XP R=P and, for each neN, RE(S) exists for all pu­

re S£P . We can assume that CJAn=Q, A .nA .=0 for i + J- By 4.9, for any n « 

€N, the function Xi—*RE(x.P ), defined on dom j£ , is 6^-additive and abso­

lutely continuous with respect to (** . Hence, by 1.14, there are ^-measura­

ble functions fn:Q —*»R such that RE(X.Pn)= /x fRd ft- for all Xedom fi. . Sin­

ce X.P =(XaA ).P, we can assume that, for each n, f (x)=0 if x * Q \ A . For 

any xeQ, put f(x)= X(fn(x):n*N). Clearly, for any Xedom fL , / x f d<a* = 

= X(ftE(X.P ):n*N) provided either the sum or the integral exists. Since, by 

4.8, RE(X.P) exists iff the sum *2E(RE(X.P ):nc N) exists, we have shown that 

V(P)= C f l ^ . - II. Assume that tf(P) exists; let W ) = CgJ^c • Put K=£k€ 

«TT:|k|*N u-£oo& If k€KAR, put Bk= ix eQ:k -Sg(x)< k+l$; if k= - go , put 

B. = 4xeQ:g(x)=k$. It is easy to see that, for each k€K, RE(S) exists for all 

pure S*Bk.P. 

5.4. We use the following conventions (cf. C6J, 4.2). - A) If p.e .Ai(Q), 

f «1^(Q) and g*^(Q) are ££-measurable, F= CfJ^ , G= Cg3^ » we put f.G= 

=F.G= Cfgly , where v=f.<u, . - B) Let <* 6 JM.(Q), f*(n)* Jll(Q)> n*N. Let 

<<* = X^t(n). Assume that, for each nftN, ^t(n)=Yn.^4 for some Y % dom (*> . 

If F n^ Ti^irOl, n*N, then 2 F n is defined as follows. Choose X(n)idomtEl 

n % N , such that U X ( n ) = Q, X(i) n X( j)=0 if iif j, and ,H(n) = 

=X(n).<a for all n. Choose fR such that FR= tfn3 ( n ); for 
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x#X(n), put f(x)=fn(x). Put SFn=: £ n . 

5.5. Fact. Let P = < Q , ^ , ^ > € r WQ be RE-regular. Then (1) for any 

Xedom fZ , V(X.P)=ix. V(P). (2) If (Pn:n€N) is a pure partition of P, then 

V{P)=-£(V(P n):n«N). 

5.6. Fact. Let P= <Q,p ,(u,>be an RE-regular ffW-space and let beH be 

positive. Then V(b.P)= V(P)-log b. 

Proof. Clearly, there are Xncdom (Cu , n«N, such that (JXn=Q and all 

RE(X .P) exist, hence RE(S) exists whenever S is a pure subspace of some X .P. 

Let Y«dom {U, , YcX for some n. By the definition of the RE-density, 

RE(b.Y.P)=/y V(b.P)d(bffc), RE(Y.P)=/y V(P)d <c<. . By 4.29, RE(b.Y.P)-

=b.RE(Y.P)+ f4Y.L(b). Hence / y V(b.P)d(bft)=b/y V(P)dtt«, = / y L(b)d^ and 

therefore /y V(b.P)d(tt = /y ( V(P)-log b)d tu- . Since YcX R and neN have 

been arbitrary, this proves the assertion. 

5.7. Fact. Let P= <Q,6> ,(u,> be an RE-regular tfW-space. Let f:Q—>R + 

be ft-measurable and let f(Q) be countable. Then V(f.P)=(sgn f). V(P) -

- (sgn f).log f, RE(f.P)=/(f. V(P)+L«» f)d (*. 

This follows easily from 5.5 and 5.6. 

5.8. Lemma. Let P=<Q,^ ,(*,> be a strongly RE-regular W-space. Let S= 

=f.P-*P, 0£f(x)*l for all xcQ. Assume that RE(S) exists and one of the fol­

lowing conditions is satisfied: (a) V(P) is bounded, (b) V(P)= co , (c) 

V(P)= - ao . Then 

(1) RE(S)= /(f. V(P) + L<»f)d (*>, 

(2) V(S)=(sgn f). V(P)-(sgn f).log f. 

Proof. Clearly, we can assume that f(x)>0 for all xtQ. It is easy to 

see that there are j?-measurable functions f , ntN, such that all f (Q) are 

countable, 0 4 fn .4 fn+1-4 f for all n*N, and /(f-f n)d^ —* 0 for n — * oo . 

Put S =f„.P. Since w(S-S ) — • 0, and P satisfies the continuity condition from n n n ' 

4.10, there is a partition (X(k):keN) of Q such that all X(k) are in dom <u. 

and, for any k, RE(X(k).Sn) —* RE(X(k).S) for n — * oo . By 5.7, we have, for 

any k* N, n€N, RE(X(k).SR)= / x ( k ) (f n.V(P)
+L# fn)d <w, . - Consider the 

case (a). Since V(P) is bounded, it is easy to see that, for any k, 

/x(k^ (fn.V(P)+L*fn)dtM. — * / x ( k ) (f. V ( P ) + L o f ) d ( . 4 forn — * a> , hen­

ce RE(X(k).S)= / x ( k ) (f. V(P)+L»f)d<*- . Since RE(S) exists, we have RE(S)= 

= E(RE(X(k).S):k*N)= / (f. V(P)+L • f )d <o, . - Consider the case (b). Then, 

for any kaN, we have, for large n, / w k \ ^f* ^(p)+L-° f ) d M- = °° » RE(X(k). 

.Sn)= OO . This implies RE(X(k).S)= oo . Since RE(S) exists, we get RE(S)=oo. 
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Clearly, /(f. V(P)+L°f)dfc =00 =RE(S). In the case (c), the proof is an­

alogous. - We have proved the formula (1). The formula (2) is an easy conse­

quence . 

5.9. Theorem. Let P= <Q,*> >p,> be a strongly RE-regular tfW-space. Let 

f :Q —•*R+ be ju>-measurable. Then 

(1) RE(f.P)= J(f. V(P)+L«f)dp, , unless neither RE(f.P) nor the inte­

gral exists, 

(2) V(f.P)=(sgn f). V(P)-(sgn f).log f. 

Proof. I. Consider the case of 0Af(x)-sl for all xeQ. Let V(P)= t 9 W 

Put K=ik*"R:|k|cN uiooii. If keK, |k|«N, put AR= <x *Q:k.4g(x)<. k+lj; if 

k= -- 00 , put A.= ixe Q:g(x)=kl. Choose a partition (B :n*N) of Q such that 

all BR.P are W-spaces. If u=(k,n)e N x N, put V(u)=Akn BR . By 5.8, for any 

ueNxN, V(V(u).P)=iv(u).(sgn f). V(P)-iv(y).(sgn f)log f. This implies* by 

5.5, the formula (2); the formula (1) is an immediate consequence. - II. Con­

sider the general case. For n*N, put X(n)= «CxeQ:n-.cf(x)<n+l|. By I and 5.5, 

we have V(X(n).f.P)=ix(n).(sgn f). V(P)-ix(n).(sgn f).log f. By 5.5, this 

implies V(f.P)=(sgn f). V(P)-(sgn f).log f. 

5.10. Corollary. Let (U, be a measure on Rn, n=l,2,..., absolutely con­

tinuous with respect to the Lebesgue measure A . If f=djH*/dA and, in ac­

cordance with 1.19, tf> is the Jt^ -metric on Rn, then 

RE<R n,£,<*>= - / f log f d*. 

unless neither RE<R ,a ,^t>nor the integral exists. 

In the classical setting, which stems from C.E. Shannon till, the diffe­

rential entropy is defined for probability measures (* on Rn possessing a 

density p and is equal to - / p log p d h . This concept can be easily exten­

ded to a considerably more general situation (see 6.1 below). We intend to 

show that the differential entropy and the regularized residual entropy are 

equivalent in a sense made precise in 6.9 and 6.10 below. Roughly speaking, 

under certain conditions, (1) if p and * are measures on Q, then there is a 

metric x on Q such that, for any measurable g:Q—•* R+, the differential ent­

ropy of the pair <g. £*,v> is equal to RE<Q,*r ,g. ft»>, (2) if <Q,£ ,f*>is a 

W-space, then, for any measurable g:Q — • R+, RE<Q, y ,g.$u> is equal to the 

differential entropy of <g.{*, »> where i> does not depend on g. 

6.1. Definition. If ^ and v are tf-bounded measures and p i s absolu-
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tely continuous with respect to >> , then the integral /LoDC,*t,-p]d3> , 

provided it exists, will be denoted by DE<fi, » > and will be called the dif­

ferential entropy of <cu with respect to » (or of the pair tpu ,»> ) . 

Remark. If ^ is a probability measure on Rn, possessing a density p 

with respect to X , then the differential entropy DE<<a- ,&> is equal to 

- fp log p dA , i.e. to the differential entropy in the usual sense. 

6.2. Definition. Let<Q,^c> be a measure space. The space <Q,(*> and the 

measure {*, will be called strongly separable if there exists a countably gene­
rated 6f-algebra A c dom (U, satisfying the following conditions: (1) Q\£xe 

4 Q : { x U A { is a £t-null set, (2) c-c is a faithful extension of ptA. 

6.3. We are going to show that a strongly separable ^-bounded measure 

space <Q,fv> can be equipped with a metric if such that V<Q,x ,{*> =0. To 
this end, we shall need some lemmas. 

6.4. Lemma. Let McR be bounded. Let i> be a finite measure on M such 

that 3$(M)cdom>> , *>M>0, -j>ixl=0 if xeM. Then there exist sets TcM, 

ScR and a bijective mapping f:T—• S such that (1) Tcdom i> , »(M\T)=0, 

(2) S= [0, M], S is thick in <5, A > , (3) Yc»(S) iff f^YcUKT), (4) if 

Y c fc(S), then v (f "XY)=( A r S)(Y). 

Proof. Let G be the largest open (in R) set such that »(GrtM)=0. Let 

(J. :kftK) be the partition of G into open intervals. Put T=M \U(T k:k6K). 

Clearly, v(M\T)=0. Put a=inf T. For xeT let f(x)= - p ( ( a , x ) r \ M ) . Put S= 
= -tf(x):x*T|. - Suppose f(x)=f(y) for some x,ycT, x-fry. Then >>((a,x) n 

r\ M)= >K(a,y)f\M), hence V((x,y)nM)=0 and therefore x,ycV\T, which is a 

contradiction. We have shown that f:T—• S is bijective. It is easy to prove 

that S= Co, ,.M]. - Now we are going to show that (*) if J=(u,v)c"S, then 

•»>(f (J))= A J. Clearly, it is sufficient to prove (*) for the case when 

u,v«S. Let u=f(b), v=f(c). Obviously, »(i~l3)= i>((b,c)nT)= i>((a,x)nT)-

- i> ((a,b)n T)=f(x)-f(b)=v-u= A J. - Suppose that S is not thick in "S. Then 
3ie(S) < »M, hence there is an open set Gc~f such that GaS, A G < i> M. By 

( # ) , we get y (f 6) < » M. Since f G=T, this is a contradiction, which 

proves that S is thick in <S", A > . - Clearly, f:T—• S is continuous and the­

refore Y* &(S) implies f Yift(T). On the other hand, if UcT is open, then 

f(U) is Borel in S; this proves that Y« tB(S) whenever f" Yc&(T). - To pro­

ve (4), it is sufficient to show that if Jcls is an open interval, then 

VifhM&t $)Of%S). By (*), we have » (t"l3)= A 3 . Since S is thick, 

we have, by 2.17, A •>(* t S)(3r>S). 

6.5. Lemma. Let <Q, {*> be a strongly separable bounded measure space. 
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Assume that (i.CxJ=0 for all x*Q. Then there are sets Q'cQ, McR and a bi­

jective mapping c/:Q'—» M such that, with * =( **fQ') •<y"1, we have (1) 

Q'€dom p. , <*(Q\Q')=0, (2) &(M)cdonr» , (3) M is bounded, (4) )» is a 

faithful extension of ^ f 2i(M). 

Proof. Let A c dom (* be a countably generated €f-algebra satisfying 

(1) and (2) from 6.2. Let X(n) be a sequence of sets generating X . Let 

ll€dom f* , <*U=Q, be such that ix\ e A whenever x€Q\U. Put Q'=Q\U. For 

n€N, put 9n
=iv(ny ~OT X € Q ' put g(x)=(g (x):n€N). It is easy to show that 

g is an injective mapping of Q' into the topological space 2**. Let A * de­

note the 6T-algebra consisting of all A A Q ' , where A € JL . Clearly, for any 

B c g ( Q ) , g B « A * iff B€.B(g(Q')). Let h:2**~•*R be a homeomorphism; put 

<^=h«g, M= 9(Q'). If B € ^ ( M ) , then h~XB € **(g(Q')), hence y ~lb m A * c 

c dom ft, and therefore B€ dom V . If Y€ dom *> , then <* Y€dom(f-»fQ'), 

hence there is a set V € A * such that (</ " Y) A V is $*-null. Clearly, 

Y A <f (V) is i>-null and <y (V) is Borel in M. Thus, the condition (4) is sa­

tisfied. This proves the lemma since, evidently, M is bounded. 

6.6. Proposition. Let<Q,ft> be a strongly separable ^-bounded measure 

space. Assume that £4,ixl=0 for all x€Q. Then there exists a set Q * c Q , a 

set ScR and a bijective mapping <§ :Q*~#. S such that, with ij =( (*fQ*)« 

• J"1, we have (1) Q* € dom <«- , <*(Q\Q*)=0, (2) S is thick in<U", A > , and 

if #LQ<COO , then "S is an interval of length (t,Qt (3) ^(S)cdomij , (4) 

ijB=(A f S X B ) whenever B € ^ ( S ) , (5) n is a faithful extension of 1 ^ 3 ( 5 ) . 

Proof. I. Assume that (CtQ< GO . Let Q', M, <f and p be as in 6.5. 

Then, by 6.4, there are sets Tc Hr SCR and a bijective mapping f:T—* S with 

properties described in 6.4. Put Q* = <y (T). For X € Q * , put <f (x)=f(y(x)). 

Put ^ =( ft-t'Q*) • <$ . It is easy to see that the conditions (1) - (5) are 

satisfied. - II. Consider the general case. Let (Q :n€N) be a gt-measurable 

partition of Q such that all £*Q are finite. Choose disjoint closed inter­

vals 3 n c R such that XJn > <uQn. It follows easily from I that there are 

Q* cQ n, S RC Jn and $ R : Q * — * SR such that, for each n€N, Q* , SR and $ n 

satisfy, with respect to {*tQn, the conditions (1), (3) - (5) as well as the 

condition (2') SR is thick in<'Sn,^> .Put Q* = I J Q * , S= U S n , <fc (x)= i R(x) 

for x€Q* . It is easy to prove that Q* , S, $ satisfy (1) - (5). 

6.7. Theorem. Let<Q,^t-> be a strongly separable ^-bounded measure spa­

ce and let (n,{xl=0 for all x€Q. Then there exists a metric X on Q such that 

P=<Q,« ,{*> is a strongly RE-regular ttW-space and V(P)=0. 

Proof. Let Q* , S, i and ^ be as in 6.6. Choose an a € Q * . If x,y€Q*» 
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put *(x,y)= p ( $ x , « y ) . If x,yeQKQ*, put *(x,y)=l if x + y , *(x,y)=0 

if x=y. If x « Q * , y « Q \ Q * , put tf(x,y)= <r(y,x)= p(*a,$x)+l. Clearly, 

% is a metric on Q. By 4.4 and 4.26, P 1=<S,p, k f S > is strongly RE-regu-

lar, V(P1)=0. Hence, by 4.28, P2= <S,tj> ,Jj> is strongly RE-regular, V(P2)= 

=0. Since $ :<Q* ,T, £tr^Q*>-* <S,p , i^> preserves both metric and measu­

re, P*= <Q* , if, f*fQ*> is strongly RE-regular and V(P*)=0. Singe .u(Q\ 

\Q*)=0, this proves the theorem. 

6.8. Proposition. Let ̂ L and j> be tf-finite measures on Q and let <u-

be absolutely continuous with respect to V . Let<Q,p ,y> be a strongly RE-

regular CfW-spaee and let V < Q , §>,>>> =0. Let P=<Q »«>,{«,> . Then, for any 

jj£-measurable g:Q~*R +, 

DE<g.<*,*>=RE(g.P), 

unless neither DE<g.^,y> nor RE(g.P) exists. 

Proof. Let £f3„ =DE^»J. Put P'= <Q,f ,P > . If / L • (gf )d p exists, 

then (1) evidently, DE <g.t*4, » > =/L© (gf)d P , (2) due to ^7(P')=0, we ha­

ve, by 5.10, RE(gf.P')=/L«(gf)d»> , hence RE(g.P)=/L * (gf)d *> . If 

J*L*(gf)d*> does not exist, then it is easy to see (using 5.10) that neith­

er DE<g.<u,i>> nor RE(g.P) exists. 

6.9. Theorea. Let £4, and p be €f-finite measures on a set Q and let (UL 

be absolutely continuous with respect to i> . Let p be strongly separable 

and let >>€x}=0 for all x#Q. Then there exists a metric t: on Q such that 

P= <Q,t , <tt> is a strongly RE-regular CTW-space and, for any £T-measurable 

g:Q-*R +, 

DE(g.fi,P)=RE(g.P), 

unless neither DE(g.£*,>>) nor RE(g.P) exists. 

This follows easily from 6.7 and 6.8. 

6.10. Theorea. Let P= <Q,» ,f*> be a strongly RE-regular $ W-space and 

let - co «< V ( P ) < oo . Put i> =2 . fu. . Then, for any (C* -measurable g: 

:Q-*R +, 

RE(g.P)=DE<g.p,»>> 

unless neither RE(g.P) nor DE<g.£*,*-> exists. 

Proof. Put f=2^ P ), P'=<Q,§>,>»> . By 5.10, we have V(P')«V(P)-

-log f=0.Hence,again by 5.10, if RE(g.P) exists, it is equal to RE((g/f).P')= 

= / L » (g/f)d i> . On the other hand, M "DE <g..u,.i>> exists, then it is equal 

to/L.org.f-.^dv =/L-(g/f)d>» • 
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