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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,1 (1987) 

ON THE DIRICHLET PROBLEM FOR A DEGENERATE ELLIPTIC 
EQUATION 

J. H. CHABROWSKI 

Abstract: We study the Dirichlet problem for an elliptic 
equation in a bounded domain Q c R with the boundary data in L OGt). 

It is assumed that the ellipticity degenerates at every point of 
the boundary QQ. We prove the existence of a solution in a weigh­
ted Sobolev space W 1 , 2(Q). 

Key words: Degenerate elliptic equation, the Dirichlet pro­

blem. 

Classification: 35005, 35325 

1. Introduction. In this paper we investigate the Oirichlet 
problem for a degenerate elliptic equation 

*rv /r\, 
(1) (L+ft)u= -. Z D.(p(x)a. .(x)D.u)+ .S.. a.(x)D.u+(an(x)-fJ\) = f(x) 

* in Q, 

(2) u=<$> on 8Q. 

In a bounded domain QcR with a smooth boundary 3Q, where 

A is a real parameter, a boundary data $> is in L O Q ) and p(x) 
is a C -function on Q" equivalent to the distance d(x,£Q) for x e U 

and its properties are described in Section 2. 

Throughout this paper we make the following assumptions 

(A) The coefficients a.., a. and a (i, j = l,. . . ,n) are in C°°(R ) 
aij=aji (ifJal»-• • >n) 

(B) There exists a positive constant *f such that 

for all x 6 Q and P e R . Moreover there exists a constant /$ > Q 
such that a (x) 35 fe on Q\ 

(C) feL 2(Q). 
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%Slrici thi elliptic aquation (1) degenerates on 3Q, the theo­

ry at iicoftd--ordir equations with non-negative characteristic 

form iiiirts that the boundary condition is to be imposed on a 

iirtaih subset of dG, which can be described with the aid of the 

§0 Giliid Fichera function (see p . 17 in [10D. In our situation 
thi Fiohira function is reduced to z(x)= . 21. a4 (x)D<tt»(x), Conse­nt/ * i 1 v* 
quihtly following the terminology of 1101, the boundary condition 

(2) should be imposed on 

-£2* h c a Q : 4 2 L a i (x )D i p(x) .>0j . 

Thrbughout this work it is assumed that 

(Q) .2£ aj,(x)D1^(x) > 0 on 8Q, 

therifori 2E2* ®Q. 

thi main difficulty encountered in constructing a solution 

©f the Oirichlit problem with L -boundary data arises from the 

fact that functions in L O Q ) are not, in general, traces of func­

tions from thi Sobolev space W1, (Q). Consequently the Dirichlet 

problim (1),(2) cannot be reduced to the problem in 8 1 , (Q). It 

ii alio clear that the boundary condition (2) requires a proper 

formulation. 

thi purposi of this note is to establish the existence of so­

lutions to the problem (i),(2). We construct a solution by appro-

ximtting $ and f in L (SQ) and L (Q), respectively, by sequences 

if ilftdoth functions. Then we can use the recent results of 17J in 

uhleth the ixiitenci of solutions in C(Q)nC2(Q) has been establish-

id at Hill ii §ew,i estimates near the boundary of the gradient of 

l toiution* in Sictlon 2 we find the uniform bound for this appro­

ximating si^Uince of solutions in a Sobolev space % ' (Q). The 

dp ice t r ^ C Q ) , flifined in Section 2, appears to be the right So-

boliv spaci to study the Dirichlet problem (1),(2) with | e L2(3Q). 

Section 3 ii devoted to the main existence result. In the final 

Section % we make some comments on the existence of solutions in 

thi Oiii when (0) is replaced by a weaker condition 

^• 1(t<)i i^<x)gO on iQ> 

The methods employed in this paper are not new and have ap­

peared in tU,l2l and t*1. The degenerate Dirichlet problem has 
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an extensive literature (see for example t4l ,t53,173 , U03 and the 
*rv 

references given t h e r e ) . The case where . .Z a. (x)D.^>(x)< 0 on 3Q 
is more complex and in general the boundary condition is irrele-
vant (see 14]). Finally we point out that the case.fX.ai(x)D.p(x)> 
> 4 2E. a. .(x)D.tf>(x)D.©(x) on #Q has been considered in 153 but 2 i,p1 1J --> J> 
with zero boundary data. 

2. Preliminaries. Let r(x)=dist(x,$Q) for xeQf. It follows 
from the regularity of .the boundary 9Q that there is a number oÊ  
such that for cTe (0,cf3 the domain Qy=Qnix: min |x-y|>cf? 0 6 «&&%& 
with the boundary dQ*> possesses the following property: to each 
xQ € dQ there is a unique point x^(x )& BQj> such that x^*o^ s xo* 
- cTv(xQ), where ^(x 0) is the outward normal to dQ at x . The 
above relation gives a one-to-one mapping at least of class C , 
of dQ onto dû -. The inverse mapping" of x — > xg(x

Q) is 9iven 
by the formula x0 = x^ ^ ^ . x ^ V ^ ' wnere V̂̂ V̂  is tne outward nor­
mal to 3Qrf at x,. 

Now let xrt c 8Q, 0 < cT<dl and let x\ be given by x\, =x„(x ) = u o o o o o 
= xQ - <*V(xQ). Let 

A6 r m<snix<f;\x(f-X(f\< el, 

B & = 4x; x = Xcr ^ v f ( j j r ) , V C A6i,* 
and 

35j = ii5o TB7T ' 
where |A| denotes the n-1 dimensional* Hausdorff measure of a set 
A. Mikhailov t93 proved that there is a positive number •y such 
that 

and 

uniformly on 8Q, and moreover -m-£ is at least C -function on 

aQxttOrcrl («ee formula (16) in L9J . 

According to Lemma 1 in t3l p. 302, the distance r(x) belongs 
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to C2(Q-Q^ ) if cT' is sufficiently small. Denote by (D(X) the 

extension of the function r(x) into Q satisfying the following 
2 - 3c£ properties p(x)=r(x) for x€ Q-Qj , j> e C (Q), m (x)> ---p- in Q ~ , 

1 o o 
Of 7 r ( x ) £ p ( x ) -6 / y , r ( x ) i n Q f o r some p o s i t i v e constant Xi > ^%' = 

* 4x ;g)(x) = cfj for cfe ( 0 , ^ 1 a n d ' f i n a l l y 9Q= 4 x ; p ( x ) = 0 } . 

The f o l l o w i n g r e s u l t i s an immediate consequence of Theorem 

2.3 i n m . 

Theorem 1 . Let f€W* , a > (Q) w i t h £> 1 . Then there e x i s t s 

0 < 3£< 1 w i t h # * i n f -J1L a. (x)D i§>(x) such t ha t any s o l u t i o n u i n 

C2(Q)nC((3) of ( 1 ) , ( 2 ) w i t h $=0 on dQ s a t i s f i e s the est imate 

(5) H p ^ D u l l _ 6 C U ) | j f | | , 
> L°°(Q) W ^ Q ) 

where C(l) is a constant. 
2 2 To construct a solution of (1), (2) in W,' (Q) we need 

2 1 ""~ 
Lemma 1. Let $ and f be sequences in C O Q ) and C (Q), 

respectively, such that 
lim Inl$m(x)-$(xX)

2dS =0 and lim L Cfm(x)-f (x)J 2dx = 0. 

Let um be a solution of (1) with f = fm i£ C
2(Q)nC(TF) satisfying 

the boundary condition 

( 2 m ) um =*m £!1 8Q-

Then there e x i s t p o s i t i v e constants ^ and C, independent of m, 

such t ha t 

f In2,, I 2
 1ft

3rivJ. f In,, I2*,riv4. (6) 4 i D 2 u m i 2 p 3 d x + / f l l D u m l 2 P d x + / a
u m d x 

A C ( j f l f m d x + 4 * m d s x ^ 

f o r a l l m = l , 2 , . . . and A > AQ . >-

Proof. According to Theorem 1 and Theorem 2.3 in 17J for 

each m there exists a solution u of (l),(2m) in C
2(Q)r>COQ) 

with p ^ D u ^ c L°°(Q) provided > 2: 0. Multiplying (1) by um and 

integrating by parts we obtain 

( ? ) JLi <f • *%-* a < - . D . u . u D . o d S + L $> ,'J2L a . .D.u D . u d x 
^ ^ *,J»4 i j i m m j r x •%> *,£«ri -J -• m J m 

+ £ %2L. a4D.u • u d x + / I a u 2 d x + % L u2dx= £ . f . u d x . " ^ . v » i I i m m •/«* o m JQ^ m •'fir m m 
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The first integral can be estimated using Young s inequality 
"'-' o o o 

<8> I Xn ^ ^ A i M A D i d S l ~ M j L | 0u m l 2 ds+£ i 0 u 2 ds, 

where C, i s independent of of. I n t e g r a t i n g by pa r t s the t h i r d i n ­

t e g r a l we get 

( 9 ) J tV i^ l a iD iVumdx= 7 4 ^ ai<Vum)dx:=' ' 
1 r ^ ? i / » ' 2 r ? 

= - -irJbfl ^ a « D . j p u i d S - i L . Z . D . a . u „ d x . 
2 -^oa^^x-i i i> m Z •'tfy- 1/.. 1 I l m 

Combining ( 7 ) , ( 8 ) and (9) w i th the e l l i p t i c i t y c o n d i t i o n we a r r i ­

ve at the est imate 

T 1 /« , p l D u J 2 d x + / a / * - 7 +ao- 7 Js, Diai)uradx -* 

- C l * 2 / 9 V l D u ml 2 d S + / a V
(
7 A a i D i f + 1 ) u > + 7 V i [ > -

Since ^ D u ^ U " ( Q ) ) a l i m * 2 / , f l , | D u J 2dS x=0. 

Consequently taking A sufficiently large, say J\ £ A , and let­
ting cf—> 0, we get 

(1D) J . H - u j W 4 u 2dx,C 2 (7 8 a$
2dS +/ a f

2dx) 

for all m, where C« is independent of m. To estimate 
j |D2um|

2p3dx, we first observe that, if v is a W2'2-function 

with compact support in Q, then 

k P * : £ l aiJ°iU"«DJk vdx+/fl *?i ai Di um Dk v d x + 4 ( ao + A ) um Dk v d x = 

= 4 fm Dk v d x-
Integrating by parts the first integral we get 

/ a D k P . j ^ a i 3
D i u m V dx+ 1ft f i,|-i DkaijDiumDjv dx + 

••4?*i|l Bi3 Dki% Dj v d x - 4 J k aiDiumDkv dx" 

• -4 ( a o + ^ ) u m D k v dx= " / & f V dx-
o 

Letting v=D}<
u
ni($

>"<n in Q^ and v = 0 °" Q-Q̂ -r we deduce from the 

last equation 

(11) /«, Dkf»*Jl aijDium°2kum(9-"')2 + 

+ 2 /-VDkP i/^-,
ai3DiumDkumD3f(?-,r)dx + 



+ ArP*/?"»Dk"--°iU"0JkU"(f"J>2dX+2-tP*f"« DkaijDiumDkum(p-rf)D
a?

d" 
+ !a,?&A aijDkium

Dk3Um<f--;)2dx + 2/a<rP J U aiJ
DkiumDkum(?-'5:)Dj?dx-

-/a<rifl a i V , D k A < ? - ' " ! - 2 / v l 1
 aiDiumDkum(p-*)Dk?dx-

- 4«r(
ao+^umDkkum<?-«J)2dx-2/e(r

(ao+^)lJ
m

Dkum(r<;)Dk?!dXi 

" ~ V " k k " . ^ ^ 2 ^ " 2 / ^ ' Vm<f^ )DkPdx-

Let us denote the integrals on the left side of (11) by 3 1 , . . . , 3 , n 

Estimation of these integrals can be obtained as follows 

(12) J5 > r lJ^Jt< lDjkuml2?(?^)2dx-
Using the Young inequa l i ty we get 

(13) |31-H32 +334-34 |^C3(e) / a |Oum|2(5>-</)dx + 

Similarly we have 

(u) ih+h^hU^r^J2^ fts^J2^-*^*] + 
+ *17«|, JM lDk3

UmlW-^2d-/V^ I ^ V ^ ] ' 

(15) | 3 , | + | / % f D 2
k u J 9 - J ) 2 d x | ^ C 5 ( / f i r fu

2dx+ / ^ f 2 ^ ) • 

^/^JHI^IV^X 
and f i na l l y 

(16) | 3 8 + 3 1 Q | *tC6 [ / ^ | 0 u J 2 ( ? - J ) d x + /Q e r u 2 dx] , 

where C. are independent of cT and & > 0 is to be determined. We 
i t 

deduce from (11) - (16) that 

/vt(y
1-E)f>(P-J)

2-3E(p-d)33 .|j02kuj
2dx * 

*C7 (/VI-«J V « ° * + J^lDuJ^dx. JV f2dx+ /^u^dx), 

where GoO, Since 

(y"1*«f(f-<f)2-3e(p-ir)3--(f-tf)2 [(r'^^f-^e^-if)] = 
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* (f~<D2 l(<f~l-s,)(<p~6)+6('r~l
re)~~€,(p-#)') = 

= (f-d)2 l<rr~1-*t>)<p-*)+d<r~l-t)l > (f-cT)3(7"1-4e) 

for e sufficiently small, say e= --v—, the last two inequalities 

yield 
(17) J"v A |D2k"ml

2^^)3dx^57C7 U f i ^ j V ^ * * 
+ V D u j V d x + / % f 2 dx+/^umdxJ-

Letting (T—>0 in (17) and combining the resulting inequality 

with (10) we easily arrive at ( 6 ) . 

Lemma 1 shows that a possible solution to the problem (1),(2) 
»-.*2 ? * 

lies in the space W > (Q) defined by 

W2'2(Q)= -Cu;ueW2
0
2(Q) and Ja | D

2u(x) | 2 p (x)3dx+ 

+ J a | 0 u ( x ) | 2 j>(x)dx + / u ( x ) 2 dx < o o l 

and equipped w i t h the norm 

l | u | | 2
2 ) 2 = J a | D 2 u ( x ) | 2 p ( x ) 3 d x + / Q | D u ( x ) | 2 p ( x ) d x - > Ja u ( x ) 2 d x . 

The proof that u converges weakly in W » (Q) to a solution 

of (1),(2) will.be given in Section 4. 

**'2 2 
5* Traces in W ' (Q). To proceed further we need some pro-

" ^o 2 
perties of the space W » (Q). 

*• lemmB 2. If u e W2'2(Q) then S2 J& |Du|2ds is continuous 

on 10,d*] and moreover 

i f / 2 /aGgJ0ul2dsx=o. 

Proof . Let 0 < c f * * : ^ , then 

cT 

La^lDiul2^C^f"L CDiu(x )]2ds = 

<r ds X2 d S / 
= -7 ^ £ f l

t D i u ( x (xo>«2 H^ d V T*J[>iu<V0<V> -^V 
»2 « dS „r-

- H a [ D i u ( x ( x o ) ) ] H s ; d V 
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' /^2/9QUf1°
2iU(V(xo»Diu(V(xo)>SiSi + 

+ hu<x <xo»]2£G%)]dv' 
From this identity we can compute 

^2/3Q
tDiu(V(xo))32^:^o 

and "express this integral in terms of other integrals which are 

^2,2 x dS-
continuous on £0,cf_3, since ueW (Q). On the other hand rrr&--~*'l, o aoQ 

as <f~*0, uniformly on 3Q, therefore the continuity of the inte­

gral cf LQ |Du| dS easily f o l l o w s . Assuming that x 

xđ 
l im S U/s I Ou I d S > 0 , we would have 

d2 fdQ |Du|2dS>a on (0,dj3 

for some posit ive constants a and cC and th is would imply that 

SML, f l D u | 2 d x = / / ( U d ^ / ^ |Du|2dS=oD 

and we get a contradict ion. 
«/9 2 

Lemma 3. Let ueW*' (Q) be a solution of (1), then 

SdOL* u dS is bounded on (0,dlT. 
Proof. Multiplying (1) by u and integrating over Q^ we obt­

ain 

7^ad.u%Z1aiD.?dSx= - ^ / ^ ^ D . a . u ^ d x . j ^ ^ ^ J l ^ a . j D ^ D j U dx + 

+ *&a, 4,f.1»ijDiu*u Dji--Sx+ IV ( a o + A ) u 2 d x - /<V f u d x -
We may assume t h a t 

rrv 

a= ipf S a . ( x ) D . p ( x ) > 0 

taking <? sufficiently small, if necessary. Since by Young's in­
equality » 

^W t,f. •ijDiu,uDjfdSx* w V a ^ l ^ l ^ V f/aa/2dSx-
where C is a positive constant depending on n, a and I Iai -% I I a> 
the result follows easily from Lemma 2. 
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In order to prove the existence of a trace of a solution 

ucW ' (Q) of (1) we introduce an auxiliary function x°:Q -* Q *• 
/2 

defined in the following way. ' 

<L - _ _ 
For oTc ( 0 , —w] we d e f i n e the mapping x : Q — > Q ~ by l cf/ 2 

X ^ x ) * ч f x foг н Q - , 
) x+y-(x) 
l £ for : x c Q-Q^ . 

where y*(x) denotes the closest point on dQ*- to x 6 Q-Q, . Thus 
JS \ f 

xd(x) = xJ# (x) for each xc dQ> moreover x* is Lipschitz. 

72 

We are now in a position to prove the main result of this 

section. 
Theorem 2. Let ucft > (Q) be a solution of (1), Then there 

mmmm- 2 • ' •" " "" ' 

exists a funct ion $ e L (9Q) such that 
lim f a o [ u ( x . ( x ) ) - $ ( x ) 3 2 dSv=0. 

Proof. Since by Lemma 3 , Jgj»u(x^.(x)) dS is bounded, there 
2 

exists a sequence cf —> 0, and a function $ e L (dQ) such that 

JiJS /,a u (V m
( x ) ) 9 ( x ) d Sx= U *(x)9(x)dsx 

for each geL (dQ). We prove that the above relation remains va­

lid if the sequence !<£,! is replaced by the parameter cf. 

Since Lau(xAx))g(x)6S is continuous on (0,cT 3 it suffices 

to prove the existence of the limit at 0 and with g replaced by 

YeC (Q*). Integration by parts yields 

4«-*ff - ^ i f * - dSx= - ^ Z, O^a.yju dx+/fi (a 0 +A)*u dx+ 

+ /«^pJ.aijDiu-D^dx+^^ai3DiuDJ?irdS-/«(r
fydx-

Using Lemma 2, the continuity of the left side easily fo l lows . 
Letting <T—• 0, we deduce from the last identity that 

da) / 9 a * y x-.aiDi?dSx= -/«.*£, M 8 ^ " d x + 

+ / « ( a o + A ) Y u d x + f& ? ^ a i j O i U D j ^ d x - ^ f Y d x = / f l F(S0dx. 
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( 
It is clear that this relation continues to hold for Y e W 1 , 2(Q). 
Now taking Y(x)*u(xcr(x)) we get 

(19) jaa#(x)u(x<r(x)) Jjt^ ai(x)Di|>(x)dSx-S^ F(u(x))dx+ 

•J^Q F(u(x^(x))dx. 

We now prove that 

(20) lim f F(u(x))dx = H m LG u(x .(x))
2. i? a, (x)D.<t>(x)dS¥ 

and 

(21) ^ l i m ^ a F(u(x°r(x))dx = 0. 

Since x^(x) = x_(x) on dQ, (19), (20) and (21) yield that 
f 

4 « $(x)2dSx= ̂  /aau(x<f(x))
2 . 1 i •1(x)DlP(x)dSx 

2 2 

and the L -convergence follows from the uniform convexity of L ($Q). 
To show (20), observe that using the fact that u is a soluti­

on to (1) we get 

Jtf<r
F(u(x))sx= -hj^i 0i(aiu)u dx - J^ 4 ^ ajDjU-u dx -

" * ^ - f » i a i J ° i U " U D ^ S = ^ - r u 2 ^ i a i D i « , d S " - ^ f i f 4 ^ • i i D i u -u0^dS 

and th is claim follows from Lemma 2. Final ly 

l ^ . ^ ( u ( x < i r ) ) d x U C o n 5 t [fQa | f ( x ) | |u (x c r ) |dx + 

+ f<l-a ( x ) |Du(x ) | | 0u (x < r ) | dx+^ - |u(x)||u(x«0|dx+ 

+ /^|Du(x<r)||u(x)|dx] . 

Now Lemma 2 from [13 implies that the first and third integrals 
converge to 0 as et—»0. The convergence to 0 of the second and 
fourth integral follows from Lemmas 5 and 3 of [2} respectively. 

1 4. Existence of solution to the problem (1) - (2). Theorem 
2 of Section 3 suggests the following approach to the Dirlchlet 
problem (1), (2). 

Let $ e L 2 O Q ) . A solution u of (1) in W2'2(Q) is a solution 
of the Dirichlet problem with the boundary condition (2) if 
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(22) jL4ffl04^u(x(f(x))-.$(x)3
2dSx«0. 

Theorem 3. Let A 2 A0 (where 3^ 1s a conitan t 1rii^Ltilt 

1). Then for every $ c L (dQ) there exists a unique solution 
uc'w 2' 2^) of the problem (1), (2). 

Proof. Let um be a sequence of solutions of the problem (1), 

(2m) constructed in the proof of Lemma 1. By the estimate (6) 

there exists a subsequence, which we. relabel as um, converging 

weakly to a function u in W ' (Q). According to Theorem 4.11 in 

Taj, ^1,2(QJ lg Gon.pactiy embedded in L
2(Q), therefore we may 18-

sume that u tends to u in L (Q) and a.e. on Q. It is evident 

that u satisfies (1). By virtue of Theorem 2 there exists a trace 
2 2 

| 6 L (SQ) of u ,in the sense of L -convergence'. We have to she* 

that | -$ a.e. on BQ. As in the proof of Theorem 1, for evtry 
¥ e C (Q) we derive the following identities 

/•« A aiDi? f * d v k s \ j ^ a i jD iuD jydx*/« (v* )u ya*-
- k £ i Di(ai^u dx" k f *-*•/-, F(y)dx 

and similarly for u we have 

^ ; l l i D i ? *m*dSx= 4 ? 4,1=1 a«D iumD jY d x + 

+ / f t
( V * V d * - 4 A Di(aiY)umdx-4 *™x=4 Fm(sr)dx-
Since lim J*. Fm(Y)dx= L F(Y)dx, we have that 

4tt** . i f^D i *dV-M.f y-tt . aiDi<PdSx 
for any Hf c C (TJ) and consequently $ * § a.e. on #Q. The unique­
ness of solution of (1), (2) can be deduced from the following 
energy astimate 

/^|02u(x)|2jD(x)3dx4- /ft |Du(x)|
2jo(x)dx* J^u(x)2dx « 

^C[^f(x)2dx+/ea4(x)
2dSx] 

which is valid for any ue1 2 ) 2(Q) satisfying (1), (2) withi* * ^ 

and the proof of which is a slight modification of the proof of 

(6). We only use Lemma 2 in place of Theorem 1. 

Remark 1. If $ e L^OQ), we may assume that A *Q. Indent!, 
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we approximate $ by a sequence of C -functions $ on 3Q, which 

is uniformly bounded in m. The corresponding estimate (6) from 

Lemma 1 takes the form 

i a | D 2 u j V d x + t |Dum|2 f d x- C o n s t t/« fmdx + 

+ t e * m d V t u m d x - ) -

It follows from [7] p. 283 that the sequence u is uniformly boun­

ded in m and our claim easily follows. 

trv 

5. Case .5", a4 D. 6> > 0 on dQ. 

In this section we assume that --£. a.D.<o >. 0 on dQ. For 

each z, > 0 we consider the Dirichlet problem 

(le) (Le + A)u= -^ ̂ 1
 n

i(paijDjU)^-.^(ai+eD.f>)Dii + (a0+^)u = f on Q, 

o 
with the boundary condition (2), where tf> e L OQ). 

Inspection of the proof of Theorem 2 shows that there exists 

7i such that for each 0 < £ < 1 there exists a solution 
ufee'W

2>2(Q) of the problem (le), (2). 

Theorem 4. Let $ e L (dQ) and suppose that ,j§r ai(x)Di<ip(x)̂ § 

^ 0 on 8Q. Then there exists a solution u in_ W » (Q) of_ (1) such 

that 

&% % u ( x ) i r ( x )l. ai ( x ) 0i? ( x ) d Sx= 4a*(x)ar(x)ifiai(x)Di?(x)dSx 

for each Yc C1^?). 

Proof. Observe that .2 ai(x)Dif(x)+ e|Dp(x)| > 0 on ӘQ. 

Hence multiplying (l
e
) by u

e
 and integrating by parts over Qf 

and then letting oT—*0, we obtain that 

4 J°*JiaijDiutD3u*d x + 4 - A + V 7*f.,<DiV *0-ii?»)J 4 dx= 

= 7 t e U f i a i D i P + e ( D i P ) 2 ] * 2 d S x = 4 f u*d x-
As i n the f inal part of the proof of Theorem 1 we get 

J a lQ 2 u e | 2 p 3 dx^C 1 ( / a | D u f c | 2 f d x + ^ u 2 d x 4 - / a f 2 d x ) , 
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where C1> 0 is a constant independent of £ . Combining these two 

relations we obtain 

/ a iD\ iydx+ / f t iDu6i
2
P

dx+/« u
t
2 d x*c

2( /a
 f2dx+ 4 *2dSx), 

for each e > 0 and % £ A , where A„ can be chosen independent-
o' o r 

ly of e . It is clear that there exists « — > 0 such that 
/ ro 

u weakly iri W ' (Q), strongly in L (Q) and a.e. on Q and V 
that u is a solution of (1). Taking Y e C^U) we find out by inte­

gration by parts that 

/«, Pi|. ia i jD iuD/dx- r f iv*.f- '> auDiuDi<P1rdV 
+ / ^ a + a o - ^ D i ( a i Y ) ) u d x = i a r f . # i a ^ u Y d S ^ / ^ f u d x . 

Lemma 2 and the Holder i n e q u a l i t y y i e l d 

- ^ " k ^ /Cn 2 - . a . .D.u-YdS =0 <f~>0 ^aa^-v,^1 -J i x 

and consequently 

(23) ^ c T / ^ . f ^ a i D i f uYdS x = fft p ^ aijOiUOjJTdx* 

+ / J * + V J h V a i ™ udx-/« fudx-
2 

Similarly, using the fact that u (x^) converges to $ in L O Q ) , 
m 

we get that 

/«f *,?.<8i.1DlV-Wx+ 4 U + a ° " - ^ D i ( a i + e™Di?)Y:l Utm
dx = 

" / a a $ Uf i a i D i ? + 6JDH2]^dV/a
fue.m

dx-

Letting t*m —> 0, we deduce from the last identity that 

(24) .4 p*f.<"ijDiuDaYdx*/-w+,o- ^ ° i ( a i ^ u dx= 

- /Ba*y i f ia iD i?dSx+ /« f u dx-
Comparing (23) and (24)we obtain that 

(25) «U3 L,{Si *iD i?)'u*dV /aa*^£4 aiDi9dSx. 
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Remark 2. Assume tha t . JE. a.(x)0.(p(x)--0 on SO. Inspect ion 

of the proof of Theorem 3 shows tha t there e x i s t s a so lu t ion 
ucW 2 , 2 (Q) of (1) such tha t 

26) ii"o J9a<r(#1
aiDi?)uYdSx = ° Jaas 

for each y * C (Q). The relation (26) shows that the boundary da­
ta $ is irrelevant. A natural question arises whether a solution 

u, understood as a limit of a sequence u t from Theorem 3, is in­

dependent of the choice of $ . We are only able to give an affir­

mative answer provided $ e Lcc'( Q). **"* 

Indeed, let $, and $ 9 belong to L^ O Q ) . Let us denote the 
i i \ 2 

corresponding sequences of solutions by ui and u e , respective-
1 2 ly. Since ufc-u^ satisfies the homogeneous equation (1), by Theo-

1 2 
rem 2.1 in €7], we may assume that u.-u^ is bounded independent­
ly of e . Set 

1 1 2 2 
lim u:r=u and lim ue =u , 

~^2 2 where the limits are understood weakly in W ' (Q), strongly in 
9 io '"2 2 

L (Q) and a.e. on Q. It is clear that u -u belongs to W ' (Q)n 
aLa0(Q). As in Theorem 3 we arrive at the following identity 

/ft f *.|-t -ijDl<-
1--2><y«1-«2>-'<+ 4 ( V V ^.|/|D.ai)(u

1-u2)2dX = 0 

1 2 for X > 3 , and consequently u =u a.e. on Q, provided A is 
sufficiently large. To establish this identity we have used a re­

lation 

, 1il. d'^4,|-l'li Di ( u l- u 2 ) Di* ( u l- u 2 > d Sx = 0. 

which follows from Lemma 2 provided u -u e L°D(Q). 
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