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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

ALTERNATING CYCLES AND REALIZATIONS 
OF A DEGREE SEQUENCE 

Z. MAJCHER 

Abstract: We find an algorithm for constructing finite sequences of cer­
tain graphs (realizations of a degree sequence on a given set) with given i-
nitial and final graphs such that each subsequent graph is obtained from the 
preceding one by a sw i t ch ing . 

Key words: Graph, realization of a degree sequence. 

Classification: 05C99 

°- Introduction. In this paper, we deal with finite, undirected graphs 

admitting multiple edges and loops and we also consider some special types 

of graphs, e.g. graphs without loops, k-graphs, simple graphs. 

We are interested in the class ^ y(d) of all graphs being realizations 

of a degree sequence d on a given set V. The class IRy(d) is closed under 

switching operation (see [2]). 

One of the most important properties of the class iRy(d) is contained 

in the following 

Theorem. If G,H eIRy(d), then there exists a sequence 

(*) G°,G1l...,«f
l such that G°=-G, G^H and for every s eto,l,.. .,m-ll the 

graph Gs is obtained from Gs by a sw i t ch ing . 

Several proofs of this theorem were presented in the l i t e r a t u r e . In tho­

se proofs different methods have been used for different types of graphs 

(see [l3,[3],U],C63), Our aim is to find a method of the proof which is ef­

fective, uniform and optimal. In this paper an algorithm for constructing 

the sequence (*) is given. This algorithm can be applied to all types of 

graphs mentioned above. It can generate a shortest sequence (*), however, 

in general, solutions are not optimal. 

Our method is partially based on ideas contained in 153. Namely, we make 

use of the fact that the symmetrical difference G~H of two graphs G,He tRy(d) 

can be decomposed into alternating cycles of some special forms. Therefore, 

we have to prove several properties of alternating cycles. 
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1. The set of realizations of a degree sequence and its subsets. Let V 

be a finite set. We denote bv t/2) the family of all non-empty subsets of V 

having at most two elements, and by Z+ - the set of all positive integers. 

A graph is an ordered pair (V,E) satisfying the condition: 

(1) V * 0 and E Srt/ 2 )xZ +. 

If eeE and e=({u,v},n) for some u,veV and neZ +, then the edge e is 

incident with u and v and has the label n. 

We shall write e=unv instead of e=0Cu,v$,n), and e=vnv instead of e= 

=«vi,n). 

Let G=(V,E) and u.veV. We denote by E ^ C v ) , --£2)(v) and EG(u,v) the 

set of all loops incident with v, the set of all edges incident with v and 

different from loops, and the set of all edges incident both with u and with 

v - respectively. 

The number degG(v)=2|E^
1)(v)|+|E^2)(v)| is called the degree of v in G 

and the number mG(u,v)=|EG(u,v)| is called the edge multiplicity of iu,v/ 

in G. 

A graph G=(V,E) is a multigraph if E G (v)=0 for every veV and G is a 

k-graph (keZ +) if mG(u,v)-*k for every u,veV. A k-multigraph is a multi-

graph being a k-graph. A 1-multigraph is called a simple graph. A graph 

without any restrictions will be called sometimes a pseudograph. The class 

of pseudographs will be denoted by <P , the class of multigraphs - by Ji , 

k-graphs - by 3*^, k-multigraphs - by M^ and simple graphs - by if . If X 

is a class of graphs and G e X , then we say that G is of type X . 

Let G=(V,E) be a graph where V= -\ v, ,v2,... ,v \. A sequence dG of the 

form 

(2) dG=(degG(v1), degg(v2),...,degG(vn)) 

is called the degree sequence of G. 

A sequence d=(d,,d?,...>d ) of non-negative integers is graphic if there 

exists a graph G such that d=dr. Such a graph is called a realization of d. 

Let (w1,w2,w3,w4) be a sequence of vertices of a graph G=(V,E) satisfy­

ing the following conditions: 

1 w l^ w 3 a*10* w 2* w 4' 
2° there exist n1,n2,n3,n4€ Z+ such that 

e l = w l n l w 2 e E ' e3=w3n3w46 E a n d e r * e 3> 
e2=w2n2w3 4 E, e 4 =w 4 ry^ E a n d e 2 * e4' 

Let us denote: 
B(e ,e ,e ,e )<y<ť) } M i e E ' = < E N < e r e 3 * ) u t e 2 - e 4 * 



We say that G(e ,e2,e3,e4) is obtained from G by a switching operation 

with respect to the edges e^e-j and g»2,e4. 

We shall write G{»v*2t*v» ) instead of G(ere2>e3,e4)
if tne switching 

operation has been done in the following way: 

if w1=w2 and w3=w4, then
 nx=mrj(w1,w1), n3=mG(w3,w3); 

V V W 1 ' W 3 ) + 1 » n4=mG(w3,w1)+2; 

if wx=w4 and w2=w3, then
 ni=mG(w1,w2), n3-

:mG(w2,w1)-l, 
(3) n2=mG(w2,w2)+l, n ^ n ^ W p W - M ; 

in the remaining cases n,=mG(WpW2), n3
smG(w3,w4), 

n2=mG(w2,w3)+l, n4=mG(w4,w1)+l. 

If G' is obtained from G by some switching operation, then we also write 

shortly G'=sw(G). 

Let d=(d1,d2,...,dn) be a graphic sequence, V= *VpV2,.. . ,vnJ be an ar­

bitrary n-element set and G=(V,E) be a graph. Let l\y(d) denote the set of 

all realizations of d on V, that is GetRy(d) if G is a realization of d and 

the following condition holds: 

(4) if mG(u,v)=s then Eg(u,v)=-lulv,u2v,. ..,usv] for every u,veV. 

It is obvious that if G e fty(d) and G ^ G ^ w u u \, then G'e R w(d). 
1* 2* 3' 4 

If the realizations of d are required to be graphs of a fixed type x , 

then the set of all realizations of d will be denoted by fl\y(d; -t). 

The above definition of a switching operation is suitable for the class 

of pseudographs. If we consider classes of other types, then this definition 

must be modified if we want the graph sw(G) to stay in the same class as G. 

For example we do not like to get loops in the class of graphs without loops. 

Therefore we have the following definitions: 

If *= ,M, then we substitute 1° by 3°: 

3 W I » W 2 » W 3 » W A are pairwise different. 

If t = ^ ^ j then we acid 4° to the conditions 1° and 2°; 

4 roG(w2,w3)<k, nv(w4,w,)<k. 

For t = -Mk (k .>2 ) we require conditions 2°, 3° and 4° to be satisfied. 

If t = $ , then we require conditions 2°, 3° and 4° for k=l. 

2. Operations on chains and cycles. Let G=(V,E) be a graph. By a chain 

in G we shall mean a sequence L=(u,n1u2,u2n2u,,...,u n u .) of pairwise 

different edges of G. If u,=u ., then we have a cycle. If the edge labels 

are immaterial, then we shall write L=u,u2.. «u u , for a chain and N ^ . . . 

•• u„f4 for a cycle. 
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We shall denote by V(L) and by E(L) the set of all vertices of L and the 

set of all edges of L respectively. We say that a vertex v is in the k-th po­

sition in the chain L=u-u2.. -um+1 if Uj<=v. Positions k, and k2, where k,4*k2, 

will be called compatible if the number |k,-k0| is positive and e v e n . 

We define the following operations on chains and on cycles: 

For L = u 1 u 0 . . . u m ,um we define: l L m-i m 

(5) t=u_um_1...u2Ul. 

For C=UjU_..•ui_iu_ui+i-•-
umul we define: 

(6) ^= uiVi--Vi u2--- ui-r 

Let L,=u,u0 . . . u . L0=w,w0...w. where u =w,. We define: 1 1 / w L \ L k m l 

(7) L 1 +L 2= U l U 2... V 2...w k. 

For L=u,u0...u. ,u.u. ,...u_, and C=w,w0...w.w,, where u.=w,, we define: l L l-l l l+l m 1 Z J 1 l 1' 

(8) L +. C=uxu2.. - u . ^ w ^ . . . W j W l y i + r .um. 

Let L=u,u0 . . .u . ,u .u . , . . . u m . We define: 
1 2 l - l l l + l m 

(9) L/i=(L1,L2),whsre Lj-u... - V i V h r V i + r -u
m-

Let L-u... •ui_iuiui+i- • -
ui_luiui+1'" "u m' wnere ui = uA. i<_- W e define: 

(10) L/i,j=(Ll'C)' wnere Ll=ul---ui-luiuj+l---um and 

C^u.^.-.u.^u.. 

In what follows, the last operation applied to cycles will play an essen­

tial role. 

A pair C/. -.=(£1 >C2) will be called a decomposition of C into cycles C, 

and C2 at positions i and j. A cycle C=u,...u u, is decomposable if there ex­

ist i,je{l,2,... ,ml, i-<j and C,, C2 such that (C-^C?)-^/* A. 

3. Alternating cycles and their decomposition. For two graphs G,=(V,E,), 

G2=(V,E2), the graph G,---G2=(V,E,---.E2) is the symmetric difference of G, and 

G 2 . A cycle C=(u,n,u2,u2n2u-5,... »urnnrnurn+,) of G,--~G2 is called an alternating 

cycle or briefly a-cycle if the following condition is satisfied for every 

i e * l , 2 , . . . , m } : 

(11) ui ni ui +i
& *-i if -- ->s °dd *-nc- ui ni ui +i

e^2 ^ * *s even-

Now we shall study Decompositions of an a-cycle into a - c y c l e s . 

Lemma 1. If G1=(V,E1), G2=(V,E2), then an a-cycle C of G1---G2 is decom­

posable into a-cycles iff there exists a vertex v which occurs in C at two 
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compatible posit ions . (Obviously, the first and the last vertex in a cycle is 
counted once.) 

Proof. The necessity follows from the definition of an alternating cycle 

and from ( 1 0 ) . 

S u f f i c i e n c e . Let C = u , u 2 . . .u*,vu*+,.. •u-l_l
vui+l* • •u2mul' ̂ nen there ex~ 

ists a decomposition C/^ .=(C,,C2), where C , = u - u 2 . . •ui.ivu-1+i • • •
u2mui' ^2 = 

=vui+l*' *ui-lv* ** ~ and ^ are D0*n odd» *nen **1 and ^2 are a~cyc*es» *-* * 
and j are both even, then C, and tL are a-cycles . 

Note that if v occurs in C more than twice, then obviously C is decompo­

sable into a-cycles, since C has always two compatible positions. 

If an a-cycle C is decomposable into a-cycles, we shall write briefly 
C is DAC, otherwise C is NDAC. 

Corollary 1 . An a-cycle C of a graph G^G,, is NDAC iff every vey(C) 
occurs in C either exactly once or exactly twice and at non-compatible posi­

tions . 

Let C=u,u 2 . . .u u, be a cycle in which for some i,j,k,lc il,2,...,m}, whe­
re i < j < k < l , we have u.=u.=u, u.=u,=v and u=-pv. Then we say that vertices u 
and v occur in C alternately. 

Lemma 2. Let C be an a-cycle of a graph G^G.-, and C be NDAC. If there 

exist u,veV(C) occurring in C alternately, then there exists an a-cycle C' 

such that V(C')=V(C), E(C')=E(C) and C' is DAC. 

Proof. Let C=u,...u....u....u. ...u,...u0 u,, where u.=u, =u and u.=u,=v. l i j k l Z m l ' l k 3 1 

Let C/. ^'(CIICQ^* We form an a" cy cI e c = c i + i % ' Since c.is NDAC> neither the 
positions i,k nor j,l are compatible. Therefore, C, and C2 are not a-cycles, 
however C' is an a -cycle . Let s be the position of u. in C . By the definiti­
on of C', we have s=i+(k-j), hence s+j=i+k. As s+j is odd, s and 3 are non-
compatible. Hence, s and 1 are compatible. Thus, by Lemma 1, we can conclude 
that C' is DAC. 

An a-cycle C is essentially non-decomposable into a-cycles, or briefly 
ENDAC, if C is NOAC and there are no two vertices occurring in C alternately. 

On the base of proofs of Lemmas 1 and 2 we can formulate an algorithm 

for the decomposition of an a-cycle into ENDAC cycles. 

Algorithm 1. 

INPUT: An a-cycle C=u,u2.. -U^JJ, of a graph G,~--G2. 
OUTPUT: The set € of ENOAC cycles such that E(C)= U E(D) . 

Dc€ 
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METHOD: 

C := 0; x:= 4; k:= 0 

F: if there exist i, j such that i<j-2, u .=u . and j>x 

then 

begin 

k:= k+1; 

jk:= the smallest j such that j^x and there exists i such that u.= 

=u. and i< j-2; 

ib:= the smallest i such that u . = u . and i<j-2; 

x:= jk+l 

if jk~ikis even 

then 

begin 

(Ck>Dk):= C/L ,i »C : = C u ^ ; C : = C k ; 

go to F K K 

end 

else 

if there is no y e$l,2,...,k~U such that i < L < j v<J k 

then go to F 

else 

begin 

s:= the smallest y €-.1,2,...,k-l^ such that i < i|<<Jv< Jk; 

4 = ="!-%' 4 = = W L3:=\-U4 L*"VV 
U5:=uJk--

un,uP 0k = =t:2+U4;C , - C ^ i C:- L ^ + U . ; 

go to F 

end 

end 

else 

begin 

C :*Cu*Ci; 

STOP 

end 

Let us denote by oc(v,C) the number of occurences of a vertex v in a 

cycle C. 

Lemma 3. If G,,G2 e M and C is an ENDAC cycle of G-^ G2, then the­

re exists xeV(C) such that oc(x,C)=l. 
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Proof . Assume that oc(v,C)>l for every vfeV(C). Since C is NDAC, by Co­

rollary 1, we get oc(v,C)=2 for every vcV(C). Let i and j (i<j) be the posi­

tions of v in C, and let C'=v...v be the subcycle of C taken from the i-th 

position to the j-th position. We shall show that C' contains a loop. Let 

1(C) denote the length of C'. We proceed by induction on 1(C). 

If 1(C')=1, then C'=vv is a loop. 

Assume that the statement holds for each subcycle C' of C with l(C')<s, 

s>l. 

Let l(C')=s. Since oc(w,C)=2 for every weV(C), there exists ueV(C') 

such that u + v. Since C is ENDAC, the vertices v and u do not occur alternate­

ly in C and consequently 1(C)>2, oc(u,C)=2. Then, by inductive assumption, 

there exists a loop in the cycle C"=u...u being a subcycle of C'. 

Thus we get a contradiction with the assumption that Gn,G2€ M, . 

Lemma 4. Let GifG2 c <P and C be an ENDAC cycle of G-^--^, 1(C)>. 4 and 
oc(v,C)=2 for every vcV(C). Then there exist x,yeV(C) such that L-=xxyy or 

L«=yxxy is a subchain of C. 

Proof. Let u, v be consecutive vertices of C and u^v. Since C is ENDAC, 

so C'=uv...v...u is a subcycle of C. We shall prove, by induction on k=l(C), 

that C' contains a subchain L,=xxyy or L2=xyyx. 

If k=3, then C'=uvvu. 

Assume that the statement is true for every k<s, s>3. 

Let l(C')=s. It must be: 1° C'=uv...v...u, 2° C'=uvv...u. 

Case 1°. Letw be the third vertex of C'. Then C' must be of the form C'= 

=uvw...w...v...u. Hence, by the inductive assumption, there exists in C"= 

=vw...w...v a subchain L, or L?. 

Case 2°. If 1(C')=4, then the proof is completed. Assume that 1(C')>4 and 

w is the fourth vertex of C'. Then C'=uvvw...w...u. Let z be the fifth vertex 

in C'. If z=w, then we have a subchain L=vvww of C'. If z^w, -then C'=uvvwz... 

...Z...M...U, and the cycle C"=wz...z...w is contained in C'. Thus the cycle 

C" contains the chain of the form xxyy or xyyx, by the inductive a s s u m p t i o n . 

Theorem 1. If C=u,u2. ..u« u, is an ENDAC cycle of G-^G-,, then there ex­

ists an a-cycle c'=w-w2.. . w ^ such that V(C')=V(C), E(C')=E(C), C' is ENDAC 

and C' is one of the forms I-V: 

I w.4-w, for every ic {2,3,...,2ni$, 

II w , ^ and ^ 3 = ^ , oc(v,C')=2 for every veV(C'), 

III w^w.^ and w2=w2m_1, oc(v,C')=2 for every veV(C'), 

IV w1=w2m and w2=w3, oc(v,C')=2 for every v^V(C'), 
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V W|=w2 and W2m-l
=w2m, oc(v»^ )=2 for every v t V ( C ) . 

Proof. Assume that there exists a vertex v in C such that oc(v,C)=l and 

i is its position in C. Then C'=5*x for odd i or C=(C* 1) for even i satisfies 

condition I. 

Assume that oc(v,C)=2 for every veV(C). Then, by Lemma 4, there exists 

a subchain "-=uiui+i
u4+2

ui+3 °* *ne *0Tm yxxv or xxvv- *n case *» -- - -s e~ 

ven, then c'=C* satisfies II, if i is odd, then C'=C* satisfies III, 

in case 2, if i is even, then C =C satisfies IV, if i is odd, then C = 

=C*i+2 satisfies V. 

Obviously C' is ENOAC in each of the cases. 

Remark 1. Theorem 1 provides an easy one-pass method for transforming 

an ENDAC cycle into an a-cycle which is of type I - V. 

4. A-cycles and realizations of a degree sequence 

Lemma 5. Let d be a graphic sequence, G,,G2€ IRy(d) and G,=(V,E,), G2= 

=(V,E2). Then every non-trivial component of 6,---G2 is an Eulerian graph 

with at least 4 edges and each component has an alternating Euler cycle. 

Proof. Since for every veV we have 

| A e 6 E,\ E2: e inc v] | = | i e c E A E,: e inc v} |, 

so every non-trivial component of G,—G 2 has an alternating Euler cycle. 

From (4) it follows: 

mG ̂ G (u»v)=lmG (u»v)-!!!£ (u,v)| for every u,ve V ^ — G - , ) . 

Thus none of the a-cycles of the graph G,—G 2 is of the form C=uvu or C=vvv. 

Lemma 6. Let G, ,G2«. &y(d), G,=(V,E,), G2=(V,E2) and C be an a-cycle of 

the graph G,~G2. Then the following conditions hold: 

1. If e,=un,v, e2=wn2z, e,€.EAE 2, e26.E2\E,, then £u,v$.±.{w,z}. 

2. If u,v,w are consecutive vertices of C, then u+w. 

3. If G, ,G2fe Ry(d; % ) , where xe i ^,4i k, tf I , "then every three conse­

cutive vertices of C are different. 

4. |V(D)|2 2t 

Proof. The first condition follows from the fact that edges are label­

led both in G, and in G2 starting from 1. Conditions 2 - 4 follow from con­

dition 1. 

Let C be a set of a-cycles of the graph 6,~G0 such that U E(C)= 
1 l C*£ 
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= £ ^ — 6 2 ) . We shall say that C is an a-cyclic partition of G ^ G 2 if each 

edge of E(G1---G2) belongs to exactly one of the a-cycles in C , 

If ^CpC . - , , . . . tCT\ is an a-cyclic partition of G-^G^ then we can form 

a sequence (C1,C2,... , C r ) . We say that an a-cycleCk=u1u2...u2mu1 (k=l,2,.. .,r) 

is closed the most quickly in the sequence ( C - , . . . , C ) if for every s e 

fe $2,3,...,m-ll and nc Z the following condition holds: 

u2snu1eE(G2)NE(G1) = » u 2 s n u l 6 .^ U,. . ^ E C C ^ 

A sequence C=(C1,C2,...,C ) is called a proper a-cyclic partition of 

G^G., if for every k e-{l,2,... ,r$, C. is closed the most quickly. 

Example. Let 

E(G1)\E(G2)= ^v1lv2,v1lv3,v23v7,V32v4,v5lv6,v52v6,v5lv8,v7lv85, 

E(G2)\E(G1)=-( v13v6,v1lv8,v2lV3,v22v8,V3lv5,v4lv5,v5lv-/,v6lv7l. 

Put c1=v1V2y3v4v5v6v7v8v1,
 C2=v2v7v5v6v1V3V5v8v2, D ^ v ^ v ^ v ^ / 

D2=V2V7V5V6V7V8V1V3V5V8V2^ 

Then the partitions C=(C-C2) and C=(C2,C1) are not proper, because 

v63v1eE(G2)\E(G1) and v ^ v ^ E(C2), and similarly V j l v ^ E ^ A E ^ ) and 

V3lv2€E(C1). The partition C"=(D1,D2) is a proper a-cyclic partition of 

G x-G 2. 

Remark 2. An a-cyclic partition of Gĵ G.-, for G,,G2e K,(d) can be con­

structed using an arbitrary algorithm for finding an Eulerian a-cycle in an 

Eulerian graph, where the edges should be chosen from G-, and G2 in an alter­

nating way. To find a proper a-cyclic partition of G1-
i-G2 we can use such an 

algorithm requiring additionally every cycle to be closed the most quijckly. 

Let G,HelRv(d;t) and G*H. A sequence G=G°,G
1,... ,Gk=H will be called 

a sequence of intermediate graphs for (G,H) if Gxe ̂ w(d; x) and G1=sw(G1" ) 

for i€$l,2,...,ki. 

Theorem 2. Let G.HfiR^d) and let C =(CpC2,... ,C ) be a proper a-cyc­

lic partition of G~H. If ci=uiu2* •-u2mul' then *nere exis*s a graph G e 

elRv(d) and a sequence of intermediate graphs G=G°,G , ...,G
m for (G,Gi ) 

such that &' = ( C 2 , . . . , C r ) is a proper a-cyclic partition of G"*"1— H. 

Proof. We shall prove the theorem by induction on m. 

For m=2 we have CJ^UJU^UAI.. . From Lemma 6, U-.4--U-. and u2-f u4. Let e- = 

su-ruu-,, e2=u2n2u3, e3=u5n3U4, e4=u4n4u-, where n1,n2,n3»n4 satisfy conditi­

ons (3) of Section 1. Then we have: 

(12) ei,e3€E(G), e 2,e 4£ E(G) 
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Hence, we can take G -G/_ a 0 _ v 
ve]L,e2,e-5,e4; ^ 

We can assume that C1=(e1,e2,e-5,e4), hence E(G ~ H ) = E ( C ) , where £ = 
=(C2,...,Cr). Therefore C* is a proper a-cyclic partition of G —H . 

Assume that the theorem holds for a cycle C-̂  of the length l=2(m-l). 
Let C,=u,u2...u-^u, and e,,e2,e,,e. satisfy condition (12). From the de­

finition of an a-cycle it follows that e1,e3eE(G)\E(H), e2€ E(H)\E(G). 
Since n.>mg(u.,u,), so e.^-ECO- Put G =G/ v Since C, is closed 
the most quickly and 1(C1)>4, so e 4^E(H). Thus E(G

1---H)*(E(G---H)\T.e1,e2,e^)o 
oieA. 

l * » l 

We have C =(C ,C2,...,C ) , where C =u,u,...u2 u. and <D is a proper 
a-cyclic partition of G — H. Now we can use the inductive assumption. 

Remark 3. On the base of the proof of Theorem 2 one can easily formula­
te an algorithm for the reducing of the first a-cycle in a proper a-cyclic 
partition of 6-*-H, where G,He lRy(d;^). 

The next theorem concerns the sequences of intermediate graphs in the fa­
mily Ry(d;t), where t = ̂ k for k £ 2 or ? = itk for k £l. We assume that 
^t = -M» for k= oo . Note that the assumption k Z 2 is essential, since for 
two graphs of type 9. there need not exist a sequence of intermediate graphs 
of type (P, (see Fig. 1). 

C. P <\ 
G: H: 

Fig. 1 

Theorem 3. Let G,H <*lRv(d; t ) , where r= CPk for k > 2 or f = M>k for 
kzl, and € =(CpC2,.. .,Cn) be an a-cyclic partition of the graph G---H such 
that every cycle is of the form I - V (see Th. 1) . Assume that C^u-u^... 
...u« u, and (s ,s,,...,s ) is a sequence of all positive integers such that: 

r i=s 0 < s
1 <. . .< s p^, 

(13) 2 mg(upu2p< k for i e{s p s 2 , . . . , s p $ , 

"te^l^i^ for i6 W2,3,...,m}\ts1,s2,...,sD
?i). 

Then there exists a graph G e Ry(d;t:) and there exists a sequence 

(14) G=G*°,G1 t^1""0, G1 G*2"*1 GJ,.. .Gp^P-^G' 

of intermediate graphs for (G,G') such that £'=(C2,C3,...,Cn) is an a-cyclic 
partition of the graph G'---H. 
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Proof. We shall consider C, as a sequence ( e , ^ , . , , ^ ) of edges from 

E(G-i-H), where e. is incident with u^ and u,+1 for i=l,2,...,2m-l, and the 

edge e^m *s incident with U2m and u,. 

Denote: 

f l = e l > (15) fn.G(u,,u )+l for j e { s , , s 2 , . . . , s J , 
f.=u ,n.u9 . , where n.= 4 h l ZJ l l p 

3 l 3 *3 3 U for j € . « 2 , 3 , . . . , m i \ t s 1 , . . . , s p j ) , 

{ sn for r=0, 
0 

W l for r=l ,2 , . . . ,p. 

For r e U ,2 , . . . , p \ and i e { l , 2 , . . . ,k ( r ) } we define: 

( 1 7 ) G^Ga(ul•u2q.u2q+l' lJ2q+2)=Ga(fq•e2q•e2q+l•fq+l) , 

where q=sr-i and a=r-l, b=k(r-l) if i=l, 
a=r, b=i-l if i-fcl. 

Fig. 2 shows how to construct in i t i a l elements of the sequence (14). By 

means of thick continuous lines we draw these edges of C, which belong to 
E(G)\E(H), by a dashed l ine we draw edges of C-̂  which belong to E(H)\E(G). 

Fig. 2 

First let us observe that i\se-, fm=fs
 se2m* We P r o v e tna* tne remaining 

edges are pairwise distinct. In fact, e.^e? for i4-j as being edges of C,; 
f ^ e . for i«{2,3,...,m-l), je<2,3,...,2m-# since f^ is incident with*^ 
and e. is not (C,is of the form I - V); f ^ f . for i4-j since u2ia^'u2i as De" 
ing vertices of an NDAC cycle. 

We shall show that the switching operations defined hy (17) can be reali-
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zed, that is, the following conditions are satisfied: 

1) "i.u2q*u2q+l*u2q+2 are P a i r w l s e different, 

2) ' n + V e2q*Vl' 
3) fq.e2q+l

eE(^)>e2q'Vl*E(Ga)' 

4) i ^ ^ X k , ,n
Gb<

u2q+2>
ul)<k-

a a 
Condition 1) follows from Lemma 6 and from the assumption that C, is of the 
form I - V; condition 2) follows from the above considerations. 

Let r&4l,2,...,pi, ic^2,3,.. .,k(r)} and q=sr-i. From (13) and (15) it 
follows that fQ,-'Q^1€E(6), however, from the definition of an a-cycle of 
6-i.H m have e 2 yB E(6)\ E(H) and e 2 €.E(H)\E(6). Let us note that the edges 
*a,e2a+l,e2o have "^ ̂ aken P33-"* in tne earlier switching operations, so 
f ,e2 .6 E(6^""

1) and e 2 4E(6 ) , whereas the edge f , has been removed 
from the graph Gr"" in the preceding switching operation, hence -L+i4

E(6r )• 
Thus condition 3) is s a t i s f i e d . 

Since e 2 €,E(H)\E(6) and e-> 4--(Gr""*), so m i»i(
u2a»u2a+l^<k* F u r t n e r» 

i-2 11 ^ 

since f -& E(6£ )\E(6r ) , so m i.x(u2a+2'ul^<k* From that it follows tnat 

condition 4) is satisfied. r 
Similarly we prove that conditions 3) and 4) hold if i=l. 
From (17) it follows that for r=l,2,..,,p-l we have: 

E(6^(r))=(E(6)\^elfe3,...,e2s , \ ) v % }u^e2,e4,... ,e2 J, 
r r r 

whereas for r=p 

E(6k(p))=(E(6)\4e1,e3f...,e2s ^)u{e 2,e 4,.. .,e2s ^,e 2 sl 
H P P P 

since, by s -m, we have fg =e2s . 
P P 

Thus we can conclude that E(6'---H)=E(6---H)\ E(C,)f and consequently, the 
sequence C'=(C2,.. .,C ) is an a-cyclic partition qf the graph 6'---H. 

Remark 4. On the base of the proof of Theorem 3 one can formuljate an 
algorithm for the reducing of the first a-cycle of the form I - V in a-cyc-
lic partition of 6-M4, where 6,Hfefcv(d;*) for * c <t .Pk,ilk,tfi, k £ 2 . 

Now we give a procedure of finding a sequence of intermediate graphs for 
(6,H), where 6,H *& v(d; * ) . 

Algorithm 2. 
1. Find a proper a-cyclic partition €=(C.lfC2,...,Cn) of the graph 6---H, 
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here G,H e . R v ( d ; t ) . If t = ( P , go to 3. 

2. Decompose each cycle C, of C onto ENDAC cycles and transform each of 

them to a-cycle of type I - V. Denote also by C the resulting a-cyclic par­

tition of G---H. 
3. For every cycle of <D use Remark 3 itte>i& %JLi and use Remark 4 

if t G i 1 >
k , A k , t f l for k r 2 . 

Finally we look for the shortest sequence of intermediate graphs for 

(G,H). Let G=G°,G1,...,Gk=H be a sequence of intermediate graphs for (G,H). 

The number k will be called the length of this sequence. The least number k 

for which there exists a sequence of intermediate graphs for (G,H) will be 

denoted by kQ(G,H). Therefore kQ(G,H) is the least number of switching opera­

tions which must be done to reach H starting from G. In this process we have 

to take only such switching operations which decrease the number of edges of 

the graph G—H. Note that a switching operation applied once to an a-cycle C 

decreases the number of edges by 2 if |E(C)|>-4 and by 4 if |E(C)|=4. Hence 

(18) f £kQ(G,H)-6s-l, where s=|E(G-*-H)|. 

The equality k (G,H)= f holds if each of the edges of G---H occurs in a 

4-edge a-cycle, and kQ (G,H)=s-l if all edges of G-H occur in a given one 

2s-edge a-cycle. 

Thus we obtain a shortest sequence for (G,H) if the a-cyclic partition 

of G---H which we apply in Step 2 of the last procedure has the greatest num­

ber of a-cycles. However, Algorithm 1 does not assure that we deal with an 

optimal a-cyclic partition of G---H. 

Thus, we pose the following 

Problem. Give an algorithm for finding a decomposition of an a-cycle 

into the greatest number of a-cycles. 

Let us notice that (18) can be improved using Lemma 1. Then we get 

f£k 0(G,H)*s- | , where A =max *te9GAH(v)*VeV(GiH). 
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