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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
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A NON ERGODIC VERSION OF GORDIN S CLT 
FOR INTEGRABLE STATIONARY PROCESSES 

Dalibor VOLNY 

Abstract: The non ergodic version of Gordin's central limit theorem 
for strictly stationary sequences of integrable sequences of integrable 
random variables is proved. The result is obtained by using the fact that 
the ergodic decomposition of an invariant measure preserves some important 
properties of the stationary process. 
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1 . Introduction and r e s u l t s . Let (J1,,A,/U,) be a probability space 

where A is a tf-algebra of subsets of Jl and |Ctis a probability measure 

on (il,A). T is a 1-1 measurable and measure preserving transformation of 

Jl onto i t s e l f . It is well known that for any measurable function f on SI , 

(f©T1) is a strictly stationary process and, for any strictly stationary 

process (X.), ( A , J l , ^ ) , T and f exist such that (X.) and (foT1) have the 

same d i s t r i b u t i o n . We shall deal with the central limit problem for the 

process (fo T1) here . From now on, f will be a fixed integrable'function 

on .0- . 

Let us recall that the measure {A, is ergodic iff each invariant set 

A e Jl (i.e. such that A=TA) has measure 1 or 0. A C-algebra % cA will be 

said to be invariant if 7h c T" W . From now on, 171 will te a fixed inva­

riant 6-algebra. We shall define S_(f)=.:E4 foT J) and s_(f)=S_(f)//?!. 

One of the strongest central limit theorems for stationary processes is the 

following one (see £51). 

Theorem 1. (M.I. Gordin.) If the measure (U- is ergodic and 

(i) M-n E(|E(f |T%)|+|f-E(f|r%)|)<: oo , 

(ii) lim sup E|s_(f)|<oo, 
/yV ->0O n 

then there exists 6*= lim E|s_(f)| and the measures tts"'(f) weakly conver-
m,~*oo n r n _r ? 

ge to a distribution with a characteristic function ^>(t)=exp(- 2ef ). 
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The theorem was communicated by M.I. Gordin at the Vilnius Conference 

on Probability Theory in 1973. The original proof remained almost unknown 

and a new one appeared in the monography 157; the proof from [51 was correc­

ted in [21 (see also 16]). 
Our main aim is to prove a non ergodic version of Theorem 1. Let 7 be 

the 6-algebra of all invariant sets from A . 

Theorem 2. If 

(i) Jt0 E(|E(f|T%)|i-|«(f|rJm)||3)<co almost everywhere L > ] and 

(ii) lim sup E(|s_(f)||3)< oo almost everywhere Cf^J > 

then there exists h= liro E(|s (f)|| 3 ) and the measures /as" (f) converge 

weakly to the distribution with a characteristic function 

<?(t)-€ exp(-f h 2t 2). 

2. An ergodic decomposition of & and conditional expectations . We 

shall reduce our problem to the case when a family (m^; co cXI) of regular 
conditional probabilities with respect to <u, induced by J exists. It will 

turn out that m ^ are invariant and ergodic probability measures and the as­

sumptions of Theorem 2 are preserved in each probability space (il, A,ma). 

The 3-measurable functions become constants in these spaces and the assump­

tions of Theorem 2 will thus be reduced to those of Theorem 1. 

First, let us give some definitions. For a collection Q* of measurab­

le sets, 6T^ will denote the smallest er-algebra containing C^\ if a ©'-al­

gebra *€ contains a countable collection fy such that *€ - #(& , we shall say 

that *€ is separable (compare £7]). For a measurable function g, let us de­

note 64g$=- 6>{g~ (A): A is an interval}. Given measurable functions g' and 

g'\ g sg" mod ft means that (u .{g'sg"}=l . For er-algebras ^ , 3 ) , *€c9) mod <u-
means that for any k c*€ there exists a set A'*3D such that (it(A&A')=0 

where & denotes the symmetrical difference. 

Let 3 2 be the Borel 6*-algebra on R* and S be the shift transforma­

tion on R* (i.e. (Sco)^ * \ + 1 ) . We shall show that if A is separable, we 

can restrict ourselves to the case il =vH* . A = .B and T=S. 

Let A be separable. Then there exists a mapping y : i l — * R such that 

Y*T=S#TK and y~l(1Bl)= A . 
Proof: There exists a function g on XL such that A * $ { Q I . The mapping 

if: il —*» R 2 defined by (fw)i-g(P6j) is the one we need. 

Lemma 1. For any A-measurable function g there exists a 3 -measur­

able function g such that g»§ • if . If J is the 6"-algebra of S-invariant 
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sets from J 3 l , we have Y~l3= J and EM| Of )-E , (f | 3 ) * f rood ̂  . 

Thus, our claim that (in the case of separable A) we can restrict our-
selves to H = IR is justified. Recall that in that case there exists a fa­

mily (m̂ ; c*;€il) of regular conditional probabilities w.r.t. (u, which is in­

duced by 3 (see [73). 

Proof of Lemma 1: For any n e N (where N is the set of all positive in­

tegers) and i e 2 let A(n,i)={co:i 2~n-£g(co)<(i+l).2~n}, 9 ^ ^ * A ( n %y 

-i/2n. There exist sets I(n,i) €. . B * such that A(n,i)= r"1(A(n,i). Let 

^=Ua(n,i)nA(n,j):n6N, i,j e 2 , i * j * and TF=ua(n,i).A(K(n+l,2i) u 
uKn+l,2i+l)):neN,i al} . It holds y~l& \f~lj)=$. Let ft(n,i)=A(n,i)\ (CuD) 

and 9n=^%n,i)'i/2n- * have On** 9*%°* and
 V^HI*'" • For 

g= lim l n it is g=S" * tf • 

The proof of the other two statements of Lemma 1 is obvious and we shall omit 

it. 

Now, we shall give three auxiliary statements belonging to measure the­

ory. The first one can be found in til. It might be easier to prove the other 

ones than to seek a reference. 

(1) Let g be an integrable function. Then E(g|0T) (o>)= f g dm^ for 
almost all i ^J c*> e il . 

(2) For any jf -measurable function g it holds g=g(cc>) mod m ^ for al­

most all I (JUI 0*12. Hence, for an arbitrary integrable g we have E(g| J )= 
= J g dro^ rood m w for almost all [<uJ a> e H . 

Proof. It is 6-tg}c0f . Let (# be a countable collection of sets from 
eftgl such that #Q- =£{g|. For any A 6 fy. , <u(A| 3 )= $ A rood (i and (follow­
ing (1)) <u,(A|CJ ) (o;)=m&>(A) a.s. t<u,l . For almost all£<uJ co 6 il we thus ha­
ve ro (A)=l for CJ e A and m6)(A)=0 for c*>4 A. This holds for any other set A & 
eeKg}, too, so m^w#:g(c*>')=g(a>)}=l. 

(3) Let ̂  be a separable 5-algebra such that 0 c tf rood<«, and g be 
an integrable function. Then E(g|30 =Em (g|.T) mod m ^ for almost all 
C(uJ o>*SL. °> 

Remark. The o-algebra &= ttb is separable so there exists a separab­

le tf-algebra D'ctl such that J c d' rood ft; the assumption 3 c T rood ft 

can be thus fulfilled. However, the er-algebra 3 is not separable itself. Let 

the contrary hold and let (ĵ be a countable collection such that 6<J= 3 . For 
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any CJ & SI, let A ^ be the intersection of all A e C^ such that o> & A. 

Hence, A ^ has no nonempty proper 2-measurable subset. The orbit 

^ w i i c l l is 3 -measurable hence it is equal to A^ , In the same way in 

which we proved (2) we can prove that ma)(AC4>)=l for almost all r.<uj co eSl. 

So, the sets A w must be finite, i.e. there exist natural numbers n(o>) such 

that T G> - co . Hence any aperiodic measure <a, will make a contradiction. 

On the other hand, let us put 3' = # U i m inf SO^J-.A cCJ'*' where QT 
rt% -> CO n f\ ° 

is a countable algebra generating A . Following the remark after Lemma 2 we 

can prove that 71' - J mod v for each invariant probability measure V (and 

of course, ,1'cJ is a separable ^-algebra). 

Proof of (3). Let (̂  be a countable algebra of sets from T such that 

GCpzz ;? . For any A e fy we have E( ̂ A*E(g| 3,)\0 )=E( ̂ A»g| J ) mod /a , so 

(following (1)) / A E(g| 3 ) &*„-Ji 9 dm^ for almost all [^3 coeil. The 

system of sets for which the last equality holds, forms a monotone class con­

taining fy » 

Remark. The condition E( ̂ ,A-E(g| IF)| 3 )=E( $A*g| J ) mod <u is for 

E(g|30=E (gl-5* ) mod w for almost all C(uA w e l l necessary and sufficient 

(as R. Yokoyama pointed out, see[12.1). 

Following the Kryloff-Bogoliouboff theory (see 18.1) there exist ergodic 

probability measures with disjoint supports which form a decomposition of 

any invariant probability measure. Here we shall use the fact that these me­

asures can be obtained as regular conditional probabilities induced by the 

0-algebra 3 . 

Lemma 2. For almost all L /u.1 o> e H, m ^ is an invariant and ergodic 

probability measure. 

Proof. Let Qg be a countable algebra such that A - cr fy. For A e Q we 

have ^(T~ A|3 )= <u.(A| J ) mod jO. , hence mi^^mJH' A) for almost all 

t ft 1 co c H . The collection of sets A e A for which the previous equali­

ty holds, forms a monotone class containing (#> , so m ^ are invariant mea­

sures . 

For any A £ fy, we have S ( \.)—> fi(A|Cf ) pointwise (by Birkhoff's er­

godic theorem). Following (1) and (2) we thus have S (%̂  —->m^(A) almost 

surely Im^l . According to [1], Theorem 1.4, p. 17, the measure m^ is ergo­

dic. 

Remark. For each c*> c Si let Bc0 = W : S n ( %,) (o>0—fc-m^A)} for each 

A c L̂, . Then B^j e C/ and it is a support of the ergodic probability measure 

m w . For different measures m w , the sets B ^ are disjoint. Using regular 
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conditional probabilities we can thus partially mimick the theory given in 

C81. 

The following lemma is basic for the proof of Theorem 2. 

Lemma 3. Let % be an invariant and separable ^-algebra and let the 

integrable function g be measurable with respect to . V - T 1 ^ (= 6(^3 T 1 ^ ) ) . 

Then E(g|TiWl)=Em ( g l ^ m ) modn^for almost all t<u.J CJ e A . 
a 

Corollary. If (g «T X) is a martingale in Lp(<u), l^p £ co f then it is 

also a martingale in L^(m<>>) for almost all t(u.l o> e A . 

Proof of Lemma 3. Following [10] and till we have 

(4) E(g|Tim)=E(g|JvTiWO mod p,. 

Let J'c J be a separable tf-algebra such that J c J ' mod/a and W - t l v j / , 

Following (4),(3) and (4) it holds E(g|Ti/m)=E(g|Tim)=Em (g|T
i:Wi)= 

mo> 

=Em (glT
1!!!) mod m^ for almost all t M I O> e A . 

ma> 

Remarks. 

1) Without the assumption that g is measurable w.r.t. . V - T1?)! (4) 

need not hold. 

2) R. Yokoyama (see 1121) proved Lemma 3 using the equation £(g|J v ^2^)= 
= E ( o l ^ « , ) mod ft, W ^ ^ j T ^ l , instead of (4). 

Our aims are almost fulfilled now: Using the results given up to now it 

can be shown that the assumptions of Theorem 2 are preserved in (XI, A , m ^ ) 

and m^'s are invariant and ergodic probability measures. The last lemma will 

eventually assure us that we can pick the limit theorems which hold in pro­

bability spaces ( .Xl ,A»m^) together and we obtain a result in (il, A, (JL). 

Lemma 4, Let g be a measurable function and let for almost each t <-<,} 

<*> & A the measures rn^s" (g) weakly converge to a probability measure with 

a characteristic function <?& • Then the measures (U,s~ (g) weakly converge 

to a measure with a characteristic function Cf(t)= /<3r^(t) dp, (o>). 

The proof is an easy application of the Lebesgue dominated convergence 

theorem. 

3 . Proof of Theorem 2. Let ? = tf{ f,E(f|Ti?7i):i€ t \ andtf= V . T1?*. 

*€ is a separable 6*-algebra (we consider E(fIT1?)!) as a function here) and 
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1~1<C= *€=!<£. The tf-algebra Tfjfl n*€ is invariant and for each i e I , 

E(f |T1?n)=E(f \<Cn ^Vl) mod <u. . Following the Birkhoff ergodic theorem we ha­

ve E(g|D )=E(g|<€n-') modfo for each integrable and ^-measurable g. We can 

thus suppose that A = *€ and that Wl is separable. Following Lemma 1 we can 

suppose that Jl = R* and Jl = fl* . Let us put g= . f ^ E( |E(f | T % ) | + 

• |f-E(f|r%)||3). 

a) Let us suppose that g is in teg rable . Then we have E(f |T~x7?t) —* f in 
L (<u*) so we can suppose that f is V T"1?^ -measurable. According to 171 

t- € i 

there exists a family (m̂ ; o> e II) of regular conditional probabilities indu­
ced by 0 . By Lemma 2, m^ are invariant and ergodic probability measures, by 
Lemma ) , £ E, (|Em (f |T-7»)| + |f-E^ (t|r--m)|)-E^ g , and 

o~ * &> GJ CJ <-*• 

lim sup Em |s_(f)|<oo for almost all Crul co c H . From Theorem 1 we get 
m -*°o mcJ 

—1 
that there exists h(o>)=lim E_ |s_(f)| and the measures m ,s~ (f) weakly con-

to-too mcj n ' cj n 

verge to a probability measure with a characteristic function ^(t)= 

=exp(- 2 h (co)t ). From this and from Lemma 4 we obtain the statement of The­

orem 2. 

b) Let g be not integrable. The sets Ak= -\o> :k-l^g(6->)< kf, k=l,2,... 

form an J -measurable partition of £ and if /a(Ak)>0 then the measure 

<u*k(0= ^ ( ' 1 ^ ) is invariant. From a) it follows that there exist hk= 

=E (|S_(f)||CO modfck and the measures /u^s" (f) weakly converge to a mea-
Tf 7 7 

sure with a characteristic function 9?k(t)=E exp(- 7 hkt ). There exists a 

function h such that h=h mod (tck for each k such that fii(k)> 0 and the sta­

tement of Theorem 2 follows. 

4. Concluding remarks. The method used for the proof of Theorem 2 was 

developed in the Ph.O. Thesis [10]. In [10] it was used for a proof of a non-

ergodic version of Bordin's CLT for square integrable stationary processes 

from [4]. In [12], this approach was used for deriving a log log law for 

strictly stationary matingales starting from Stout's solution £9] of the ergo­

dic case (R. Yokoyama made some technical changes; the result can, however, 

be obtained by the technique developed in Section 2 as well). On the other 

hand, from the weak convergence of measures fts" (f), the convergence of 
-1 l 

measures nî s (f) for almost all Eft] o> e II does not f o l l o w . 
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