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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,1 (1987)

ON THE DIRICHLET PROBLEM FOR A DEGENERATE ELLIPTIC
EQUATION
J. H. CHABROWSKI

Abstract: We study the Dirichlet problem for an elliptic
equation in a boanded domain QcRn with the boundary data in Lz(aQ).

It is assumed that the ellipticity degenerates at every point of
the boundary &0. We prove the existence of a solution in a weigh-

ted Sobolev space wl’z(a).
Key words: Degenerate elliptic equation, the Dirichlet pro-

blem.
Classification: 35005, 35325

1. Introduction. In this paper we investigate the 01r1ch1et
problem for a degenerate elliptlc equatlon

(1) (L+Nu= - | 24 Di(P(X)aij(x)Dj”)*,;,§4 a; ()0 ur(a () + N =£(x)

1 3= in Q

(2) u=d on 30.
In a bounded domain Qc R with a smooth bbundary 3Q, where

A is a real parameter, a boundary data § is in L 2(3q) and P(x)
is a C -function on @ equivalent to the distance d(x,2Q) for xe@

and its properties are described in Section 2.
Throughout this paper we make the following assumptions

(A) The coefficients 335 8 and a (i,j=1,...,n) are in C“KRn)
3;57353 (i,j=1,...,n)

(B) There exists a positive constant < such that

g2 o F e (x) 6,6, < ylgl?

LA 431 1) 5327

for all xeQ and f € R, . Moreover there exists a constant 3> 0
such that a (x) =z 3 on a.

(c) fel?(q).
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‘8ince the elliptic equation (1) degenerates on 30, the theo-
ry of second-order equations with non-nepative characteristic
form asserts that the boundary condition is to be imposed on a
certain subset of 9Q, which can be described with the aid of the
80 called Fichera function (see p. 17 in [LP]), In our situation
the Fichera function is reduced to z(x)=, X, a,(x)D;@(x). Conse-
qqently tfollowing the terminology of [107, the boundary condition
(2) should be imposed on

.}:2: ix € 30Q: )‘g,, ai(x)Di@(x)> 03.

Throughout this work it is assumed that
mn
(0) &2_*_1 8, (x)D,#(x) >0 on 30,

therefore If aq.

The main difficulty enceuntered in constructing a solution
of the Dirichlet problem with Lz-boqndary data arises from the
fact that functions in Lz(aﬂ) are not, in general, traces of func-
tions from the Sobolev space Nl’z(ﬂ). Consequently the Dirichlet
problem (1),(2) cannot be reduced to the problem in W2y, 1t
18 also clear that the boundary condition (2) requires a proper
formulation.

The purpose of this note is to establish the existence of so-
lutions to the problam (1),(2). We construct a solution by appro-
ximating ¢ and £ in t2(80) and LZ(Q), respectively, by sequences
of amooth functions. Then we can use the recent results of [7) in
which the existence of solutions in C(@)n c2(Q) has been establish-
ed as well as some estimates near the boundary of the gradient of
8 8blution. In Section 2 we find the uniform bound for this appro-
ximating sequahce of solutions in a Sobolev space 32’2(0). The
spdte w‘»a(oy, defined in Section 2, appears to be the right So-
bolev space to study the Dirichlet problem (1),(2) with § e L2(30).
Sectioh 3 is devoted to the main existence result. In the final
Section 4 we make some comments on the existence of solutions in
the case when (D) is replaced by a weaker condition

;,g«‘x("mi?(")? 0 on BQ.

The methods employed in this paper are not new and have ap-
peared in [11,(2) and [9). The degenerate Dirichlet problem has
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an extensive literature (see for example LA] [51,17),110]) and the
references given there). The case where Z a, (x)Dl@(x)<0 on 3Q

is more complex and in general the boundary conditmn is irrele-
vant (see [4)). Finally we point out that the case, Zal(x)ﬂ e(x)>

~

3=1
wlth zero boundary data.

1j(x)DiSD(x)D:.JQ(x) on &0 h@s been consm?red in L5) but

2. Preliminaries. Let r(x)=dist(x,00) for xeQ. It follows
from the regularity of \the boundary oQ that there is a number d';
such that for d“e (0,d_) the domain Gy=0n{x: min |x-y|> ot

o qe BN

with the boundary 80‘; possesses the following property: to each
x, € 80 there is a unigue point xd-(xo)e 8Qy such that xd-(xo)=xo—
- o"v(xo), where v(xo) is the outward normal to 9Q at x_ . The
above relation gives a one-to-one mapping at least of class CZ,
of 8Q onto BQy. The inverse mapping of xo—->x6-(x°) is given
by the formula Xg=Xg +d“»d.(xd_), where vJ(xd,) is the outward nor-
mal to SQd- at Xy '

Now let X, € 3Q, 0 <d’<da and let X,

<. be given by Xy o=xg(x )=
=X —d’v(xo). Let

A = ,BQd.r\{xd.;]xJ—Yd,l< e},

[=~]
1

e = ix; X=xg +o"'vo,(xd.), %peAd,

ds ‘1_ lnel
a5 aﬂ‘o IBE‘ ’

0
where |A| denotes the n-1 dimensional- Hausdorff measure of a set
A. Mikhailov [{9]) proved that there is a positive number Yo such
that

! ds
) tead <
[s]

and
ds
(8 1i EI‘S‘J=
uniformly on B8Q, and moreover “is at least Cl-function on
o

aQ xlo,d‘o'l (eee formula (16) in L9].
According to Lemma 1 in 13) p. 382, the distance r(x) belongs
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to c2(8-0. ) if o’ is sufficiently small. Denote by @(x) the
- o

extension of the function r(x) into T satisfying the follt;wing
3
properties @(x)= =r(x) for xé€ Q- Qd’ ype C (Q) go(x)>T in Qa‘"’
'[1 r(x)‘;o(x) £ % r(x) in Q for some positive constant 7, an»—
= {x;p(x)=d%for de (0, 8,) and ‘finally 30= {x;@(x)=0}.

The following result is an immediate consequence of Theorem
2.3 in L[7).

Theorem 1. Let fe whe(g) with £21. Then there exists
0< %<1 with 3€< 5nf g a, (x)D @(x) such that any solution u in

C (Q)OC(U) of (1),(2) with =0 on 30 satisfies the estimate

(5) 1-%p < o)t
et Foull e eollell

where C(£) is a constant.

To construct a solution of (1), (2) in wloc(D) we need

Lemma 1. Let §_ ~and f be sequences in C 230) and Cl(a),
respectively, such that
2.0 _ ; - 2,
Lim Lo Té, (0-$(x)) “dS, =0 and Lim Ja 00 -£007 2dx=0.

Let u_ be a solution of (1)_with £=f, in C2(Q)n C(M satisfying
the boundary tondition

(2m) u,= b, on d0.

Then there exist positive constants ao and C, independent of m,
such that

(6) f |02u 12 51:3clx+f5l IDu |2 pdx+ IR us‘dx P
“C(Ia t2dx+ f (o ® 245 )
for all m=1,2,... and A 2 ';\o‘ S

Proof. According to Theorem 1 and Theorem 2.3 in [7) for
each m there exists a solution u  of (), (2 ) in CZ(Q)nC(Q)

with @ 'xDu eL”(Q) provided A z: 0. Multiplying (1) by u, and
integrating by parts we obtain

m
€)] fana.‘r ~§,4 iJDi_um-uijpde+_£J§> M§1 83 305upD updx +
2 2
faa Z a0 upeu dx+ f&; agu dx+ A j;d‘ updx= /&Jim-umdx.
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The first integral can be estimated using Young's inequality

2 . 2 2
(8) f t)}_“JDlumuan ds| <, &&lnum} ds+£%umds,
where C1 is independent of o . Integrating by parts the third in-
tegral we get

"
(9) fﬂ; 1.?;_-1 a;Dyu -y dx= Yf 8101(u Ydx=

2
= - '2'&0 “43101@u 245- b j;l Z.Dlalumdx
Combining (7),(8) and (9) with the ellipticity condition we arri-
ve at the estimate
-1 2 1 1 & 2
T oy ©10u P o A foag b, 0ye00Z0x <

i1 =
o 2 _—
£ t;8° fa%_ |Du, | 2ds+ j;ﬁa- (7 12, 3;0;0+1)ulds+ %fad_f:'dx.
. 1-% ) s w2 2 -
Since Dup & L(0), ;Lim 8 faa,,lﬂum| ds,=0.
Consequently taking A sufficiently large, say A > 9\0, and let-
ting & —> 0, we get

(10) Jg ®10ug1Zaxe fo ulax<c, (g 8205+ fy t2ax)

for all m, where l’:2 is independent of m. To estimate
falﬂzuml go dx, we first observe that, if v is a \ﬂz 2-func‘tion

with compact support in Q, then

m
fa ® i3y aljolumnjk vax+ fo Z a;0;u,0, vix+ [ (a +A)u D, vdx=

avadx

Integrating by parts the first integral we get

akai.\éZ:‘l aiJDIUmDJV dx+ fa 94'.,}:1 Dy 1301umD sV dx+

z
+j;g°4‘?4 eijDklumDJv dx- f Z‘, a;D,u Dy v dx-

—fa (ag+Auy D, v dx= -f& £ D v dx.

Letting v=0kum(¢-632 in Qg and v=0 on Q-Qy we deduce from the
last equation

aun fa’ ka%”%q a3 4054, Jku (p- -8)2

+ 2 f%nkp %'?.daij 1umlnku DJQ(QD -3)dx +



+ j;; ;,?‘4Dkaijn umngku (9-6)2dx+2 fqd_(o %4 DkaijDiukaum(@-d')Dj?dx*
Ld_e 131 iJD'fiukaJum(gu-o) clx+2j‘:l h}_ aijnzium KUn@@- -d)D. ux-
'faJ:,-q 103 UnDRyUn @ -9 ‘2&; 'gq 8;0;up0yu, ©@-8)0, Qdx-

- f&d.(aoti\)umozkumgo-J)zdx—z j;?d' (ao+.7t)umﬂkum(g—«ﬁ)I’Jk @dx=

:-fqdf DZ U (@ -0 2dx-2 fgif Dy, (@ -d)D, @ dx.

Let us denote the integrals on the left side of (11) by 31'
Estimation of these integrals can be obtained as follows

~1 = 2 2
(12) Iz f@a 524 105l © @l-d) ox.
Using the Young inequality we get
(13) 134303503, £05Ce) [y 10uy | P (o-dDaxs

. Bfa,. 324 1001 20 -0) 0x.

Similarly we have

(18) |36+J7|‘CA['/‘; Sol[]umlzdx+fa |Dum|2(@—¢§)dx] .
[Ll =1 ‘D uml ;o(ga -9) dx+fa kJ u ¥ (g° -8 dx]
(1s) 13g1+1 Jo, 208y un(9-0)7dx| £ (fad_uf‘dm fanzdx) .

WJ& ,,1“3 jul?@-6) dx
and finally

(16) |JB+310|£c6[fa lou, | (ga-é)dx+fa u2ax],

where C are independent of d and &> 0 is to be determined. We
deduce from (11) - (16) that

-1 2 3 & .2 2
f&([('y —e)so(p‘-i) -3elp-0)’) , Z 10§, u, 1 %ax <
%«Cy (f&;m“mlz(e'd.):"’“ fa; lDumlzgodn fao»rfzdx+ f%f uf‘dx),
where C,>0, Since

(- 0p-0)2-3660-0) 3= (0-6)? [ (7 1-0)p-3elp-0)] =
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- @O Ly -e)@-8+dq ™ -6)-3e(E-)] =
=o-6)2 Ly l-ae)(-0)+dr ™ -£)] > @-6)> (37 -se)

-1
for ¢ sufficiently small, say e= xs-—, the last two inequalities

yield -
2 2 3 2
(17) };w 321 105,up 12 G-6) dx £ Sy, Ua;'“*‘m‘ (@-d)dxs
2 f 2 2
+ de-IDum' @ dx+ )aJ £4 dx+ j;U umdx].
Letting J°—>0 in (17) and combining the resulting inequality

with (10) we easily arrive at (6).

Lemma 1 shows that a possible solution to the problem (1),(2)
lies in the space W2:2(Q) defined by

'\;2’2(Q)= {u;uewfag(u) and falnzu(x)|2(o (x)3dx+

+ fa IDu(x)‘I2 e (x)dx+ fa u(x) Zdx < ot
and equipped with the norm .
[lul lé2,2= )-& 102u(x)|? so(x)3dx+ fa lDu(x)Izso(x)dx+ fa u(x)2dx.

The proof that u  converges weakly in WZ’Z(Q) to a solution
of (1),(2) will . be given in Section 4.

3. Traces in W2'2(Q). To proceed further we need some pro-
perties of the space Wz’z(ﬂ).

e Lemma 2. If ueW?2 2(Q) then JZLQ |Du|2ds is continuous
on [0,0,] and moreover 7 ’

lim &2 bu|2ds._ -0.
5.1:3 faadJ ul “ds,

Proof. Let 0 < d'« d'o, then
1. to,ul%d fdé du [ [Dyu(x )]%d

u X= u(Xx S =

OJ‘RJ;P i P [l aa‘“ i \ as
_ % 2 ds 3 0 2 J
-, wdp [ I0julx (x,))] T 0857 =% fglyulxg ()] 75245,

2 : dS .~
- %—/‘;Q(Diu(x (Xo))]z H'Si ds,-

0
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d ~m dx dS
2 2 .
- J:;y. La[—}gqDjiU(Xn(xo))DiU(XM(xo))Ef3'5& +

ds |
)
+[ogutx xgn)? & adt)] o,
From this identity we can compute
ds
2 2
J;a[DiU(xJ(xo))] Bgfdso
and express this integral in terms of other integrals which are
S
d‘—>1,

2,2 d
continuous on [0,d.), since ueW *“(Q). on the other hand =
o o

as & —> 0, uniformly on 8Q, therefore the continuity of the inte-
gral g2 j;a |Du|2dS easily follows. Assuming that '

. 2 2
lim & |Du|“dS >0, we would have
d>0 oo -
2r 2
J Du|“dS>a on (0,;]
AL

for some positive constants a and d} and this would imply that
2 d,
fa‘a‘( elou|%dx= [} («,d(u,/éa(uIDulzdS:co ,
4

and we get a contradiction.

Lemma 3. Let ue w2 2(Q) be a solution of (1), then

J%ad.uzds is bounded on (O,d;].

Proof. Multiplying (1) by u and integrating over Qf we obt-

ain

1 2 &

'Zfaaa. 1 Z42;0;0dS, = 'zfa,. Z,Dja;u dx+j;;§o¢ 2, ,8;;0;uD5u dx+
2

*J'_j;ad‘ iy 1301u .uD. §0de+ j&;(ao”‘)" dx- f%fudx.

We may assume that

. av
as a}a}o &é.’

taking d; sufficiently small, if necessary. Since by Young's in-

3; (x)D;e(x) >0

equality v .
2 2 a 2
d*f“‘r 1’§1 8y ;0;u-uD;QdS, £ Cd fa& |ou| 2ds + 'zfa u?ds_,

where C is a positive constant depending on n, a and llaiJll

the result follows easily from Lemma 2.
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In order to prove the existence of a trace of a solution

ueW?:2(Q) of (1) we introduce an auxiliary function x7:q — QJ’

defined in the following way. /2

% e =
For d'e (0, —2-] we define the mapping x :Q «-—>Dd../2 by

x(x)= { x for xeQy,

where y (x) denotes the closest point on auJ to xe Q- Q; . Thus
x9(x)= x/ (x) for each x € 20, moreover x? is LlpSChltZ
2

We are now in a position to prove the main result of this
section.

Theorem 2. Let ueW22(Q) be a solution of (1), Then there
exists a function de L2(5Q) such that

2
0_1_&:3 faa[u(xd-(x))-@(x)] ds=0.

Proof. Since by Lemma 3 , f;qu(x‘;(x))zdsx is bounded, .there

exists a sequence d;, —> 0, and a function de L2(20) such that
Lim fanu(x (x))g(x)dS faa ¥ (x)g(x)dS

for each gel 2(30). We prove that the above relation remains va-

lid if the sequence {d;"} is replaced by the parameter d’.

Since faau(xd-(x))g(x)ds is continuous on (O,d'] it suffices
to prove the existence of the limit at 0 and with g replaced by
Yecl(. Integration by parts yields

- .
faa %Z a;D;p Yu ds = -f%‘:‘f_',‘ 0, (a;¥)u dx+ fa‘f(aom)&'u dx+

m
+ fﬂgpi.§1813 $u° Dj'&'dxw'J;a Z4aiJn uDy@ ¥ ds- fo f¥ox.

Using Lemma 2, the continuity of the left side easily follows.
Letting J —+ 0, we deduce from the last identity that

(18) faaé‘f%g.'a D;pdS, = j‘.z *Z- D (ai‘f')u dx+
0w
*'f& (ao+$\)’fu dx+ & 9%'4231 aijDiuDj"Idx-_fa f‘!dx:fq F(¥)dx.
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¢
It is clear that this relation continues to hold for ¥e UI’Z(Q).

Now taking ¥(x)=u(x%(x)) we get
(19) faaé(x)u(x‘f(x)) ‘.éi‘ ai(x)DiP(X)dsf-&ld. F(u(x))dx+
+ja-q;F(u(xJ(x))dx.
- We now prove that
- 2 2
(20) }i% }ArF(u(x))dx=}:Pb Jag ulxg G 3, a; (x)Dje(x)dS,
and ’

. o -
(21) JE}?-&-Q; F(u(x?(x))dx=0.

since x?(x)=x (x) on 3Q, (19), (20) and (21) yield that

jaaq’(")zdsf PEUN hautxg(x2)? 4,34 a; (x)0;0(x)dS,

2

and the L“-convergence follows from the uniform convexity of Lz(an).

To show (20), observe that using the fact that u is a soluti-
on to (1) we get

v ~m
fd{F(u(x))sx= -fad_;§1 0; (ajudu dx -fad_;é,, a;Dju-u dx -

-d % .a,.0,u-ub.pds= [ uZ. ¥ a0 foo .=
2, 33242130197 U03995= Joq u"; 2, 2404 00s- 0., &4 2;30;u-uDy@ds
and this claim follows from Lemma 2. Finally
F(u(x?))dx| & Const t 9)|d
'fa-a, (u(x?)) x‘| ons [fQ_% 12O Hulx) axs
+fq_a‘(x)|ﬂu(x)|lDu(x‘)ldx# j&_“d_lu(x)llu(xd')ldm
+ jiflnu(x63||u(x)|dx] .

Now Lemma 2 from [1) implies that the first and third integrals
converge to O as 5’-—) 0. The convergence to 0 of the second and
fourth integral follows from Lemmas 5 and 3 of [2] respectively.

' 4. Existence of solution to the problem (1) - (2). Theorem
2 of Section 3 suggests the following approach to the Dirichlet
problem (1), (2).

, Let e L2(30). A solution u of (1) in W2'2(Q) is a solution
of the Dirichlet problem with the boundary condition (2) if
- 150 -



(22) Mo fae[u(xd-(x))- $(x)) %ds =0.

Theorem 3. Let A 2 A, {where 3 1is a constant from Lemma

1). Then for every d ¢ Lz(al]) there exists a unigue solution
ue W2%(Q) of the problem (1), (2).

Proof. Let u  be a sequence of solutions of the problem (1),
(2m) constructed in the proof of Lemma 1. By the estimate (§6)
there exists a subsequence, which we. relabel as Uno converging
weakly to a function u in WI’Z(Q). According to Theorem 4.11 in
[aj, WI’Z(Q) is compactly embedded in LZ(Q), therefore we may ag-
sume that ug tends to u in LZ(Q) and a.e. on Q. It is evident
that u satisfies (1). By virtue of Theorem 2 there exists a trace
E € Lz(aﬂ) of u.in the sense of Lz-convergencei We have to show
that § =% a.e. on ®0Q. As in the.proof of Theorem 1, for every
Ye CI(Q) we derive the following identities

fa& 4?4 a;D;@efY dS = fn ;o%%ﬂ aijni“Dij’“fa (a +A)u Ydx=
- j(;.;gq Di(ai‘f)u dx- fa fYdx= fa F(¥)dx

and similarly for U, we have

-

Joa 241059 2a¥dS,= o, By 0yq0ug0, Yoxe

v Jo gy, Yox-f 2, 0 (auax-f £ ¥ox= [ F(Dox.
Since 1lim f& Fa(dx= faF(Y)dx, we have that
Jon® ¥ Z 00,008, - [ g ¥ E, 50,008,

for any Ye Cl(a) and consequently $=f a.e. on dQ. The unigue-

ness of solution of (1), (2) can be deduced from the following
energy estimate

fa|02u(x)12;u(x)3dx+ fq lDu(x)lzso(x)dnj;u(x)zdx €
“c[f 100%xe [ 20025 ]

which is valid for any uewz'z(n) satisfying (1), (2) with-aA ® %
and the proof of which is a slight modification of the proof of
(6). We only use Lemma 2 in place of Theorem 1.

Remark 1. If d e L®(3Q), we may assume that A =0. Indead,
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we approximate ¢ by a sequence of Cl—functions $ on 3Q, which
is uniformly bounded in m. The corresponding estimate (6) from
Lemma 1 takes the form

falﬂzumIZ;DBdw fq IDum|2 @ dx £Const [j; f:dn

2 2
+ faa $ndS,+ j; umdx}.
It follows from [7) p. 283 that the sequence u, is uniformly boun-
ded in m and our claim easily follows.

" .
5. Case _1}':1ainiq>z 0 on 3Q.

In this section we assume that 1',‘?'4 aiDi@ 2 0 on 3Q. For

each © > 0 we consider the Dirichlet problem

(1%)  (L®+A)u= - g D. (;aalJDJu)+ g (a;+eD; @)D i+(a +Nu=f on Q,
with the boundary condition (2), where de L (au).

Inspection of the proof of Theorem 2 shows that there exists
A such that for each 0 < g < 1 there exists a solution
u e %2:2(Q) ot the problem (1%), (2).

Theorem 4. let pe L 2(50) and_suppose that Z a; (D@ (x) #

# 0 on aQ Then there exists a solution u 1n ﬁq 2(Q) of (1) such
that

~m
Aln faad_u(x)‘i’(x) 2,8, (00,0088, = [0 8G)Ux) . Z, a, (x)D; @(x)ds

X

for each we C1(Q). )
Proof. Observe that _24 a; (D E(x)+ sIDp(x)|2>0 on Q.

4=

Hence multiplying (1%) by u® and integrating by parts over Oy
and then letting J"—>0, we obtain that

2 =
f §°~? 4aiJﬂlueDJu;dx+ f [A +a,- 7%: (D;a,+ 302“@)] ug dx=
. 2 2
=7 -ga[ag-ﬂini?* e(0;0)%] d705, - fa f ug dx.
As in the final part of the proof of Theorem 1 we get

Ialuzuelzg,’miecl Ua |Dug | Zpax+ f dx+f fzdx)
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where C,>0 is a constant independent of € . Combining these two
relations we obtain

2 2.3 2 2 2 2
IQID usl [ dx+fe |Du£| @Edx+ A udeéCZ(fo dx+ faa ) de)’

for each € > 0 and A 2 30, where .ﬂo can be chosen independent-
ly of € . It is clear that there exists ey —> 0 such that

ug —> u weakly in ﬁz’z(Q), strongly in LZ(Q) and a.e. on Q and
m .

that u is a solution of (1). Taking Ye cl(@ we find out by inte-
gration by parts that

fﬂd?«ui 4813030 ;¥ax- d’_/;%_ ?4 130400 ¥, +
+ fﬂa’ (9"'30‘;‘;1 Di(aiY))Ud)::j;Qf 2 20 pu¥as + f&; fudx.
Lemma 2 and the Holder inequality yield

' m

;mod'j;a‘; 31 a;30;u- -¥ds_=0
and consequently
(23) lim o[ % a;Djpu¥ds, = [ a; .D;ub ¥dx+

i Jaa, 124 21050 “la O §4 137155

v
+ fq£2+ao- 424 0;(a;N] udx—fa fudx.

Similarly, using the fact that u (x4) converges to & in Lz(aﬂ),
m
we get that

m
Lo ,%,4 13040 Dy¥ox+ [ [dvag- (2,0, (a;+ enD;@)¥ ]y, dx=

- 2
= fa&§[ { a;D;p+e€ nl0el )Yds +f fu dx
Letting €, —> 0, we deduce from the last identity that
~m m
(24) .fa $°.;,,§,4aijni“0jydx*fq [A+a - &§4 Di(ai'!)] u dx=
v
= foa® ¥iZ, 8,0, 005+ Jptu dx.
Comparing (23) and (24)we obtain that

L >
(25)  Jim (“21 31019)/u'rasx= J‘MQY{;1 a,D,@ds, .
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Remark 2. Assume that i%ﬁ a. (x)DIQ(x) =0 on 980. Inspection

of the proof of Theorem 3 shows that there exists a solution
ueW2 2(Q) of (1) such that

(26) lim fa&; (&2_4 i@) u Y‘de=0

for each ye C (O). The relagion (26) shows that the boundary da-
ta $ is irrelevant. A natural question arises whether a solution
u, understood as a limit of a sequence ug from Theorem 3, is in-
dependent of the choice of ¢ . We are only able to give an affir-
mative answer provided & e L“( Q). -

Indeed, let bl and §, belong to 1(3Q). Let us denote the
corresponding sequences of solutions by ué and u%,, respective-
é—ug satisfies the homogeneous equation (1), by Theo-

rem 2.1 in {7], we may assume that ui-uz is bounded independent-
ly of & . Set

ly. Since u

1-u1 and 1im uz-u2

hnb ug Lim ug

where the limits are understood weakly in N2 2(Q) strongly in
t2(0) and a.e. on Q. It is clear that ulou? belongs to W2 2(0) n

A1®(Q). As in Theorem 3 we arrive at the following identity
2 1 & 1 2v2,
f e, %4 204 (ul-u )D (ul-u?)dx+ fa (A *ag- 7;§4Diai)(u -u“)“dx=0

for A2 20, and consequently u1=u2 a.e. on @, provided AD is
sufficiently large. To establish this identity we have used a re-
lation

lind [, ¥ a0 ul-u)p.e(ul-uD)ds =0
J-)“b CI i,2:1 ’-J i J x 7

which follows from Lemma 2 -provided ul-uZe 1°(0).

References

[1) J. CHABROWSKI and B. THOMPSON: On traces of solutions of a
semilinear partial differential equation of ellip-
tic type, Ann.Polon.Math. 42(1982), 45-71.

[21 J. CHABROWSKI and B. THOMPSON: On the boundary values of the

sclutions of linear elliptic equations, Bull.
Austral.Math.Sec. 27(1983), 1-30.

[3] D. GILBARG, N.S. TRUDINGER: Elliptic partial diffgrential
equat1ons of second order Die Grundlehren der Ma-
thematischen Nissenschaften 223, Springer-Verlag,
Berlin, Heidelberg, New York, 1977

- 154 -



[4] C. GOULAOUIC, N. SHIMUKURA: Regularité holderienne de cer-

[5) 3.3.

tain problemes aux limites elliptiques dégénérés,
Ann.Sc.Norm.Sup.di Pisa, 10(1),(1983), 79-108.

KOHN and L. NIRENBERG: Degenerate elliptic parabolic
equations of second order, Comm.Pure Appl.Math. 20
(1967), 797-872. *

[6] A. KUFNER, 0. JOHN, S. FUCIK: Function spaces, Noordhoff,

Leyden, Academia, Prague, 1977.

[7] Michel LANGLAIS: On the continuous solutions of a degenera-

[8] R.D.
[9] v.pP.
(101 0.A.

te elliptic equation, Proc.London Math.Soc. (3)(50)
(1985), 282-298.

MEYER: Some embedding theorems for generalized Sobolev
spaces and \applications to degenerate elliptic diffe-
rential operators, J.Math,Mech. 16(1967), 739-760.

MIKHAILOV: Boundary values of the solutions of elliptic
equations in domains with smooth boundary, Mat Sb.
101(143)(1976), 163-188.

OLEINIK and E.V. RADKEVIL: Second order equations with
non-negative characteristic form, Am.Math.Seoc. Pro-
vidence, Plenum, New York 1976.

The University of Queensland, Department of Mathematics, St. Lucia
4067, Brisbane, Queensland, Australia

(Oblatum 5.5. 1986)

- 155 -



		webmaster@dml.cz
	2012-04-28T13:52:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




