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ON THE DIFFERENTIAL AND RESIDUAL ENTROPY

Miroslav KATETOV

Abstract: We introduce and examine the residual entropy and the regu-
larized residual entropy defined for metric spaces equipped with a finite
(respectively, € -finite) measure and satisfying certain conditions. It is
shown that the differential entropy is equivalent, in a specified sense, to
the regularized residual eptropy.

Key words: Differential entropy, residual entropy, regularized residu-
al entropy, regularized Rényi dimension.

Classification: 94A17

Let P=(D,9, 2 be a metric space endowed with a probability measure &
with respect.to which @ is measurable. We define the residual entropy rE(P)
as the "remainder" of the epsilon entropy He(P), i.e., as the limit (provid-
ed it exists) of Hg(P)-RD(P)|log ® |, where RD(P) is a certain modification
of the Rényi dimension of P. Based on rE(P), the regularized residual entro-
py RE(P) and the residual entropy density V(P) are introduced for P=(Q,9,(L}
with @ @ -finite. It is shown that RE(P) and V(P) do exist for a fairly
wide class of spaces. Furthermore, properties of rE, RE and V are examined
in some detail.

The concept of the differential entropy, originally defined for probabi-
lity measures on R" possessing a density, is examined in a general setting,
namely for the case of a pair (@, ») of & -finite measures with g absolute-
ly continuous with respect to » . It is proved that the differential entropy
and the regularized residual entropy RE are, in a sense, equivalent. Namely,
if 9 satisfies a separability condition, then the differential entropy of
(a,») can be expressed, in a specified sense, by means of RE; on the other
hand, RE can be expressed, for a fairly wide class of spaces, by means of the
differential entropy.

The article is organized as follows: Section 1 contains preliminaries.
In Section 2, & W-spaces are introduced, some concepts previously defined
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for W-spaces are extended to GW-spaces, and some simple facts are proved. In
Section 3, the residual entropy rE is introduced and examined, and partition-
regular spaces, on which the behavior of rE is fairly reasonable, are consi-
dered. In Section 4, the regularized residual entropy RE is examined. In Sec-
tion 5 we introduce and examine the residual entropy density. Section 6 con-
tains the theorems on the mutual reducibility of the differential and residu-
al entropy.

1

1.1. The terminology and notation is that of [6] with slight modifica-
tions (see 2.5). Nevertheless, some definitions and conventions will be re-
stated.

1.2. The symbols N, R, R, R,» 'R: have their usual meaning. The letters
m and n (possibly with subscripts) always denote natural numbers. We put 0/0=
=0 and, for any bgﬁ, 0.b=0. - We write log instead of 1092, and we put log 0=
= -, L(x)=x log x for all x¢R+. For xe R, we sometimes write exp x inste-
ad of 2%.

1.3. A mapping f:  — R, where X is a class, is called a function or
a functional; as a rule, the word “functional" is preferred if L is a proper
class or consists of functions or spaces, etc.

1.4. If a set A is given, then, for any XcA, iX is the indicator of X,
i.e. ix(x)=1 if xéX, ix(x)=0 if x@ANX.

1.5. If Q4@ is a set and A is a &-algebra of subsets of Q, then a
¢-additive function @ : A —» 'R+ satisfying «(@)=0 is called a measure on
Q (in £3] such functions were called R-measures, whereas "measure" meant a fi-
nite measure). A measure on Q is called finite or bounded if wQ < oo, §-fi-
nite or € -bounded if there are A_& domw such that VA ne N(=Q and A < ®©
for all n. - The completion of a measure & is denoted by @& or [fu] N & 72
and » are measures, then @ & » means that dom gt =dom » and @X & »X for
all Xedom &4, & c » means that dom ¢ cdom » and wX= X whenever X &dom&.

1.6. Notation (cf. [61, 1.6). A) If Q #@ is a set, then F(Q), M(Q)
and Mg o(Q) will derote, respectively, the set of all f:G —> TR, the set of
all measures on Q and its subset consisting of € -finite measures. - B) If
@e M(Q) -and £, e F(Q), we writer f=g(mod @) iff there is a set Ze dom @
such that @Z=0 and £(x)=g(x) whenever x6Q\Z. - C) If e M(Q) and f @
¢ F(Q) is @-measurable, we put [f] . = {9 € #(Q):0=f(mod @ )} and call [l
a function (mod & ). We put FL @l ={Lf1, :t 6F(Q) is @-measurable}. -

D) If we M(Q), F.Ge¥FI @1, then we put F&G (respectively, F<6) iff, for
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some feF, geG, f(x) &g(x) (respectively, £(x)<g(x)) for all x€Q (thus,
e.g., -® < [f], <o means that some g=f (mod w ) iS_finite). - E) If
& & MQ) and F e FLeel, then sup F denotes the least beR such that F&b,
and similarly for inf F. - F) If we M(Q), F= [fl, € Fl@l, we put

[F d«.=ft da . - 6) If w& M(Q) and £:Q—» T is a mapping, then p,of’l
denotes the measure Y —» @ (fY).

1.7. We use the usual convention concerning expressions of the form
§0—> F(f ). If a term F(E ) contains a variable § , then the expression
§b——> F(g) denotes the mapping defined as follows. Let x be an element (from
a given class explicitly described or clear from the context). If the term
F(x) denotes exactly one element y, we put f(x)=y; if not, then f(x) is not
defined. Thus, e.g., if « € M(Q), then the expression f b—)ffgy.,where
f ¢ §(Q), denotes the functional ¢p such that (1) dom g = {f e F(Q):ft d a,
exists}, (2) if fedomq , then @(£)=[f d w.

1.8. Let @« M(Q). If F=(£), ¢ FLw]) , FZ0, then the function
X fo f d @, defined on dom & , is a measure. Its restriction to dom @
will be denoted by f.@ or F.@ . If Xedom @ , we put X. @ =iy. @ . - Ob-
serve that if @ € Mg(Q) and 04F< @ , then F. @ 6 M (D).

1.9. If Q is a set, K+ @ is a countable set, Xk, k €K, are subsets of
Q, UXk=Q and Xin Xj=ﬂ if i,jeK, i), then (Xk:ks K) will be called a par-
tition of the set Q (a m -measurable partition if QeT, @ is a measure on T~
and all Xk are in dom e ). - Observe that "partition" has a'different meaning
in the expressions "partition of a &W-space" (see 2.5) and " g -partition"
(see 2.10).

1.10. Conventions and notation. Let & be a @-additive function, pos-
sibly also assuming the value -00 or oo , on a set(Q 4s g (this means that dom®
is a €-algebra A of subsets of Q, «(#)=0 and ®(A)= Z('!(An):nl N) when-
ever (An:ntN) is a partition of A ¢ A and all A, are in A). Then (1) a set
X ¢Q will be called «-null if there is a set Y& dom ® such that Y>X and
¥ 2=0 whenever Zegdom ®., ZcY, (2) if XcQ and, for some Y¢c dom %, the sym-
metric difference X & Y is x-null, we put =& (X)= «® (Y). The function ¥,
also denoted by L1, is 6-additive; it will be called the completion of % .

1.11. A €&-additive function % on Q is called bounded (or finite) if
{¥ X:Xedom ¥ ¥ is bounded; & -bounded (or & -finite) whenever there is a
partition (An:ncN) of Q such that, for any ne&N, Antdom'e and L X:X @
¢ dom % , XcAn§ is bounded.
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1.12. Definition. There are various slightly differing definitions of
absolute continuity (of measures, etc.). We choose a fairly broad one: let
& be a &-finite measure on-Q and let 4 be a €-bounded € -additive func-
tion on Q. Then ~ is said to be absolutely continuous with respect to e if
(1) every @ -null set is ¢ -null, (2) dom@ c domZ , and (3) there is a 7 -
null set A such that if X¢dom% , then X=YuZ, where Y¢ dom @&, Zc A.

1.13. Fact and notation. If me J(.ef(Q), fe % (Q) is @-measurable,f(Q)c

c R and ff d @ exists, then X > IX f dm, defined on dom &, is an ab-

solutely continuous (with respect to @ ) @ -bounded €& -additive function.

Its restriction to dom @ will be denoted by f.m or F. u where F= Lf]ﬁ"'
1.14. We shall need the Radon-Nikodym theorem in the following form.

Theorem. Let @ be a 6-finite measure on Q and let & be a & -bounded
6-additive function on Q. If ¥ is absolutely continuous with respect to m,
then there exists exactly one function (mod ) F such that &X= fX F d m for
all Xe dom @& .

1.15. Notation. The function (mod @) F from 1.14 will be denoted by
de/dor by D[%, ael.

1.16. Fact and notation. Let @ be a measure on Q. If @$Tc Q, then the
function X e~ inf( («Y:Y¢ dom & ,YAT=X) defined on {YAT:Y ¢ dom @} is a mea-
sure on T. It will be denoted by twl‘T provided there is no danger of con-
fusion. - We put («.e(ﬁ)=ﬂ and (ue(T)=( @PT)(T) if P$TcQ. - Cf. L3], 7.4
and 7.5.

1.17. Fact. If & is a measure on Q and @#TcQ, then [ tT)=@ FT. If,
for i=1,2, ; is a measure on Q; and ﬂ-pTic Q;, then »= @ tT, ¥=arT,
where T=Tlx TZ’ P= kM, Wi (Lif T, & Rl v i cf. (31, 7.6.

1.18. Notation. The Lebesgue measure on R", n=1,2,..., will be denoted
by An or simply A . If Q¢ Rn, Q#@, we often write An or A instead of
an f Q provided there is no danger of confusion.

1.19. Conventions and notation. If(Q,f) is a semimetric space (i.e. o]
is a real-valued function on Qx Q satisfying @ (x,y)= @(y,x)2 0,;n(x,x)=0)
and TeQ, then ¢ T,ao) will denote the set T endowed with the semimetric

e M(TxT). The symbol R", n=1,2,..., will also denote the space(Rn,p> ,
where @ is the £, -metric, i.e.,&a((xi),(yi))max(lxi—yi\). The £, -metric

on a set Q¢ R" will be denoted by P (unless explicitly stated that (] is us-
ed in a different sense). If Pi= <Qi’ ("i) are semimetric spaces, then Plx P2
denotes the space <Q;%Q,, > , where Exy5%9),(y,yp))=max(@ ; (x1,¥,),

(X5,¥5)),
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1.20. Notation. If S is a set endowed with a topology (in particular, if
S is a metric space), then $B(S) will denote the collection of all Borel sub-
sets of S.

1.21. Notation. If §=(xk:ke K) is a non-void indexed set of nonnegative
reals and = X <o , we put H(g )=H(xk:ke K)= Z(ka:kt K)—L(Z(xk:kGK)).
If @ is a finite measure on a countable set Q and §x}edom @ for all xeQ,
we put H(@ )=H(@{qt:q0e Q).

1.22. The following simple facts concerning the functional H will often
be used.

1.22.1. If x 20, k=1,...,n, then H(xl,...,xn)é(ZXk).log n.

1.22.2. Let xkj?:(] for keK, je Jk (where K and ‘]k are non-void sets).
Let = (x 3:k 6K, €J) <o . Then H(xkj:ks K,j€e Jk)=H(Z(xkj:j‘Jk):ks K)+
+Z(H(xkj:j€3k):k6 K).

1.22.3. If K#@, x 20 for kéK and 0< = x < 00 , then H(x :k€&K) 2
z- L(Zxk)—(z xk).log sup(xk:ks K)s in particular, ifok=1, then H(xk:k 6
¢K)z - log sup(xk:keK).

1.22.4. Let K be a non-void set. Let X0 Yier
reals. Let Zyk= Zxkc oo . Let je JcK and let xj?. X for all ke K. Let yk=

=x for kaK\J, y5% x5 Y £ % for ke J, k#j. Then H(yk:k6 K)2 H(xk:keK).

where k €K, be non-negative

2

Recall that W-spaces (also called semimetric spaces endowed with a fini-.
te measure) are defined as follows: P= (Q,q: ’G‘> is a W-space if Q=@ is a
set, a is a finite measure on Q and @ is a [y.x (»]-measurable semimetric
on Q. - In the present article, we will also consider €& W-spaces, obtained by

" @ -finite" in the above definition. The reason for

replacing "finite" by
introducing this broader class of spaces lies in the following facts: (1) the
regularized residual entropy (see 4.2) can be defined in a very natural way
for 6 W-spaces, (2) the theorem (see 6.9) on expressing the differential ent-
ropy (see 6.1) by means of the regularized residual entropy is valid in full
extent only if € W-spaces are taken into consideration, (3) such natural ob-

jects as < Rn, @ A n Y are €& W-spaces, not W-spaces.

2.1. Definition. Let Q be a non-void set. Let w be a 6-finite measure
on Q and let ® be a [(&x («J -measurable semimetric on Q. Then P=(Q,¢ N (u.)
will be called € W-space or a semimetric space endowed with a & -finite measu-
re. If, in addition, Q< a0, then P is called W-space (or a semimetric
space endowed with a finite measure).
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2.2. Notation and conventions. If P= <Q,¢ , 2 is a 6 W-space, we put
wP= @ Q. If wP=0, we call P a null space. - The class of all & W-spaces and
that of all W-spaces will be denoted, respectively, by € @) and 7% . A
& W-space P= Q@ ,@#» will be called metric if @ is a metric (cf.[4], 1.5).
If, in addition, every Borel set is in dom @B , then P will be called weakly
Borel.

2.3. Let P=<0Q, 9, ? be a EW-space. If S= (Q,? ,#2 and P & @, then
we call S a subspace of P (a pure subspace if % =X.@ where X& dom (E ) and
write S&P. If F= [tl‘“l $Lpl and 0éF< o0 , then<Q,@P ,f. %> is a & W-
space, which will be denoted by F.P or f.P. If X ¢dom (‘i , we put X.P=iX.P. -
Cf. L4], 1.6 and 1.7.

2.4. Fact. Let P=4<0,9 , & 26 6% . Then 5=(Q,@ ,»? & P iff S=f.P
for some @ -measurable f € $°(Q) satisfying O 4 [ﬁl" &1.

2.5. If K$d@ is a countable set, Pk’ k&K, and P are 6 W-spaces and
Z(Pk:ks K)=P (i.e., P, =<0,@ ,, > , P=<Q, @, @?and M= Z@k), then we
will say that (Pk:kc K) is a partition of P (a pure partition if all Pk are
pure subspaces of P). Cf., e.g., [6]},1.12. - Remark. In (2] - [5], the term
" @-partition" was used for what is now called partition, whereas "partition"
meant a finite partition.

2.6. Fact. IfPea €7, (Pk:k( K) is a partition of P and S4P, then
there are S, %P, such that Z(Sk:kﬁ K)=S. - Cf. [61, 1.13.

Proof. Let S=s.P, Pk=fk.P (see 1.14). Put gk=sfk, Sk=gk.P6Pk. Clearly,
X5, -S.

2.7. Let U=(Y :keK) and ‘U'=(Vj:j eJ) be partitions of a ® W-space P.
If there exists a disjoint collection (Jk:kc K) such that UJk=J and, for
each k&K, X(Vj:jsJk)=Uk, then V' is said to refine W . - Cf., e.g.,L61,
1.14.

2.8. Fact. If U and V' are partitions of a @W-space P, then there ex-
ists a partition of P refining both W and V" . - Cf. (2], 1.36.

Proof. Let ’u=(Uk:k¢K), v =(V.:36J). By 1.14, there are £, and 9,
such that U,=f, .P, Put hkj=fkgj’ 1"=(hkj.P:le,j¢J). Then 7" is a partiti-
on of P refining both Wand V°.

2.9. Let P=<0,p, >« €MP and let $>0. We put g ¥ P=<0, s %P , )
where (e%@)(x,y)=0 if @(x,y)& e, and (e %#0)(x,y)=1 if@(x,y)»¢ . - Cf.
161, 1.17.

2.10. Let p:(q,@,(‘,)c €%), & >0. Then (4 :k 6K), where K$f is
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countable, Xke dom gz , will be called an g€-covering of P if diam Xkc ¢ for
all keK and &(Q \uxk)=0. If, in addition, X;n Xj=ﬂ for i#j, then (Xk:ke
e K) will be called a disjoint €-covering of P (an € -partition if there is
no danger of confusion with the partition in the sense of 1.9 or 2.5). - Cf.
£41, 1.19.

2.11. If P= (Q,g’ » @7 is a W-space, then the infimum of all H(F.Xk:ksK),
where (Xk:kc K) is an e-partition of P, will be denoted by H‘(P); if there
is no ¢ -partition of P, we put Hg(P)=00 . - Cf. 4], 1.19.

Remark. The functional Hg(P), often called the epsilon entropy, has been
examined in [71 (to be precise, the Hg(P) defined above coincides with the
functional in L7] up to a multiplicative constant).

2.12. A functional ¢ : 9 —> T?l satisfying the conditions stated in [6],
1.19 is called a Shannon functional (in the broad sense). - The conditions
Jjust mentioned include the fundamental equality ¢<Q,1,a? =H(&) for any
finite <Q,1, > & %) . Due to this equality, Shannon functionals (b.s.) ha-
ve been called extended Shannon semientropies (in the broad sense) in {21,131
and [5].

2.13. In this article, we consider, in fact, only one Shannon functienal,
namely CE’ also denoted by E; for its definition see, e.g., L4}, 1.13. - The
letter E will be sometimes used in a different sense, namely to denote the
functional (Pl'PZ) Hd(P1+P2) defined on UL, the class of all (Pl,l'z) €
6 W)= such that P\4P, P,&P for some P& 7 . Recall that if P=
=<0,p,m>€ 2 , then d(P) denotes the infimum of all beR, such that
L= @] £(x,y) € 0xQ: @(x,y) > b¥=0.

2.14. We restate two important properties of E. - A) If (S,T) is a par-
tition of P& 9 , then E(P)& E(S)+E(T)+H(wS,wT)E(S,T). If S€P e 729, then
E(S)&E(P). - See [41, 2.3.

2.15. Proposition. If P=<Q,@ ,(47 is a metric W-space, then either (1)
E(e* P)=Hg(P) for all ¢ >0, or (2) E(s x P)=H (P)= oo for all sufficien-
tly small & > 0. - See 141, 2.18.

2.16. If a is a &-finite measure on Q and @+Te¢Q, then T is called
thick in <Q, ¥ if there are X edom gt , neN, such that X < , UX =
=Q and ((v.PT)(xnnT)= @X for all neN.

2.17. Fact. Let T be thick in<Q, @». If Xe¢dom @ , @X>0, then TaX
is thick in <X, »» , where » is the restriction of @ to {Y«dom @ :Ye X1

2.18. Fact and notation. Let P= (ﬂ.y,y.)be a 6 W-space. Let B4Tc Q.
- 325 -



Then (T’? , T T>is a &W-space, which will be denoted by PIMT.
This follows easily from 1.17.

2.19. Lemma. Let P=<Q,q, @7 be a weakly Borel metric W-space. Let T
be thick in<Q, &2 .Then, for any d& > 0, Hg(P FT)=Hc(P).

Proof. We can assume uQ>0. Put »=wlT. Let & > 0. Put a=Hg(P), b=
=HJ(PI‘T). if (Xn:neN) is a d-covering of P, then,clearly, (XnnT:n €N) is a
d-covering of PIM; hence b £a. Suppose b<a and let b<c<a. Then there is a
d-partition (Yn:neN) of PP such that H(® Yn:neN)<c. Clearly, there are
sets U e dom@ such that Y =U AT, @l =Y . Put X =U nY_ . Since P is weakly

‘Borel, X e dom@. It is easy to see that F'Xn: BYn, (Xn:ne N) is a d-covering
of P and H(@&X :ne€N)=H(SY :neN)<c. This is a contradiction.

2.20. In [1]1,{9] and (10], the dimension and the upper (lower) dimension
have been introduced for random variables with values in R". For W-spaces,
dimensions of various kind have been introduced in [5] and (6]; they are, in
fact, generalizations of concepts defined in [1],[91 and [10]. We are going
to restate (see 2.21 and 2.24) some of the pertinent definitions and some sim-
ple facts. Then we introduce (2.26) the regularized Rényi dimension RD(P).

2.21. Let ¢ be a Shannon functional and let P e 929 . Then o -uw(P)
(respectively, g - £w(P)) denotes the upper (lower) limit of ¢ (d x P)/
/llogd’| for & —»> 0. We put @-ud(P)= ¢ -uw(P)/wP, ¢ - £d(P)=q - £w(P)/wP.
If < -ud(P)= @ - Ld(P), we put @-Rw(P)= @ -uw(P), ¢ -Rd(P)= ¢ -Rw(P)/WP. We
call @ -Rd(P) and @ -Rw(P) the (exact) Rényi @-dimension, and the g-weight
of P, respectively. If ¢ =E, the prefix " @ " is, as a rule, omitted. - See
[51, 2.1.

2.22. Fact. If (S,T) is a partition of a W-space, then Lw(S)+ £w(T) ¢
£ Lw(P) £ Lw(S)+uw(T) £ uw(P) £uw(S)+uw(T). - See [5], 3.1.

2.23. Lemma. Let P be a W-space and let be R*. If ud(S) £b for all pure
S4P, then ud(T)4b for all T<P.

Proof. Let T=f.P. Let meN, m>1. Put V, ={xe0:(k-1)/m <f(x)&k/m} for
k=0,...,m, Sk (k/m). Vi-Ps 8= Z(S :k=0, . ,m) Then ud(V .P)4b, hence ud(S )&
& b and therefore,by 2.2, uw(S)‘-b wS. Clearly, T&S, w(S T)gm WP, Hence
ud(T) € uw(T)/wT € b.wS/(wS-m~ .wP). Since m=2,3,..., has been arbitrary, we
have shown that ud(T)&b.

2.24. Let @ be a Shannon functional and let P be a W-space. Then ¢ -UW(P)
(respectively, @ -LW(P)) denotes the infimum of all beR, for which there is
a partition U of P such that if (Vk:ke K) refines % , then Z (¢ -uw(V)):
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:keK)&b (respectively, E(q-lw(vk):ch) 4b). We put ¢-UD(P)= o~
-UW(P)/wP, @ -LD(P)= ¢¢-LW(P)/wP). - If ¢=E, then the prefix " ¢ " is, as a
rule, omitted. - See [61, 3.1.

2.25. Proposition. Let P be a Shannon functional and let P=<Q,? y L7
be a W-space. Then (1) if (Pk:k 6K) is a partition of P, then 9-UW(P)=
= Z(q-UN(P ):k &K), @-LW(P)= Z(¢p-LW(P, ):k&K), (2) the functions X +—>
—g —UW(X.P).and X ¥ ¢p -LW(X.P) are measures. - See [61, 3.2.

2.26. Definition. Let ¢ be a Shannon functional. Let P be a W-space.
It ¢ -UD(P)= ¢ -LD(P), we put @ -RD(P)= ¢ -UD(P), ¢ -RW(P)= gp ~UN(P). We will
call ¢ -RD(P) (respectively,¢-RW(P)) the regularized (exact) Rényi ¢ -dimen-
sion (respectively, the g -weight) of P. If ¢¢-UD(P)# ¢ -LD(P), we will say
that @ -RD(P) does not exist. - If ¢ =E (which is the case considered in this
article), we omit the prefix " ¢ ".

Remark. The properties of RD will not be examined in this article. We
state only some simple facts to be used in the sequel.

2.27. Fact. Let (5,T) be a partition of a W-space P. If both RW(S) and
RW(T) exist, then RW(P)=RW(S)+RW(T).
This is an immediate consequence of 2.25.

2.28. Proposition. Let P be a W-space. If RD(P) exists and is finite,
then RD(S) < e for all S&P.

Proof. By 2.25, UW(T)4%UW(P)< oo for all T4P. For any T&P, put J"(T)=
=UW(T)-LW(T). By 2.25, J'(S)+d'(P-S)=d'(P)=0 for all S&P. This implies d(S)=
=0, which proves the proposition.

2.29. Lemma. Let P=<Q, @ ,m? be a W-space. Let Rd(P)=b < 0@ and let
ud(T)4& b for all pure T4 P. Then RD(S)=Rd(S)=b for all non-null S&P.

Proof. By 2.23, ud(S)€b, hence uw(S)4b.wS for all S&P. Suppose
uw(50)< b.wSO for some SoéP. Then, by 2.22, uw(P)‘uw(S°)+uw(P-So)< b.wP,
which contradicts Rd(P)=b. Hence Rd(S)=b for all non-null S&P. Consequent-
ly, Rw(S)=b.wS, RW(S)=b.wS for all S&P.

2.30. Proposition. Let P=<Rn, ;a,p.) be a W-space and let @ be absolu-
tely continuous with respect to the Lebesgue measure. Let wP > 0. Then (1)
RD(P)=n; (2) Rd(P)=n if H(FAZ:zeZn)<ao , where Z is the set of all inte-
gers, Az= {x:(xl,. .. ,xn) '3 R":zis’. x; < z;+1 for i=l,... ,nt, (3) Rd(P)= oo if
H(gA,:zeZM= o0

Proof. For (2) and (3), see [51, 2.9. To prove (1), consider any parti-
tion of P of the form (Xn.P:neN) with X_ bounded.
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3.1. Definition. Let ¢ be a Shannon functional (b.s.) and let P be a
W-space. Assume that ¢ -RD(P) exists and is finite. Then the limit (provided
it exists) of @ (d x P)-(@-RW(P))|logdl for & —» O will be denoted by
r'@(P). We put r@(P)=r'gp (P)+L(wP) and call r @(P) the residual ¢ -entropy
of P; if 9=E, then the prefix " 9 "in " 9 -entropy" will be, as a rule,
omitted.

3.2. Remarks. A) In this article, only the case @ =E is examined. - B)
Clearly, if P € 9%) , wP=1, then r’q(P) and r ¢ (P) coincide (provided they
exist). - C) The functional r'q seems to be more natural than r¢ . On the
other hand, (1) under certain fairly mild assumptions (see 3.9), X +>»rE(X.P)
is additive whereas r'E satisfies the equality r E(XuY).P)=r ‘E(X.P)+
+1 ECY.P)+H(W(X.P),w(Y.P)) and cannot be additive; (2) in many important ca-
ses, rE “”V »X, 42 can be expressed in the form fx F d @ , where F depends
only on €<Q,@ , &? (see 5.1, 5.3 and 4.4). - D) It is possible to introduce
another kind of residual entropy, say ?qa(P), replacing RD and RW by Rd and
Rw in 3.1. This notion, however, is less appropriate since, e.g., there are
W-spaces of the form P=<R,§.>,f..7\) such that RD(P)=1, rE(P)= -ff logfdaA
whereas Rd(P)= 00 and therefore rE(P) does not exist.

3.3. If P is a W-space, rE(P) need not exist, and even if rE(S) exists
for all S4P, the function X +» rE(X.P) can fail to be additive; for perti-
nent examples see 3.12 and 3.41. However, under some not too restrictive con-
ditions, X+»rE(X.P) is additive (see 3.9) and, under certain additional as-
sumptions, even €'-additive (see 3.35).

3.4. Fact. Let P=<Q,@,mYe . Let (5),5,)=(X,.P,X,.P) be a pure
partition of P. Then, for any o > 0, H‘(P)+L(wP)‘HJ(SI)+L(WSI)+HJ(52)+
+L(w‘52). -

Proof. We can assume that HJ(Si)<oo . Let 2%»>0. Choose d™partiti-
ons (Xin‘” &N) of S;, i=1,2, such that H(inn:ncN)<HJ(5.1)+ &/2. Clearly,
(Xin:i=1,2; neN) is a d™-partition of P, hence HJ(P)GH(pXin:iﬂ,Z;nc N)+
HLWP)=HC @ X, :n & N)+L(WS) J+H( @ X, :n @ N)+L(WS,) <€ Hp(S) )+H g (S,)+L (WS )+
+L(w52)+'\9‘ . Since % > 0 has been arbitrary, the assertion is proved.

3.5. Notation. If P &€ 7 , RD(P) exists and is finite, we put, for any
d’>0, (" ,P)=E(I"*P)-RW(P) |1og '] +L(wP).

3.6. Fact. Let (S,T) be a pure partition of P& 99 and let RO(P)=RD(S)=
=RO(T)=t, 0<t < co . Let rE(P), rE(S) and rE(T) exist. Assume that the sum
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rE(S)+rE(T) exists. Then rE(P) &rE(S)+reE(T).

Proof. By 3.4, we have y(d',P) &y(d,S)+y(d,T) for all d> 0. Since
¥ (' ,P), w(d',S) and w(J,T) converge to rE(P), rE(S) aand rE(T), respec-
tively, we get rE(P) &rE(S)+rE(T).

3.7. Definition. A) If s and » are measures on Q, » ¢ g , and, for
any Xe& dom &« , there is a set Ye¢ dom » such that the symmetric difference
X& T is sm-null, we will say that a is a faithful extension of » . - B) A
eetric 6W-space P= <0, @, > will be called almost Borel if B< ﬂ,@cdomfi
and & is a faithful extension of Wl B0, @7 .

3.8. Lemma. let P= (Q,g , &2 be an almost Borel metric W-space and let
E(ex P)<oo for all & > 0. Let (5,T)=(X.P,Y.P) be a pure partition of P.
Then E(dF'x S)+E(JI'» T)-E(Fx P)—» H)wS,wH¥ for & —» 0. If, in addition,
RO(P) exists and is finite, them ¥(d,S)+y(d ,T)- y(d",P)—> 0. .

Proof. I. We can assume that X is Borel and Y=Q \X. Let %> 0. By well-
known theorems, there is a closed X*c X such that @ (X\X®) < » . Since X¥
is closed, there is an o¢ >0 such that @(Y\Y®) < - , where Y¥ =
s {yeVY: ey, X® > o} .-let0<ed<c e« . By 2.15 and 2.11, there exists a
d'-partition (U :neN) of P such that H(@U :n€ N)< E(Fx P)+ & . Put Ky=
= 4neN:U n X* 4 B3 Ky= {ntN:Unn Y# 4B}, M=N\ (Kxu KY). Then U n X, n€Kyu
uM, form a J'-partition of S whereas Unh Y, ntKYu M, form a o -partition of
T. Clearly, U e (X\X¥)u(Y\Y®) whenever n&N, hence Z(yun:nc M€ 2 .
For neN, put a = FﬂUn, b= F(Unr\X), C: F(UnnY). Then we have Z(Lbn:nsM)+
+ (e :neM)= Z(La :neM)+ E(H(b ,c ):neM) & E(la :neM)+ Z(a :neM) &

QE(Lan:neM)d»z'&- , hence H(bn:n eN)+H(cn:n0N)£Hdan:nc N)-H(WS,wT)+24 .
Since H(an:nﬁN)<E(J'4: P)+ , we get (%) E(d "% S)+E(I»T)EE(I%P) -
-H(wS,wT)+34% . Thus, for any «® >0 there is an o¢ > 0 such that the ine-
quality (i) is satisfied whenever 0 < d° < ¢ . On the other hand, by 3.4 and
2.15, E(I% S)+E(F x T) ZE(J % P)-H(wS,wP). This proves the first assertion.
- II. If RD(P) exists and is finite, then, by 2.27, RW(P)=RW(T), which easily
implies the second assertion.

3.9. Proposition. Let P- <Q,@,e? be an almost Borel metric W-space.
lLet E(o%P)<oo for all & > 0. Let (5,T) be a pure partition of P. If both
rE(S) and rE(T) exist, then rE(P)=rE(S)+rE(T), unless rE(S) and rE(T) are in-
finite and rE(S)= -rE(T). If both rE(P) and rE(S) exist, then rE(T)=rE(P) -
-rE(S) unless rE(P)=rE(S)= * oo.

Proof. To prove the first assertion, observe that the existence of
rE(S) and rE(T) implies that RD(S) and RO(T) exist and are finite. Hemce, by
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2.27, RW(P)=RW(S)+RW(T). By 3.8, this implies y(d",S)+ y(d",T)- ¥ (J,P)—>
—» 0, from which the assertion follows at once. The proof of the second as-
sertion is similar.

3.10. We are going to present some examples showing that rE can behave
rather irregularly (though being additive in the sense described in 3.9) even
on fairly simple almost Borel metric W-spaces. The examples also show that
the class of metric W-spaces P satisfying RD(P) <@ 1is too broad to allow a
sufficiently rich theory of the residual entropy (or of the regularized resi-
dual entropy RE, see Section 4). Hence we have to choose a suitable subclass
for which a reasonable theory of this kind can be developed. Probably the
subclass we introduce (see 3.19 and 3.20) is too narrow, though.

3.11. In 3.12 - 3.14 the following notation will be used. The set {0, 1}«
is denoted by Q. If p=(pn:ncN), 1/2¢& pn<1, then SCpl=<Q, @(p)> will denote
the product of probability spaces {{0,3 ,» r?’ where »n{l)}:pn, »nili =qn=1 -
P Instead of @.[p] we often write merely e . If, in addition, a=(an:n €
eN), a,>0, a 2a,,, a,— 0 for n — & , then S[p,al will denote the W-

space <Q, @,, [ Pp1> where q:a(x,y)=am if x=(x), y=(y), Xn 4 Yy and x;=y;

for i<m. - If neN, z640,13", then A(z) denotes the set {x=(xn)e Q:x;=24
for i< n}. The collection of all A(z) will be denoted by A , and that of all

A(2), z640,8", will be denoted by A .

3.12. Example. For neN let pn=1/2, an=2—n. Put p=(pn:n¢ N), a=(an:n 6
eN), P=(Q,§a , &7 =5(p,al. We are going to show that rf(S) exists for no non-
null S&P.

Let S4P, S=£.P, ws>0. Let 2™1»d 22", Then, clearly, E( &% 5)=
=E(anx S)=H(w(A.S5):A c.ﬂh). Hence, by 1.22.1, (1) E(d'x S)&n.wS and, by
1.22.3, (2) E(d'% S)Z n.wS-L(wS). This proves that Rd(S)=1.Consequently, RD(T)s
=Rd(T)=1 for any non-null T&P. - If S=f.P&P, then E(Jd"x S) is constant on
each interval (2—n+1’2-n) and therefore the oscillation of w(d",S) on
(2—n+1,2-n1 is equal to that of wS|logd”] , hence to wS. Since, by (1) and
(2), 0 & 4 (d",5)4L(wS), this proves that w(d",S) has no limit for & —» 0.

3.13. Example. Let c»0. Let P=S[p,b], where p is as in 3.12, b=
=exp(-c'1n). It is easy to show that, for any non-null S%P, (1) RD(S)=Rd(S)=
=c, (2) rE(S)= if c>1, rE(S)= - @@ if c¢1.

3.14. Example. For neN, let qn=(n+271, py=1-a,, h(n):H(pn,qn), Sp=
= Z(h(m):m<n), an=exp(-sn). Put P=<0,@ ,&? =S[p,al. Then (1) Rd(P)=1,
(2) Rd(S) &1 for any non-null pure S4P, and therefore (3) RD(S)=Rd(S)=1 for
any non-null S4P, (8) rE(A.P)=L(pmA)-s . s A for any A & .ﬂn, hence
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rE(P)=0, (5) there is a disjoint countable collection & c R such that
& (P\NUX)=0, E(rE(A.P):A 6« L)< 0.

Since the example is merely illustrative, we omit the proof (which is
rather long and not quite easy) of the facts just mentioned.

3.15. Before introducing partition-regular spaces (see 3.20) we consider
(in 3.16 - 3.18) the case of metric W-spaces satisfying RD(P)=0, which turns
out to be quite simple.

3.16. Proposition. If P is a W-space and RD(P)=0, then rE(P) exists and

is equal to lim E(d"x P)+L(wP).
o0

Proof. Clearly, E(F% P) is a non-decreasing function of d” and

¥ (&,P)=E(I% P)+L(wP).

3.17. Proposition. Let P= (Q,Q ,e4? be a non-null metric W-spage such
that RD(P)=0 and s £x}¥=0 for all x&Q. Then rE(P)=wo .

Proof. We can assume that wP=1. Suppose that rE(P) < @ , hence
sup E(d'x P)<a <@ . Then, for any n=1,2,..., there is an n_l-partition
(Xn m:ch) of P such that H(an nime N)< a. By 1.22.3, we have

-a
- log(sup ®X n:mQN)<a, and hence, for some m=m(n), @Xn,m(n)’z . Put

Yn=xn,m(n)' If no x€Q is in infinitely many Y, then f\(U(Yk:k> n):ne&N)=@,
whereas {L(U(Yk:k’ n))» 272 for all n. Hence there is a point y&Q and an
infinite K€N such that chk for all keK. For n&N, put Zn= U(Yk:ch,k>n).
It is easy to see that fa-Zn>2'a for all neN and diam Zn62n'1, hence nzn=

= §y}. Since X1 y$=0, we have got a contradiction.

3.18. Theorem. Let P=<Q,Q ,e? be a metric W-space and let RO(P)=0.
Put A=<ixen~.y.{xi>0}, B=QN\A. Then (1) for any subspace S=f.P&P, rE(S)=
=H(f(a) wfa3:ae A) if w(B.5)=0, and rE(S)=e if w(B.S)>0, (2) the function
X + rE(X.P) is a measure defined on dom &% .

Proof. If @B>0, then, by 3.12 and 3.16, E( % (B.P))~» @@ , so that
E(FwP)—> 00 , rE(P)= @ . - Let @B=0. Then ({a}:a€A) is an e-partition
of P for any @ > 0 and therefore sup E(d"x P)& H(gfak:a@A). On the other
hand, if Ke A is finite non-void, choose a positive d'«inf 1@ (x,y):x€K,y @
6 K,xdm y}. It is easy to see that E(d'%x P) ZH( Ex¥:x€K). Since clearly
H(Lak:a € A)=sup(H( (u.(a}:asK):KcA finite), this proves the assertion (1)
for S=P. The general case of (1) and the assertion (2) are easy consequences.

3.19. Convention. Let t and Lt bhe positive reals, let m&N and let
£:(0,b)~#R, satisfy £(d')—»1 for J—»0. We will say that a semimetric space
- 331 -



S= <Q,p> satisfies PR(t,m,b,f) if, for any XcQ with diam X=d"< b and any
n>m, there are Yic X, i=1,. k‘n £(d’), such that UY =X and diam Y, éJ/n,
i=1,...,k. We will say that a H—space P=<0Q,Q, &2 satxsfles PR(t,m,b, f) if,
for any Xedom @ with diam X= &< b and any n>m, there are Y; & dom « , i=
=1,...,k6ntf(d‘), such that @ (X \uYi)=0 and diam Y; & d/n, i=1,...,k

3,20. Definition. Let 0<t<oco . A semimetric space S (respectively, a
W-space P) will be called partition-regular of order t if, for some m, b and
f, S satisfies PR(t,m,b,f) (respectively, P satisfies PR(t,m,b,f) and RN T)=t
for all non-null T&P).

3.21. Fact. Let 0<t< @ . Let P= (Q,Q ,» 42 be a weakly Borel metric
W-space and let Rd(P)=t. If, for some b, m and f, there is a Q ¢ Q such that
#Q\Q)=0 and{Q’,©> satisfies PR(t,m,b,f), then P also satisfies
TR(t,m,b,f) and is partition-regular of order t.

Proof. Choose a positive d’< b such that log|f(d’)|< 1. Let 5=<0Q,p D4

&P. Since Rd(P) < co , we have E(e % P) < oo for all & >0 and therefore,
by 2.14 B, E(d'%x S) < o . Consequently, there is a d’-partition (Xp :p&N) of
S such that H( 3Xp:ch)=c <o . Since{Q’, > satisfies PR(t m,b,f), there
exist, for any pe&N and any n>m, sets Ypi’ i=1,. k(p)in £(d), such that,
with Ko= 11,...,k(p), we have Q'n X5= U(Ypi:ic Kp) and diam Ypiﬁd"/n. Cle-
arly, we can assume that Y i dom & (since Y 4 can be replaced by the sets

nu') For any p&N, put Z ,=Y b1 Zp.- i\U(YpJ-j< i) for i=2,...,k(p).
Clearly, (Z pi :peN,ie K ) is a (d"/n)—parutmn of S. By 1.22.2 and 1.22.1,

we have H( b3 Zp :peN,ie Kp)6c+2(axp .log k(p):peN), hence H(;:zp :peN,ie
o K_) & c+wS.(t log n+l). Consequently, E((J"/n) % S) % c+wS.(t log n+l) and

therefore 1im (E((d"/n)%S)/wS.|log(d”/n)|) &t. It is easy to see that this
n-» oo

inequality implies lim (E(e % S)/wS.|log&|)&t, hence ud(S)&t. Since S&P
s-0

has been arbitrary, this proves, by 2.29, that Rd(T)=t for all non-null T&P.

3.22.Facts. A) If a semimetric space (respectively, a W-space) is par-
tition-regular of order t, then each of its subspaces (respectively, each of
its non-null subspaces) is partition-regular of order t. - B) If, for i=1,2,
S is a semimetric space partition-regular of order t, then Sln 82 is parti-
tion—regular of order t1+t2 - C) If, for i=1,2, P1 is a W-space partition-re-
gular of order ti and Rd(T)-t1+t2 for each non-null T‘Plst P2, then P1>¢ P2 is
partition-regular of order t1+t2.

3.23, Fact. The space R", n=1,2,..., is partition-regular of order n.
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3.24. Proposition. Let S be an m-dimensional Cl-submanifold of R"
equipped with the la, -metric. Then every compact Tc S is partition-regular
of order m.

The proof is straightforward and can be omitted. Observe that S itself
need not be partition-regular (however, cf. 4.22).

3.25. Lenma. Let P be a partition-regular W-space of order t. Then the-
re is a function f£:R,— R, such that f(¢)—>1 for d’—» 0, a positive real
b and an me N such that if S&P, 0<d'< b, né N, n>m, then y(d"/n,S) &
£ ¢ (J°,5)+wS.1og £(d).

Proof. Let P=<Q,@ ,a? satisfy PR(t,m,b,f). Let 5=40,p,Y Y &P and
let 0<d<b, n>m. Let *>0. By 2.15, there is a d™-partition (X :k&N) of
S such that H(J X, :k €N)< E(d% S)+ ¢ . Since diam X, & d”, there are ij e

edom ¥ , 3:1,...,p(K), p(k)&n’f(d), such that diam Vi3 #I70, TN
\U(ij:j=1,...,p(k)))=0. Clearly (ij:k eN,3=1,...,p(k)) is a (d7/n)-parti-
tion of S. By 1.22.2 and 1.22.1, H(vvkj:keN,jﬂ,---,p(k))éH(x‘»Xk:ksN%

+109(ntf(d' ). Z(FX ke N)<E(T*® G)+ ¥ +wS.t log n+wS.log £(d"). Hence
E((d°/n)% S)% E(d"* S)+wS.t log n+wS.10og £(d°), and therefore y(d™/n,S) &
% y(d,5)+wS.1og £(d").

3.26. Theorem. If a W-space P is partition-regular, then the residual
entropy of P exists.

Proof. Put t=Rd(P)=RO(P). Let P satisfy PR(t,b,m,f). Put s=Iim w(d",P).
Clearly, we can assume s >- c0 . Let -0 < u<s and choose & > 0 such that
u+2 & < s. Choose c >0 such that 2c<min(b,1), wP.|log £(&")| < & for
d & (0,c). - We are going to show that w(d",P)z u whenever 0< d'<c. Choose
% &(0,d) such that |y -dl< x implies |logn -log &"|< © .(t.wP) L. sin-
ce ZTE ¥(z,P)>uswP.(t+1)e , there is a positive § such that § < ¥ ,

d+§<c, yw(§,P)>us2e . Choose peN such that (p-1)§ & &, p§>d.
Clearly, p§<c. By 3.25, we have yw(p§ ,P)z y(§ ,P)-wP.log f(p §). Clearly,
w (&7, P)ZE((p § )8 P)-wP.t|1og & |+L(wP)= yw(p§ ,P)+wP.t(|1og p§ | -

- |log &) 2 w (p§ ,P)- & . Hence, ¥(d",P)Zz y(J",P)-2 & > u whenever

d’e (0,c). Since u<s has been arbitrary, this proves that lim y(d",P)=s.

Remark. The proof is similar to a part of the proof of Theorem 1 in [8].

3.27. The concept of residual entropy appears implicitly in [81, where
the behavior of & r—» He(P)=E(® % P) is examined for the case P=(Rn,p¢,y-).
@R"=1, @ (x,y)= ®(x-y), @ being a norm on R". In (8], two theorems are
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proved, which can be stated, in a modified form and using the terminology of
the present article, as follows: (1) If QcRn is a unit cube, &=Q.A , then
Hg(P)-n|log © | converges, for €& —= 0, to -log AS,+ (%), where S= {xe
6 R™: w(x)£1/2}, ae(x ) depends on % , O& e ¥) &1, and e€(%)=0 if x is
the 4go-norm. - (2) If et , p is continuous and satisfies certain
conditions (which we do not restate), then H‘(P)-nllog e | converges to

- [ plogp da-logA S+ee(w). - In the terminology of the present artic-
le, the theorems assert that, under the assumptions mentioned above, rE(P)
exists, and provide a formula for its value.

Observe that, apart from the fact that we explicitly introduce the resi-
dual entropy rE, the difference of approach in the present article and in that
by Posner and Rodemich lies, among other things, in the following fact. In
[£81, the class of metric spaces under consideration contains Rn, n=1,2,...,
equipped with any metric generated by a norm (and, in fact, all of their sub-
spaces); certain assumptions, not quite weak, are made concerning the measure.
In the present article, the class of metric spaces for which a reasonable the-
ory of the entropy rE is available, consists of partition-regular ones, whe-
reas the assumptions on the measure are fairly weak.

3.28. Fact. Let P=40Q,@,a? € %) be partition-regular. Then rE(P)=co
iff E(d'% P)=00 for some d > 0.

Proof. Let P satisfy PR(t,b,m,f). Choose a positive c such that
|log £(d")|<1 if 0 & "< c. Let 0<d< min(t,c). Then, by 3.25, for any n&N,
n>m, we have ¥ (d/n,P) & y(d ,P)+wP, hence rE(P) & y(d",P)+wP. Consequent-
ly, if w(d",P)< e for all > 0, then rE(P) « @ . - Clearly, if E(I*P)=
= oo for some d'>0, then y(e ,P)=c0 for all positive & £d”.

3.29. Fact. If x Z0, Exn<oo , H(x:n&N) < co , then, for any ¢ >
>0, there exists a positive & such that E(Lyn:ncN)e € whenever Oiyné
4x for neN and sup(yn:nt N) < d.

3.30. Fact. Let Pe % , let 4> 0 and let E(d* P)< oo . Then, for
any @ >0, there is an 7 > 0 such that E(d"» S)< € whenever wS < 7«
This follows easily from 2.15 and 3.29.

3.31. Fact. Let P={Q,Q , 4”& Y be partition-regular. Then, for any
¢ > 0, there is a > 0 such that, for any positive d < 9 and any S4&P,
rE(S) & w(d,5)+e .

This immediately follows from 3.25.

3.32. Proposition. Let P=<{Q,@ ,e? be a partition-regular W-space. If
rE(P) < 00 , then (1) rE(S) < a» for all S&P, (2) for any ¢ > 0, there is
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an m > 0 such that rE(S) < ¢ whenever S&£P, wS < 7.

Proof. The first assertion immediately follows from 3.26 and 3.28. - Let
¢ > 0. Choose a % > 0 satisfying the condition stated in 3.31. Choose a
positive d"< % . By 3.30, there is an n > 0 such that E(d*x S)< & when-
ever wS <m . Then, for any S&P satisfying wS < i , we have rE(S)&y(d",5)+
+© , ¥(d,5)&E(d % S)+L(wS), E(F* S)< € , hence rE(S) &2¢ +L( 7). This
proves the proposition.

3.33. Lemma. Let P=<Q,p,u>e @ be partition-regular. If rE(P)<ac
< @ , then there is a positive € such that rE(S) < a whenever S& P and
wiP-S)< &.

Proof. Let P satisfy PR(t,b,m,f). Choose <% >0 such that rE(P)< a-45
Choose d > 0 such that d'< b, y(d",P)< a-44% and wP.log £(d') < 1% . Choo-
se ¢ > 0 such that € t|log d’ |< &, [LWS)-L(wP)| < 2% if w(P-S) < & .
- Let S&£P, w(P-S) < & . Clearly, E(d'x S)£E(d* P), and hence ¥ (d,S) &
£E(x P)-wS.t|log & [+L(wS)= 4 (d",P)+w(P-S).t|log d’ |+L(WS)-L(WP) £
< y(d',P}+24% . By 3.25, we have, for any n>m, qr(d"/n,S)‘y(d',S)wlS.
.log £(&), so that y(d°/n,S) € y(d",P)+3* < a- 2% . Hence rE(S)=

lim y(d"/n,S)4éa-P> < a.
nvra

3.34. Lemma. Let P=<Q,@,w? be a partition-regular almost Borel met-
ric W-space. Let rE(P) < 00 . If S4P, 5,65, neN, and w(S-Sn)—’ 0, then
rE(S,) —» rk(s).

Proof. By 3.32, rE(S)< @ . If rE(S)= - @ , then the assertion imme-
diately follows from 3.33. Let rE(P)-aeR. Let ~* > 0. By 3.32 and 3.33, the-
re is an ¢ >0 such that (1) if T4S, w(S5-T)< © , then rE(T)<a+2>, (2) if
U4S, w = ¢ , then tE(U) < ¥ . Hence, for n sufficiently large, rE(Sn) <
< a+d rE(s-5.) < 2% . Since, by 3.9, rE(S,)+rE(S-S )=rE(S)=a, we have
rE(Sn)>a-19~ . Since >0 has been arbitrary, the lemma is proved.

3.35. Theorem. Let P= (Q,p ,&? be a partition-regular almost Borel me-
tric space. If rE(P) < @ , then the function X« rE(x.P), defined on dom &,
is &'-additive and bounded from above.

Proof. By 3.9 and 3.34 , the function Y ¢ rE(X.P) is €-additive. By
3,32, 3.33 and 3.9, it is bounded from above.

3.36. Definition. A metric 6 W-space P will be called totally bounded
if, for any €& >0, there is a finite e-covering of P.
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3.37. Proposition. If a metric W-space is totally bownded, then
E(fx P) < for all d'> 0. If, in addition, P is partition-regular, then
rE(P) < o0.

Praof. The first assertion is obvious. The second assertion follows
from 3.26 and 3.28.

3.38. Proposition. Let P={R",0,A> and let XcR", Xedom A , AX <
<00 . Let A consist of all sets of the form {x(Rn:zilrx.1< z;+1 for i=l,...
...,n} where (zl”“’zn)‘ Z", 7 is the set of all integers. Then rE(X.P)=0 if
H(A(AAX):A6R)< o , TE(X.P)=c0 if H(A(AAX):A&A)=c.

Proof. I. Let X be a cube [a,blm, Put S=X.P, c=b-a. Let m=1,2,... and
let d=c/m. If YCR", Yedom A , diam Y& d" , then evidently AY £48". Hen-
ce, by 1.22.3, for any dJ -partition (Yk:kc K) of S, we have H(A Yk:ksK) >
> -L(c™-c" log &". On the other hand, clearly, there is a dJ'-partition
(U :k@K) of S such that H(AU, :k€K)= " log &" -L(c™). This proves that

E(SxS)= " log & "=L(c") and therefore y(d ,5)=0 for d=c/m, m=1,2,... .
By 3.26, this implies rE(S)=0. - II. Let X be bounded. Let Q be a cube cont-
aining X. Let ¥ be the collection of all Y¢Q such that Yedom A , rE(Y.P)=
=0. By 3.35, the function Y ~»rE(Y.P) is &’-additive; hence ¥ is a 6™-al-
gebra of subsets of Q. By I, rE(Y.P)=0 whenever Y is a cube contained in Q.
Consequently, X contains all A -measurable subsets of Q and therefore
rE(X.P)=0. - III. Let XcR" be an arbitrary A -measurable set satisfying
H(A(AAX):AeA) < 0o . For m=1,2,..., let R denote the collection of all
cubes of the form {xe R":2™x ¢ A}, where A & A . Clearly, H(A (AnX):A s.l.m)c
< o . Hence, E( Ix (X.P)) < oo whenever &'=2™, me&N, and therefore

E(d’% (X.P))< oo for all d'» 0. By 3.26 and 3.28, this implies rE(X.P)< oo.
Consequently, by 3.35, the function Y w3 rE(Y.P), where Y&dom A , YcX, is
€-additive. Combined with II, this implies rE(X.P)=0. - IV. Let XcR", X &
edom A , H(A(AnX):AeA)=00 . Put S=X.P, Suppose that rE(S) < @ . Then,
by 3.28, E(I%S)<a for all & > 0. Let d'=1/3. By 2.15, there is a d”-par-
tition (Xy:k &€ K) of S such that H(A X ke K) €« oo . Clearly, for any k€K,
there are at most 2" sets A @ & such that X .n A#@. By 1.22.2 and 1.22.1,
this implies that H(A(anA):ktK,A CR)£H(AX, ke K)+nAX < oo . Since
H(AA:Ae A)& H(A (qu A):ké K,A ¢ R), we have got a contradiction.

4

4.1. Fact. Let P= (0,9 , M0 be a @W-space. Then there exists at most
one be ¥ such that the following condition holds: () for any neighborhood
G of b in R, there exists a pure partition P of P consisting of W-spaces and
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such that if (Sk:ch) is a pure partition refining 4° , then all rE(Sk)
exist, the sum Z(rE(Sk):ke K) exists and is in G.

Proof. Suppose that (x ) is satisfied for b=b; and b=b, where b, 4s b,.
Let Gi be a neighborhood of bi’ i=1,2, and let Gln [32=B. Then there are pure
partitions CPl and .’PZ consisting of W-spaces and such that Z(rE(Sk):ke
e K)e Gi whenever (Sk:k¢ K) is a pure partition refining :Pi. Let :Pi=
=(Xjy Pk 8K,), i=1,2. Put ijlek" x2j for ke K}, j&K,. Then E(rE(ij.P):
k6K, Je K2) 6G, Z(rE(ij.P):k¢ Kinje Kz)s 6,, which is a contradiction.

4.2. Definition. Let P=<Q,p ,u* be a @W-space. If there exists a be
& R such that the condition (%) from 4.1 holds, then this b will be denoted
by RE(P) and called the regularized residual entropy of P.

4.3. Proposition. Let P be a metric W-space. Assume that either (1)
RD(P)=0, or (2) P is almost Borel partition-regular and rE(P) < co . Then
RE(S)=rE(S) for all S4&P and the function X» RE(X.P) is € -additive.

Proof. In the case (1), the assertion follows from 3.18. In the case
(2), rE(S) exists for all S4P by 3.26, and X +> RE(X.P) is e -additive by
3.35. Let S4&P. It is easy to see that S is almost Borel partition-regular.
By 3.35, rE(S) <« @ . Hence X +»rE(X.S) is &-additive and therefore RE(S)=
=rk(S).

4.4. Proposition. If P=<R",@,A> and Xedom A , then RE(X.P)=0.

Proof. Put S=X.P. Consider the pure partition ¥ =({n,n+11.5:n=0,% 1,
...) of S. By 3.38, we get Z(rE(Uk):ke K)=0 for any pure partition (Uk:k [
&K) refining & .

4.5. Example. Choose a_ >0 such that a <1, Z(an:ns N) < o ,
ianllog anltao : Put X= {x &R :néxenva for some ne N§, P=X.{Rn,@‘ AY.
By 3.38, rE(P)=00 whereas, by 4.4, RE(P)=0.

4.6. Remark. By 4.3, there is a lot of spaces for which RE and rE coin-
cide. On the other hand, 4.5 provides a very simple example of a W-space for
which RE and rE are distinct and the behavior of RE is more reasonable than
that of rE. These facts, and even more the connection (see Section 6) with
the differential entropy (see 6.1) provide the motivation for introducing the
regularized residual entropy.

4.7. Proposition. Let P=(Q,@ ,p) be a & W-space. If RE(P) exists and
is finite, then all RE(S), S4P pure, exist and are finite.

Proof. If T« &€ 7), then § (T) will denote the collection of all pure
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partitions (Tk:kg K) of T (where, to avoid proper classes, K is taken from a
fixed collection of indexing sets). If g e ¢ (T), then & (T,’J‘o) will
denote the collection of all ¥ ¢ & (T) refining :r’o. - Let S=X.P4P. Let
G denote the collection of all G¢ R such that, for some ¥ e  (S),

= (rE(U, ke K) exists and is in G whenever (U :k&K)e % (S,%). Evidently,
all G ¢ Ct are non-void. It is easy to see that if 61,62 6 @ , then Bln Gze
€ G . We are going to show that & contains sets of arbitrarily small di-
ameter. This will imply that N(G:T e G- ) is a one-point set.

Put a=RE(P). Let & > 0 and let A be a neighborhood of a, diam A < & .

There is a ® & $(P) such that if (U :keK)e § (P,P), then Z(rE(Y):keK)e

A Put ¢ =(X.U:keK). If, for i=1,2, (YD :keK )6 $(5, ), then (1),
chi, and (Q\X).Uk, kq K, form, for i=1,2, a pure partition of P refining
P . Hence, = (rE(V‘((l)):keKih & rE(@ N X).U :ke K)& A for i=1,2, and

therefore | Z(rE(Vi((l)):kckl)- Z(rE(V&Z)):kc Kz)l < € . We have shown that
i(rE(Vk):kc K) exists for any (V, :ké K)& $ (S,9) and that the set of these
Z(rE(Vk):kt K) is of diameter &« & . Thus, we have proved that N(G:6 eg,)
contains exactly one point, say b. It is easy to prove that RE(S)=b.

4.8. Proposition. Let P=(Q,@ y? be a & W-space. Let (Xn.P:neN) be a
pure partition of P. Assume that, for any ngN, RE(Xn.P) exists. Then RE(P)=
= Z(RE(Xn.P):ne N), unless neither RE(P) ncr Z(RE(Xn.P):no N) exists.

Proof. Put an=RE(Xn.P). - Assume that Z(an:ncN) exists and put a=2'an.
Let G be a neighborhood of a in R. Clearly, there are neighborhoods Gn of 3
néN, such that if x &G, then Exne G. For any neN, let (Ynk:k.N) be a
pure partition of Xn.P such that if a pure partition (Zj:je N) refines (Ynk:
:k&N), then Z(rE(Zj):ja N) exists and is in 6. Then U =(Y_ :n&N,keN) is
a pure partition of P, and it is easy to prove that, for any pure partition
(T, :ke K) refining U , we have Z(rE(Tk):ksK)s G. This proves that a=RE(P).
- Assume that RE(P) exists and put a=RE(P). We are going to show that
Z(an:n eN) exists and is equal to a. Let G be a neighborhood of a; for any
neN, let Gn be a neighborhood of a,- Then there are pure partitions .'Bn:
=(Bnk.P:k6 N) of Xn.P, ne N, and .R,n=(Ak.P:k6 N) of P such that Z(rE(Un):
:ne N)q.Gn for any (Un:ncN) refining Jan, neN, and E(tE(Vn):nﬁN)aG for
any (Vn:ne N) refining R . Clearly, there is a pure partition (Zk.P:k( N) of
P refining A and such that, for any ngN, (Zk.P:keN,ch Xn) is a pure par-
tition of Xn.P refining .’Bn. Put Yo® Z(rE(Zk.P):kc N,chXn), y= E(rE(Zk.P);
:k & N). Then y= Zyn, yeG, y &G, . Since the neighborhood G (of an) and G
(of"a) have been arbitrary, this proves = a =a.
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4.9. Proposition. Let P=<Q,p ,w> be a & W-space. If RE(S) exists for
each pure S&P (in particular, if RE(P) exists and is finite), then the func-
tion X +» RE(X.P), defined on dom & , is €-additive and absolutely continu-
ous with respect to e .

This follows at once from 4.8 and 4.7.

4.10. Definition. A & W-space P= (Q,@ »a? will be called (1) RE-regul-
ar if there are pure subspaces Pn such that E(Pn:ns N)=P and, for each neN,
RE(S) exists for all pure S&P., (2) strongly RE-regular if all S£P are RE-
regular and the following continuity condition is satisfied:

(x) if S4P, 5,%5,,, %S for all neN and w(5-5 ) —» 0, then there are X, €
&« dom & , k&N, such that UX =Q, Xin Xj=(6 for i 4= j, and, for any keN,
RE(Xk.S) and all RE(Xk.Sn) exist, RE(Xk.Sn) —> RE(Xk.S).

4.11. Fact. Let Pe¢ € ) . If P is RE-regular, then so is each of its
pure subspaces. If P is strongly RE-regular, then so is each of its subspaces.

4.12. Fact. Let P¢ & %) and let (Pn:ncN) be a pure partition of P. If
each Pn is RE-regular (strongly RE-regular), then so is P.

Proof. The assertion concerning RE-regularity is evident. - Let Pn be
strongly RE-regular. Then, clearly, each subspace of P is RE-regular. Let Pn=
=Y,-P; we can assume that Y;n Yj=0 for i+ j. Let S&P, Sné smlss for all
meN, w(S—Sm)—> 0. Then, for each n, Yn.SmiYn.S“H_14 Y-S, “(Yn'S'Yn‘sm)"’
—~ 0 for m —» o0 , and therefore there are Xnkﬁ dom & , k€N, such that
U (Xnk:kaN)=Q, Xnin an=ﬂ for i4 j, and RE((Xnkn Yn).Sm)-—+ RE((Xnkn Yn),S)
for m — @ . Put 7 =X, nY_ . Clearly, U(an:(n,k)e N N)=Q, N Zij=ﬂ
for (n,k) #(i,j). This proves that the continuity condition from 4.10 is sa-
tisfied.

4.11. Proposition. If P={Q,¢ ,> is a strongly RE-regular € W-space
and £:Q —R_ is @& -measurable, then f.P is strongly RE-regular.

Proof. By 2.3, f.P is a 6 W-space. For neN put X= f{xeQ:n£f(x)< n+l}.
Put S=f.P. Clearly, Xn.SSn.(Xm.P). By 4.11, Xm.P, hence alsd n.(Xn.P) is
strongly RE-regular. Therefore, by 4.11, xm.s is strongly RE-regular. Since
S= E(Yn:nc N), where Y0=XD, Yn+1=Xm1\ U(Xk:kén), S is strongly RE-regular
by 4.12.

4.14. Proposition. Let P={0,@ ,u7 be a & W-space. If there are strong-
ly RE-regular subspaces Pnl_-P such that E.(Pn:ncN)=p, then P is strongly
RE-regular.

Proof. Let P =f .P. Put X = {xeQ:f (x)>0%. Put g (x)=1/f (x) if x&X_,
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gn(x)=0 if xeQ \Xn. Then Xn'P=gn'Pn’ hence, by 4.13, each Xn.P is strongly
RE-regular. Put Y0=X0, Yn+1=xn+1' U(Xk:kén). Then P=S(Yn.P:neN), Yn.P=
=Yn.P), hence Yn.P are strongly RE-regular. By 4.12, this implies that P is
strongly RE-regular.

4.15. Lemma. Let P=<Q,® ,m” be a metric W-space. If RD(P) < co , then
there is a pure partition (Pn:ne N) of P such that all Pn are totally bounded.

Proof. Since RD(P) < oo , there is a pure partition (Sn:neN) of P such
that the Rényi dimensions Rd(Sn) exist and are finite. Let neN. Since Rd(Sn)c
< oo , there exists, for any k=1,2,..., a (Z'k)—partition (X(n,k,3):jeN) of
5, such that H(F,X(n‘,(k,j):je N) < oo . For any n and k choose m(n,k) such that
F(Y(n,k))> @« Q-27", where Y(n,k)=U(X(n,k,3):3¢m(n,k)). For teN put
Z(n,t)=N(Y((n,k):kZt). It is easy to see that all Y(n,k).P are totally boun-
ded and @ ( U(Y(n,k):neN,ke N))= & Q. From this, the assertion follows at
once.

4.16. Proposition. Let P= (Q,Q »@«) be a metric W-space. If P is almost
Borel partition-regular or RD(P)=0, then P is strongly RE-regular.

Proof. By 4.14 and 4.15, it is sufficient to prove the proposition under
the assumption that P is totally bounded. - tnder this assumption, the conti-
nuity condition from 4.10 is satisfied; this follows from 3.34 and 4.3 if P
is partition-regular, and is an easy consequence of 3.28 if RD(P)=0. Since,
by 4.3, RE(S) exists for all S<P, we have shown that P is strongly RE-regu-
lar.

4.17. Remarks. A) I do not know whether every RE-regular 6&W-space is
strongly RE-regular. - B) If a 6 W-space is given, it can be quite difficult
to decise whether it is strongly RE-regular. Therefore we introduce (see 4.18)
a fairly wide class of € W-spaces contained in that of strongly RE-regular
ones and defined in terms not involving the behavior of RE.

4.18. Definition. A metric 6 W-space P will be called piecewise parti-
tion-regular if it has a partition (Pn:n‘ N) such that all Pn are partition-
regular W-spaces.

4.19. Theorem. Every piecewise partition-regular metric 6 W-space is
strongly RE-regular.
This is an immediate consequence of 4.16 and 4.14.

4.20. Fact. Every subspace of a piecewise partition-regular € W-space
is piecewise partition-regular. If P is a & W-space, P= Z(Pn:nsN) and all
Pn are piecewise partition-regular, then so is P.
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4.21. Fact. If P=<Q,@ ,u”> is a piecewise partition-regular 6 W-space
and f:Q —>R+ is @-measurable, then f.P is piecewise partition-regular.

Proof. Put X =ixeQ:n £f(x)< n+1}. Clearly, Xn.(f.P)s (n+1)P,
’Z(Xn.(f.P))=f.P. By 4.20, this proves the assertion.

4.22. Proposition. Let(0,9> be an m-dimensional Cl-submanitold of so-
me R" (endowed with the £,o -metric). If P= (0,9 ,(«,> is a & W-space and
RD(S)=m for all non-null pure S4P, then P is piecewise partition-regular.

This is an easy consequence of 3.24 and 4.20.

4.23. We conclude this section with some simple facts which will be used
later and an example of a partition-regular space P for which X w» rE(X.P) is
not additive.

4.24. Fact. Let <(Q,@> be a €-bounded measure space and let T be thick
in<Q,@? . If o neN, are measures on T and Evn= T, then there exist
measures @ on Q such that Z(Ln= & , V= @, [T for all neN.

Proof. If Xedom o , put pnx= ’Pn(XnT). It is easy to see that
g @y M7= 2y
4.25. Proposition. Let P= (Q,ga ,u? be a.-W-space and let T be thick in

{Q, «? . Let @ be one of the functionals Rd, RD, rE. Then ¢ (P)=@(P FT) un-
less neither @ (P) nor @(PIT) exists.

Proof. I. If ¢ =Rd, then the assertion follows from 2.18. - II. Let @-=
=RD and assume that ¢ (P) exists. For any partition (Pn:ne N) of P,
(PnI‘T:neN) is a partition of PPMT; by I, Rd(PnP T)=Rd(Pn) whereas Rd(P) ex-
ists. This proves RD(P I T)=RD(P). - III. Let @ =RD and assume that @ (P T)
exists. If (Sn:nsN)=((T,@ ,;>n):n eN) is a partition of P T, then, by 4.24,
there is a partition (Pn:neN) of P such that Sn=Pan, hence, by I, Rd(Pn)=
=Rd(5n) provided Rd(Sn) exists. This proves that RD(P)=RD(P ¢ T). - IV. The
assertion concerning rE is an immediate consequence of II, III and 2.18.

4.26. Proposition. Let P= (Q,ga ;2 be a € W-space and let T be thick
in {Q, «” . Then (1) RE(P)=RE(P P T) unless neither RE(P) nor RE(P IT) exists,
(2) P is RE-regular (respectively, strongly RE-regular) if and only if so is
PMT.

Proof. The assertion (1) follows from 4.25 and 4.24. The assertion (2)
is an easy consequence of (1) and 4.24.

4.27. Proposition. Let P=¢Q,@,u> and S= {0, @ ,»” be weakly Borel me-
tric W-space. Assume that there is a measure 7 such that both @ and ¥ are
faithful extensions of n - Let ¢ be one of the functionals Rd, RD, rE.
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Then (1) for any d'>0, Hd(P)=HJ(S), (2) < (P)=¢(S) unless neither @ (P) nor
g(S) exists.

Proof. 1I. Clearly, it is sufficient to consider the case =& , 9=
» . Furthermore, if we put n’X= @ X whenever X & dom g N dom » , then
m’ is a measure, 7M’'> % and both @ and » are faithful extensions of 5"
Hence we can assume that dom % =(dom @)A (dom» ). - II. If (Xn:ne N) is a
d"-partition of P, then there are Yns domn such that eu.(Xn A Yn)=D, hence
@an= len. Put Vn=Ynn7;1. Clearly, diam Vn &d Vne dom . It is easy
to see that 7V = @X and 7 (V;n Vj)=0 whenever i #sj. Put Z =V \U(V:
tk £ n). Then (Zn:n eN) is a d-partition of S, »Z = @X,. This proves that
HJ(P)?.'HJ(S). The proof of HJ(S)Z HJ(P) is analogous. - III. The proof of (2)
is analogous to that of 4.25 and can be omitted.

4.28. Proposition. Let P= (Q,q; see? and S= <Q,p ,»? be weakly Borel
metric W-spaces. Assume that there is a measure % such that both g and »
are faithful extensions of % . Then (1) RE(P)=RE(S) unless neither RE(P) nor
RE(S) exists, (2) P is RE-regular (respectively, strongly RE-regular) if and
only if so is S.

Proof. The first assertion follows easily from 4.27 and the fact (which
is easy to prove) that every pure partition (Tn:ne N)of P or of S is of the
form (Xn.P:n‘N) or, respectively, (Xn.S:n & N) where X € dcm 7, . The asser-
tion (2) is an easy consequence of (1).

4.29. Fact. Let P=<Q,@ ,w 2> € 7Y and let beR . If rE(P) exists, then
rE(b.P)=b.rE(P)+wP.L(b). If RE(P) exists, then RE(b.P)=b.RE(P)+wP.L(b).

Proof. For any d"> 0, we have y(d",b.P)=E( "% (b.P))-RW(b.P)|log J" | +
+L.(b.wP)=b.E(d % P)-b.RW(P)|log o’ |+b.L(wP)+wP.L(b)=b?(d',P)+wP.L(b). This
proves the first assertion. The second assertion is an easy consequence of the
first.

4.30. Example. Let Q=10,11, P=(Q,@ ,bA? . Let ScQ and let both S and
T=Q\ S be thick in {Q,AY . Define @ as follows: if XcQ, YnSedom( A} S)
and XnTe dom(APT), put @X=(( AtS)(XAS)+( AT T)(XAT))/2. Clearly, @ is
a measure, @ 3 A PQ, P'=(Q,Q , 47 is a partition-regular weakly Borel met-
ric W-space. Obviously, HJ(P')iﬂd(P) for all J > 0; consequently, y(d’,P')é
%« y(d,P) for all 'J > 0. Since, by 3.26, rE(P") exists, and, by 3.38, rE(P)=
=0, we get tE(P )& 0. On the other hand, since both S and T are thick in
<Q,A> , we have, by 4.25 and 3.38, rE(P PS)=0, rE(PT)=0. Since @ S=
=(AMS)/2, @b T=(AP T)/2, we get, by 4.29, tE(P PS)=w(P } S).L(1/2)=.(1/2)=
=1/2, and similarly rE(P P T)=1/2. Since, by 4.25, rE(S.P")=rE(P"IS),
rE(T.P")=rE(P "} T), we get rE(S.P )+rE(T.P")=1 whereas rE(P )4 0.
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5

5.1. Fact. Let P=£Q,@ , @Y be a6W-space. Then there is at most one
function (mod @) F=If3e such that (%) t is g-measurable and the functmns
X > RE(X.P) and X+ fy F d g coincide.

Proof. Suppose that both F= [f]" and G=Igl, satisfy (#) and F4G. Cle-
arly, either (1) @ix €Q:£(x)>g(x)¥>0 or (2) @Ax e Q:1(x)<g(x)}>0. It is
sufficient to consider the case (1). Then there are reals r and s and an X €
& dom & such that 0< @X<o0 and £(x)» r »s>g(x) whenever xeX. Clearly,
both [, fd@and f, gde exist, hence, [ fd w=RE(X.P)= [} gde.This is a
contradiction smce} fduZr.wX, fX gd @ £s. M X.

5.2. Definition. If P=<0,@ ,.? is a &W-space, then F e F[w) satis-
fying the condition (x) from 5.1 will be called the residual entropy densi-
ty or the RE-density of P and will be denoted by W (P) (or WT®3(P) if there
is a danger of confusion with the dimensional densities introduced in (6], 4.1
and 4.9). If no F satisfying (%) exists, we will say that (P) does not

exist.

5.3. Proposition. A €W-space P is RE-regular if and only if WV/(P) ex-
ists.

Proof. I. Let P= <Q’S° ,&? be RE-regular. Then there are pure subspaces
Pn=An.P, né N, such that EPn=P and, for each n&N, RE(S) exists for all pu-
re S&Pn. We can assume that UAn=Q, Ain Aj=ﬂ for i 4= j. By 4.9, for any ne&
& N, the function XHRE(x.Pn), defined on dom & , is 6-additive and abso-
lutely continuous with respect to g . Hence, by 1.14, there are @ -measura-
ble functions fn:Q —> R such that RE(X.Pn)= fX fnd(b for all Xedom ge . Sin-
ce X.Pn=(XnAn).P, we can assume that, for each n, fn(x)=0 if xeQ\ An‘ For
any x&0Q, put f(x)= Z(fn(x):nGN). Clearly, for any Xe&dom & , fx fda-=
= Z(RE(X.Pn):neN) provided either the sum or the integral exists. Since, by
4.8, RE(X.P) exists iff the sum Z(RE(X.PH):ne N) exists, we have shown that

T(P)= (fle . - II. Assume that V(P) exists; let V(P)= (gl . Put K={k e
6R:|k|leN U {0t} If keKnR, put B = {x€0:k 4g0x)< k+13; if k= ‘o , put
Bk= {xeQ:g(x)=k}. It is easy to see that, for each k€K, RE(S) exists for all
pure S‘Bk.P.

5.4. We use the following conventions (cf. (61, 4.2). - A) If we M(Q),
feF(Q) and g « F(Q) are @-measurable, F= [fle , G= [gla , we put £.6=
=F.G= [fgl, , where »=f.@ . - B) Let w & M(Q), «(n)e M(Q), neN. Let
(= Z@(n). Assume that, for each n&N, @(n)=Y_ . s for some Y_edom & .
IfFe¥ Lw(n)1, neN, then =F,, is defined as follows. Choose X(n) 4 dom &,
neN, such that UX(n)=Q, X(i)A X(j)=@ if i == j, and @&(n)=
=X(n). @ for all n. Choose f_ such that F = [t ]!"(”)’ for
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x ¢X(n), put £(x)=f (x). Put iFn= [fl‘w .

5.5. Fact. Let P=<Q,@ T R & @) be RE-regular. Then (1) for any
Xedom @ , V(X.P)=iy. V(P). (2) It (P_:n€&N) is a pure partition of P, then
v(P)= = ( V(Pn):nc N).

5.6. Fact. Let P= <Q,9 ,M? be an RE-regular & W-space and let be&R be
positive. Then V(b.P)= W¥(P)-log b.

Proof. Clearly, there are Xng dom @ , ne N, such that UXn=Q and all
RE(Xn.P) exist, hence RE(S) exists whenever S is a pure subspace of some Xn.P.
Let Yedom s , Yc Xn for some n. By the definition of the RE-density,
RE(b.Y.P)= [\ @(b.P)d(be), RECY.P)= [ ¥(P)d @ . By 4.29, RE(b.Y.P)-
=b.RE(Y.P) + @Y.L(b). Hence [y V(b.P)d(bu)=b f| V(P)dw = f, L(b)dg and
therefore fY V(b.P)d @ = fY ( 7 (P)-log b)d . Since Yc X  and neN have
been arbitrary, this proves the assertion.

5.7. Fact. Let P= (Q,? @2 be an RE-regular € W-space. Let f:Q—»R_
be @& -measurable and let f(Q) be countable. Then WV (£.P)=(sgn £). V(P) -
- (sgn 1).1og £, RE(£.P)= [(f. W(P)+Le f)d @«

This follows easily from 5.5 and 5.6.

5.8. Lemma. Let P=(Q,9 ,fg) be a strongly RE-regular W-space. Let S=
=f.P4P, 04f(x)%1 for all xe Q. Assume that RE(S) exists and one of the fol-
lowing conditions is satisfied: (a) V(P) is bounded, (b) V(P)= e , (c)

V(P)= ~a . Then
(1) RE(S)= [(f. V(P) + Lef)d @&,
(2) V(S)=(sgn £). V(P)-(sgn £).log f.

Proof. Clearly, we can assume that f(x) >0 for all xeQ. It is easy to
see that there are Fz—measurable functions fn’ n €N, such that all fn(Q) are
countable, Oéfnﬁfnd{.f for all neN, and f(f—fn)dg.—v 0 for n —» oo .
Put S =f_.P. Since w(S—Sn)—-b 0, and P satisfies the continuity condition from
4.10, there is a partition (X(k):k@N) of Q such that all X(k) are in dom
and, for any k, RE(X(k).Sn)—’ RE(X(k).S) for n —» c© . By 5.7, we have, for
any k& N, n@N, RE(X(k).Sn)= fx(k) (fn.V(P)+ Le fn)d @ - - Consider the
case (a). Since WV(P) is bounded, it is easy to see that, for any k,

Sxo G- PP +Lot ) dw — [y (£ P(P)sLet)d@ for n—> @ , hen-
ce RE(X(k).S)= fX(k) (f. V(P)+Lef)da . Since RE(S) exists, we have RE(S)=
= E(RE(X(K).S):keN)= f (£. V(P)+Lef)d @ . - Consider the case (b). Then,
for any k& N, we have, for large n, fX(k) (f. V(P)+Lof)d @ =00 , RE(X(k).
.S,)= @ . This implies RE(X(k).S)= oo . Since RE(S) exists, we get RE(S)= co.
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Clearly, f(f- V(P)+Lof)d w =o0 =RE(S). In the case (c), the proof is an-
alogous. - We have proved the formula (1). The formula (2) is an easy conse-
quence.

5.9. Theorem. Let P= (Q’G’ ,@> be a strongly RE-regular @W-space. Let
£:Q =R, be m@-measurable. Then

(1) RE(£.P)= [(f. V(P)+Le £)dm , unless neither RE(f.P) nor the inte-
gral exists,

(2) V(£.P)=(sgn £). V(P)-(sgn f).1log f.

Proof. I. Consider the case of 0&f(x)£1 for all xeQ. Let W(P)= [g]‘,‘;
Put K= {k aR: |k| € N U {03}, If keK, |k|eN, put A= €x8Q:k bg(x) e k+lf; if
=X , put Ak= {x 6 Q:9(x)=k}. Choose a partition (Bn:nsN) of Q such that
all B .P are W-spaces. If u=(k,n) e N=x N, put V(u)=Akr\ B, - By 5.8, for any
ueNxN, V(V(u).P):iV(u).(sgn ). V(P)-iv(u).(sgn f)log f. This impliesy by
5.5, the formula (2); the formula (1) is an immediate consequence. - II. Con-
sider the general case. For né&N, put X(n)= {xeQ:n&f(x)<n+1}. By I and 5.5,
we have V(X(n).f.P)=ix(n).(sgn ). V(P)—ix(n).(sgn f).log f. By 5.5, this
implies WV (f.P)=(sgn f). V(P)-(sgn f).log f.

5.10. Corollary. Let a be a measure on Rn, n=1,2,..., absolutely con-
tinuous with respect to the Lebesgue measure A . If f=d w/dA and, in ac-
cordance with 1.19, P is the &£, -metric on R", then

RECR",@ , 2= - [ £ log f da,

unless neither RE ¢ Rn,ge ,&» nor the integral exists.

6

In the classical setting, which stems from C.E. Shannon [111, the diffe-
rential entropy is defined for probability measures g on R" possessing a
density p and is equal to - f p log p dA . This concept can be easily exten-
ded to a considerably more general situation (see 6.1 below). We intend to
show that the differential entropy and the regularized residual entropy are
equivalent in a sense made precise in 6.9 and 6.10 below. Roughly speaking,
under certain conditions, (1) if g and » are measures on Q, then there is a
metric « on Q such that, for any measurable g:Q—+ R N the differential ent-
ropy of the pair {g.&,» ? is equal to REQ,~,d. &>, (2) it<Q,p@ ,ee2is a
W-space, then, for any measurable g:Q —> R, RE(Q,Q ,0.& 2 is equal to the
differential entropy of {g. e, »? where » does not depend on g.

6.1. Definition. If w and » are €-bounded measures and g is absolu-
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tely continuous with respect to » , then the integral fLOD(y.,v] d» ,
provided it exists, will be denoted by DE{, » ? and will be called the dif-
ferential entropy of @ with respect to » (or of the pair @ ,»?).

Remark. If g is a probability measure on Rn, possessing a density p
with respect to A , then the differential entropy DE{ @ ,AY 1is equal to
- fp log p dA , i.e. to the differential entropy in the usual sense.

6.2. Definition. Let<Q, «> be a measure space. The space {Q, «? and the
measure w will be called strongly separable if there exists a countably gene-
rated 6-algebra A cdom m satisfying the following conditions: (1) QN\{xe
eQ:{x3e A% is a w-null set, (2) @ is a faithful extension of wt A.

6.3. We are going to show that a strongly separable 6-bounded measure
space {0, w? can be equipped with a metric # such that V<Q,x,«?»=0. To
this end, we shall need some lemmas.

6.4. Lemma. Let MCR be bounded. Let » be a finite measure on M such
that BM)cdom» , wM>0, »4x}¥=0 if xe M. Then there exist sets TeM,
ScR and a bijective mapping f:T—%> S such that (1) Tedom » , »(M\T)=0,
(2) 3= [0, M), S is thick in<3,a> , (3) YeR(S) iff £ 1y e BT, (8) if
Y e B(S), then »(£IN=(atS)(Y).

Proof. Let G be the largest open (in R) set such that »(GaM)=0. Let
(Jk:keK) be the partition of G into open intervals. Put T=M \U(j'k:kaK).
Clearly, + (M\T)=0. Put a=inf T. For xeT let f(x)= »((a,x)AM). Put S=
= ££(x):x ¢ T§. - Suppose f(x)=f(y) for some x,y €T, x sey. Then »((a,x) n
AM)= »((a,y)aM), hence »((x,y)aM)=0 and therefore x,y& V\T, which is a
contradiction. We have shown that f:T—» S is bijective. It is easy to prove
that S= L0, .MJ. - Now we are going to show that (%) if J=(u,v)c’S, then

9(1'1(3))= A J. Clearly, it is sufficient to prove (%) for the case when
u,veS. Let u=f(b), v=f(c). Obviously, »(t713)= »((b,e)nT)=»((a,x)AT)-
- » ((a,b)A T)=£(x)-f(b)=v-u= A J. - Suppose that S is not thick in 5. Then
7\e(5) < PM, hence there is an open set G¢S such that G2S, AG < » M. By
(%), we get » (£716) < » M. Since £716=T, this is a contradiction, which
proves that S is thick in {5,A > . - Clearly, f:T—» S is continuous and the-
refore Ye¢ $(S) implies f_lYgﬁ(T). On the other hand, if Uc T is open, then
f(U) is Borel in S; this proves that Y ¢« 3(S) whenever f'ch A(T). - To pro-
ve (4), it is sufficient to show that if JeS is an open interval, then
v(f-13)=($r S)(InS). By (&), we have » (f-lJ)= A J. Since S is thick,
we have, by 2.17, A J=(A}S)(InS).

6.5. Lemma. Let <Q, w?” be a strongly separable bounded measure space.
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Assume that e £x3=0 for all xeQ. Then there are sets Q'€ Q, McR and a bi-
Jjective mapping < :Q°—» M such that, with »=( &f0Q") oq'l, we have (1)
Qedom w , @(Q\Q)=0, (2) B(Medom» , (3) M is bounded, (4) » is a
faithful extension of » ¢t RM).

Proof. Let R ¢ domg be a countably generated 6 -algebra satisfying
(1) and (2) from 6.2. Let X(n) be a sequence of sets generating £ . Let
Uedom g , @ U=0, be such that £x¥ ¢ A whenever x€Q\U. Put Q'=Q\U. For
X(n)* For x€Q  put g(x)=(gn(x):ns N). It is easy to show that
g is an injective mapping of Q  into the topological space 2%. Let A® de-
note the ©-algebra consisting of all AnQ , where A ¢ A . Clearly, for any
Beg(Q), o lBe A* iff BeB(g(Q')). Let h:2® —» R be a homeomorphism; put
g =heg, M= g (Q"). If BeB(M), then "B e B(g(Q'), hence o 1B« A*c
¢ dom @ and therefore B¢ dom » . If Y6 dom» , then 9'1chcm(pl‘ﬂ'),
hence there is a set V & A* such that (¢ _lY) AV is @-null. Clearly,
Yag (V) is »-null and ¢ (V) is Borel in M. Thus, the condition (4) is sa-
tisfied. This proves the lemma since, evidently, M is bounded.

neN, put gn=i

6.6. Proposition. Let<Q, w”> be a strongly separable &-bounded measure
space. Assume that @4x}=0 for all x€Q. Then there exists a set Q*¥cQ, a
set SCR and a bijective mapping § :0*—» S such that, with % =( wFQ*)e
@1, we have (1) 0% € dom @& , @ (Q\G®)=0, (2) S is thick in¢T, Ay, and
if wQ<oo , thenS is an interval of length @Q, (3) B(S)cdomn , (4)
7 8=(A P S)(B) whenever B & B(S), (5) 9 is a faithful extension of 3 J(S).

Proof. I. Assume that @ Q< oo . Let Q', M, ¢ and » be as in 6.5.
Then, by 6.4, there are sets T&M, SCR and a bijective mapping f:T— S with
properties described in 6.4. Put Q¥ = q'l(T). For xe Q¥, put Q(x)=f(9(x)).
Put n =(@fQ®) e Q-l. It is easy to see that the conditions (1) - (5) are
satisfied. - II. Consider the general case. Let ([Jn:ncN) be a g-measurable
partition of Q such that all an are finite. Choose disjoint closed inter-
vals J € R such that AJn > @Q . It follows easily from I that there are
Q; eQ,, s,eJ, and Qn:Qrf-—-y S, such that, for each neN, Q;‘ » Syand @
satisfy, with respect to @U@, the conditions (1), (3) - (5) as well as the
condition (27) S, is thick in{T , A% .Put Q%= UQY, S=US,, & ()= & ()
for on’r': . It is easy to prove that Q*, S, § satisfy (1) - (5).

6.7. Theorem. Let<Q,w? be a strongly separable 6 -bounded measure spa-
ce and let (-L{xhﬂ for all xe Q. Then there exists a metric ® on Q such that
P=<Q,%®, 7 is a strongly RE-regular &W-space and V(P)=0.

Proof. Let Q*, S, & and 7, be as in 6.6. Choose an aeQ¥. If x,ye 0¥,
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put w(x,y)= @(§x,&y). If x,yeQ\NQ*, put ®(x,y)=1 if x #y, (x,y)=0
it x=y. If x€0Q*, yeQ\Q*, put ®(x,y)= @w(y,x)= @(Pa,§x)+1. Clearly,
~ is a metric on Q. By 4.4 and 4.26, P1= (S,p, Al Sy is strongly RE-regu-
lar, V(P1)=0. Hence, by 4.28, P,= ¢S,@ ,n> is strongly RE-regular, V(P2)=
=0. Since & :<0* ,7r, wtQ*> — {S,p, 77 preserves both metric and measu-
re, P*={Q%, v, wFQ*> is strongly RE-regular and V(P*)=0. Since w(Q\
\Q*¥)=0, this proves the theorem.

6.8. Proposition. Let & and » be &-finite measures on Q and let m
be absolutely continuous with respect to » . Let(Q,(b ,» 2 be a strongly RE-
regular & W-space and let V(Q,@ ,»? =0. Let P=<Q,¢ ,&? . Then,for any
(v-measurable g:Q—»R_,

DE<g.e,» 2 =RE(g.P),
unless neither DE(g.p,v? nor RE(g.P) exists.

Proof. Let (£}, =D[e,»]. Put P'=<Q,@,» > . If [Lo(gf)d» exists,
then (1) evidently, DE{g.a,»? =fLoe(gf)d» , (2) due to (P")=0, we ha-
ve, by 5.10, RE(gf.P")= fLe (gf)d» , hence RE(g.P)=fLe (gf)d» . If
fL o (gf)d» does not exist, then it is easy to see (using 5.10) that neith-
er DE {g.a,»> nor RE(g.P) exists.

6.9. Theorem. Let @ and » be @-finite measures on a set Q and let ~
be absolutely continuous with respect to » . Let » be strongly separable
and let »{x3}=0 for all x€Q. Then there exists a metric & on Q such that
P=<Q,%T, &Y is a strongly RE-regular € W-space and, for any g -measurable
g:Q—R_,

DE(g. & , »)=RE(g.P),

unless neither DE(g.&,» ) nor RE(g.P) exists.
This follows easily from 6.7 and 6.8.

6.10. Theorem. Let P=<Q,@, «? be a strongly RE-regular & W-space and
let - 00 <« V(P)< 0 . Put » =2 P . & . Then, for any @:—measurable g:
Q—> R+,
RE(g.P)=DE<g.ee,» 2,
unless neither RE(g.P) nor DE g.e,n?” exists.

Proof. Put £=29"), P'=¢0,@,»> . By 5.10, we have T (P')=T(P)-
-log f£=0.Hence,again by 5.10, if RE(g.P) exists, it is equal to RE((g/£).P )=
=fLe(g/f)d» . On the other hand, #f DE (g.s.»¥ exists, then it is equal
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