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COMMENTATIONES MATHEMATICAE UNIVERSITATlS CAfcOUNAE 

26,i own 

A NOTION 01= SEMIGENERICITY 
Oswald DEMUTH 

Abstract: The Glass of semigeneric sets* i.e. nonrecursive 
sets covered by any recursively enumerable set of strings that co­
vers all recursive sets, is studied. Besides, a new characterisa­
tion of weak 1-genericity is given. , 

Key words: Recursion theory, tt-reducibility, T-redueibili-
ty, minimal degrees, hyperimmune sets, weakly 1-generic sets. 

Classification: 03030 

In this paper, the notion of semigeneric set of natural num­

bers (NNs) is introduced on the basis of the class of recursive­

ly enumerable (r.e.) sets of (binary) strings covering all recur* 

sive sets of NNs. The well-known correspondence between recursive 

real numbers and recursive sets of NNs makes the obtained results 

interesting also from the point of view of constructive mathema­

tics. Semigenericity is a generalization of weak 1-genericity in­

troduced and studied by Kurtz t43. We give a new characterisation 

of this type of sets. 

We now consider the notation. The sign a* denotes graphical 

e q u a l i t y , for relations and operations on sets of NNs (or strings), 
a standard notation is used, A\ B signifies the difference and 

AAB the symmetric difference of sets A and B, The set of («11) 

NNs is denoted by N, the symbols s, t, u, v, w, x, y, z are va­

riables for NNs. h xy <x,y> denotes a primitive recursive pair­
ing function which is 1-1 and onto and tn\ and 3f« two primitive 

recursive functions such that <^r1(m), ̂ ( m ^ em for any f̂N m. 
For every sets A and B of NNs and every NN k A S 8 is the set 

*x: 3y(x=2y&y e Avx=2y+1& y eB)i and (A)R ̂  i x:<k,x>* A|, whe­
re 5e-fe stands for "denotes". <ux(...) means: the least NN 

x fulfilling (...). 

A string is a finite sequence of O's and 1*s ( i . e . a word in 
the alphabet 4o,ll). In the sequel the symbols & , €, X piay ttom 
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role of variables for strings, -A is the empty string, lh(0) 

is the length of € . Further, € * % denotes the concatenation 

of 6 and t? , $> fi # means & extends'p and p -< tf means f> 

lexicographically precedes € . For any NN n, let cT be a string 

with the number h in the linear ordering -< of all strings. Thus, 
k k for any NN k, strings of length k have just numbers 2 -1, 2 ,..., 

2 -2. Strings are often taken for (finite codes of) functions 

from finite initial segments of N into 4.0,1} and signs denoting 

sets of NNs also stand for their characteristic functions. Thus, 

6 ( K ) is defined if and only if x < l h ( 0 ) holds and *A x A(x) is 

the characteristic function of A for any set A of NNs. 

For any sets y and tP, of strings, any string 6* , any set 

A of NNs and any NNs m and n, m ^ n , 

a) <A>*e-**{cf:xeAl; A Urn,n.3 denotes the string correspon­

ding to the restriction of the function # x A(x+m) to the initial 

segment -Ix.-x -£ n-mj; 

b) 6 £ A ("A extends 6* " or " 6 covers A") denotes 
6 £ A I 0,lh( & )3; " if covers A" means: there is a string t e ^ 0 

covering A; " *$ covers 0 " means: any set M NNs covered by & 
is also covered by tf ; " #, overlaps \f " means: there is a set 
of NNs covered by both Jf and Sf, . 

Let us notice that by Konig's lemma ( f̂ covers 6) 4&& 
^=> 3 x Vp (lh((D )=x ==> 3 x(x € tfQ & X S &*p)) holds and, con­

sequently, for any r.e. set if of strings the predicate " y covers 

6>" of a variable €T is recursively enumerable. . 

We assume a standard indexing of all partial recursive func­

tions of one variable and indexing as well as enumeration of all 

r.e. sets of NNs and, consequently, also of all r.e. sets of 

x v,.v, „«,.»*,. T . r x x **•*•« -wwwwv »* * x 

after s steps. (Hence, < W > is the r.e. set of strings with in­
dex x and <CW**> its finite part obtained after s steps.) 

' A 
Analogically, for any set A of NNs and any NN x $* denotes 

the partial A-recursive function of one variable with A-index x, 
A . * A , 

Wv denotes the domain of o^, and A the jump of A (i.e. the set 
A «f 

•Cx: 9>"(x) is defined]). The notation <£x has the usual meaning: 

if the evaluation of 9>x(y), where B «£& i z-.z< lh(tr)& f (z) = l$ 
(and thus, x £ B), finishes within lh(tf) steps and all oracle 
information needed is coded in. X , then <y^(y) is defined and 
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cp*(y)-denote the value of 9>°(y); otherwise 9*(y) is not defi­

ned. Clearly, the predicate " qt\W is defined" of variables X . 
x and y is recursive. 

We use the notation on tt-reducibility and T-reducibility 

introduced in Rogers [83, degtt(A) and degT(A) denote tt-degree 

and T-degree of the set A, respectively. For any property P of 

sets of NNs a degree is called P (resp. P-free) if it contains 

some (resp. no) set with property P. (Thus, for some P a degree 

can be both P and non-P.) 

For any strings p and & , set *$ of strings and recursive 
function f 

a) " ̂> £r+. 6 via f" means: for any NNm, m < l h ( p ) , the asso­

ciated set of the tt-condition f(m) is a subset of the set 

-[x:x<lh(6T )1 and ( p (m) = l <*===-> (f(m) is satisfied by the set 
Jy:y-<lh(er)fcef(y) .-n)) holds; 

b) 33(p>,f) (00 stands for inverse image) denotes a (fi­

nite and possibly empty) list of all strings being the shortest 

ones fulfilling the predicate ( f > . £ + + t via f) of a variable X ; 
c) 11 (9\f) ̂  u. iy(x,t). 

Let us notice that for any recursive function f the predica­

tes (f ~ \x& via f) of variables p and 6» and 3t(<X) # + +t via 

f) of a variable p are, obviously, recursive. 

The (Lebesgue) measure on the class of all sets of NNs int­

roduced by Sacks t 9.1 gives us in a natural way a measure on the 
class of all sets of strings. For any set if of strings and any 

string 0 , the class of all sets of NNs covered by both ^ and 
6f is obviously measurable and we denote the measure of it by 

(u(tf,tf). Let (u.(y) denote <u,(3\A). Thus, <u,(-tei ) = 2~ l h ( t : ) 

and the predicate ^u(< W x> ,f> ) > (l-2"
y) • (u(i<p}) of variables 

x, y and JD is recursively e n u m e r a b l e . 
For any NN m and recursive function f we say "-£w > is ef­

fectively measurable via f" if 

Vxy(f(x)^y ==> | < * « W * ( x ) > ) - < u « W y > ) | ^ 2 ~ x ) h o l d s . 
A set $f of strings is called a covering if if is a r . e , set 

which covers all recursive sets of NNs; a cohering is said to be 

proper if it does not cover the empty string (i.e. if none of 

its finite subsets is a covering). 

Remark 1. The sets ix:K W > is a covering $ and fx:< W > is 
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a proper covering! are TT?-complete, every covering is a dense 

r.e. set of strings and 4 x . < W > is dense! is a TT !>-complete set. 

Further, if the set E of NNs is in TT*, l£n, then the class of 

all sets of NNs covered by < W > for any xeE is a #TT ,.-class 

of sets. 

Using the results of Jockusch and Soare CI,23 we shall re­

member that for any NN m the class of all (characteristic func­

tions of) sets not covered by < L W > is a recursively bounded 
n n 

(r.b.) TTV-class or even a r.b. special TTV-class, when < W > is 

a proper covering. 

In KuCera £3) the class of NAP-sets which corresponds to 

notions from constructive mathematics (Martin-Lbf 15J, Demuth 

Cl03) is studied. A set A of NNs is called a NAP-set if there is 

no recursive function f such that for any NN m (<<*-(<. w*./m)> ) -£ 

& 2"m holds and < W*(m\> covers A. It follows from [11, Remark l] 

that there is a recursive function e such that, for any NN m, 

<We(ra\> is a proper covering and (w-(<£'we(m) ̂  ) ^ 2~m holds and^ 

for any set A of NNs, (A is a NAP-set)4=> 3 x (A is not covered 
b * < " . c x > > > -

For our purposes we need to know the following definition 

and results quoted from Kurtz [43: 

Definition 2 ([43). A set of NNs is said to be weakly 1-

generic if it is covered by any dense r.e. set of strings. 

Theorem 3 (t4)).l)A T-degree is weakly 1-generic if and only 

if it is hyperimmune. So, by [61 the class of all weakly 1-gene­

ric T-degrees is closed upwards. 
2) Every hyperimmune T-degree contains a hyperimmune set the 

complement of which is hyperimmune, too . 
Further, the following result is known: 

Theorem 4 . For any weakly 1-generic set A of NNs and any 

NNs i and j, i4-^, the sets (A) , and ( A ) , are tt-incomparable 
weakly 1-generic sets and, consequently, (A), <., A holds . Thus, 
there is no" minimal tt-degree being weakly 1-generic, 

It is easy to prove the following statement. 

Theorem 5. Let f and g be two increasing recursive functi­

ons with disjoint ranges and h a recursive function. Then there 

exists a NN m such that 

a) (u.(<t W m> )*1 and, consequently, <C W m > ii dense; 
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b) for no set A of NNs covered by < W > 

4x:f(x)6 A}frtt tx:g(x)€ Ai via h holds. 

Definition 6. A set of NNs is called semigeneric if it is 

a honrecursive set covered by any covering. 

As we have seen, any NAP-set is non-semigeneric. Let us no­

tice that any dense TT2~class of sets of NNs contains all weakly 

1-generic sets and also many of recursive sets".' On account of 

this and regarding Remark 1 we have proved the following state­

ment . 

Theorem 7. 1) Any weakly 1-generic set is semigeneric. 

2) The class of all semigeneric sets is a TT.-class (of me-
0 

asure zero), the class of all weakly 1-generic sets is a TT..-

class (effectively measurable with measure zero till). These x 

classes and their complements are dense and none of them is a 

TT -class. 

Remark 8. Let f be a recursive function and m a NN. Then 

there is a NN n such that < W n > = C^3r(<Wm>,f) and for any set 

A of NNs there is a unique set B of NNs for which B -stt A via f 

holds and, consequently, (A recursive -=-> B recursive) and 

( < W m > covers B) «==> (<W R> covers A) hold. Thus, when < W m > 

is a covering < W n> is a covering, too. 

Theorem 9. 1) Let the set A of NNs be semigeneric. Then any 

set B,. for which 0 <.. B^.. A holds, is semigeneric, too. Con­

sequently, degtt(A) contains semigeneric sets only and for any 

NN i the set (A), is either recursive or semigeneric. Thus, a) 

any tt-degree is either semigeneric-free or it contains only 

semigeneric sets; x 

b) the class of all semigeneric-free (i.e. non-semigeneric) 

nonrecursive tt-degrees is closed upwards, because its complement 

(i.e. the class of all semigeneric or recursive tt-degrees) is 

closed downwards. 

2) For any weakly 1-generic set C the set C © C from 

degtt(C) is a semigeneric set which is not weakly 1-generic. 

5) Let E be a non-semigeneric nonrecursive set. Then for 

any set B, E-^- B, the set E©B,from deg-(B) is non-semigeneric. 

Thus, the class of all non-semigeneric nonrecursive T-degrees is 

closed upwards. 
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4) Any T-degree (T-) comparable with degT(0') is non-semi-

generic (i.e.it contains a set which is not semigeneric). * 

Proof. It follows immediately from Theorem 5, Remark 8 and 

[2, Corollary l.lj. • 

Let us notice that according to the last theorem NAP tt-de-

grees are semigeneric-free. 

Now we shall study connections between hyperimmunity and we­

ak 1-genericity and between hyperimmunity and semigenericity. 

Lemma 10. Let m be a NN and M a recursive set of NNs such 

that for any set B of NNs and for infinitely many NNs n 

(1) ^x:n£xjnM= 4 x :n £x }nB ==> (<W > covers B) holds. Then 

m 

(2) (MAA hyperimmune) ?=$> (<Wm^> covers A) 

holds for any set A of NNs. 

Proof. It is obvious that (1) must hold for any NN n and 

that, consequently, for any NN n there is a NN k such that 

Vj>(lh(p )=n*̂ =2> (< W m> covers jo* Ml.n,n+k3)) is f u l f i l l e d . As 

we know, the predicate (<W > covers ro#MCx,x+y3) of variables 

p, x and y is recursively enumerable and so we can construct an 

increasing recursive function f such that 

Vxp(lh(jD )*f(x)«* ( < W m > covers p*Mtt (x) ,f (x+l)-lj)) 
holds and the proof is completed. 

Theorem 11. Let < W > be a covering. Then for any recursi­

ve set M and any set A (2) holds. 

Proof. It is enough to use Lemma 10. 

Corollary 12. Let A be a set of NNs, If there exists a recursive 

set M such that the set MAA is hyperimmune, then A is semigene­

ric 

'"frVparticular,' all hyperimmune sets and all co-hyperimmune 

(e.g. hypersimple) sets are semigeneric 

By the results of Miller and Martin £6 3, Theorems 3, 7 and 

9 and Corollary 12 the following theorem is proved. 

Theorem 13. 1) For any set A, 0 <-. A -£j 0', there exists a 

hyperimmune and, consequently, semigeneric set B such that 

A -T b tt A* 
2) For any nonrecursive set A T-comparable with the set 0' 

a) the degree deg-r(A) is i) hyperimmune and, consequently, weakly 
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1-generic and thus also semigeneric; 

ii) non-semigeneric; 

b) if B is a semigeneric set and C a non-semigeneric set 

(both) from degT(A), then B <*tt B €> C = T A holds and B © C is 

non-semigeneric; thus, the class of all semigeneric tt-degrees 

(contained in degy(A)) is not closed upwards. 

Any minimal tt-degree T-under 0' contains, according to 1) 

and Theorem 9, semigeneric sets only. In connection with this and 

2) let us notice that Sacks has constructed a minimal T-degree 

under deg-r(0') £9] and Degtev and Marchenkov a r.e. minimal tt-

degree (see £73). 

Remark 14. Let < W > be a dense set of strings. Then for 
• m a 

any string 6 we can find a string p such that the string 6 * p 

is covered by <( W )> . Iterating the process we can get a recursi­

ve function f for which lh(cff, N ) > 1 and \r
/r(lh(t )=n' -=-> (^Wm> 

covers t.' * ^f(n)^ hold for any NN n. Let g be a recursive func­

tion such that g(0) = 0 and, „for any NN k, g(k+l) = g(k) + 

+lh( cf„(Q(k)))• Then g is increasing and the set M, where 

M ^ { y : . 3 x ( g ( x ) . ^ y - < g ( x + l ) & o r f , , ̂ (y-.g(x))=l)J is r e c u r s i v e . 

By Lemma 10, (2) is valid for any set A of NNs. 
I 

Remark 15. Let M be a recursive set of NNs and A a set of 
NNs such that the set MA A is not hyperimmune. Then there exist 

A A A 

an increasing recursive function f and M, M-MvM-NSM, fulfilling 

4x:f(n)£ x <f(n + l)it n(MAA)=*=0 for any NN n. Let & be the set 
* - A 

\£ :3 xf x(lh(tr ) = f(x)& e'sSsT{*M[f(x),f(x-f-l)-i:))}. Then ^ is a 

dense r . e . set of stings which does not cover A. 

Remarks 14 and 15 give us a characterization of weakly 1-

generic Sets . 

Theorem 16. A set A of NNs is weakly 1-generic if and only 

if for any recursive set M the set MA A is hyperimmune. 

Corollary 17. For any set A of NNs and any recursive set M 

of NNs we have A » t t MA A, (A semigeneric) <.%===> (MAA semigeneric) 

and (A weakly 1-generic) ̂ ==> (MAA weakly 1-generic). 

Proof. Follows immediately from Theorems 9 and 16 and vali­

dity of B A(C AD)-(BAC) A D for any sets B, C and D. 

As we shall see, in general, semigenericity is not connected 

with hyperimmunity. 
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Example 18, let A be a set of NNs. Then, for the set B, 

where B ̂  i x: tff^x) e A}, B **t% A a n d (thus) (A semigeneric) <f=> 

4p& (B semigeneric) hold, but for no recursive set M the set M/-B 
is hyperimmune. 

Now we turn to tt-reducibility. 

Lemma 19. 1) For any recursive function f there are recursi­

ve functions g and h such that for any NN m < W / s> is a dense 

set, jf 3 ( < W / x> ,f) is a r . e . set of strings effectively mea­

surable via 3ix h«m,x» and ^ ( J ? ( < W ( m ) > ,f ) ) ^ 2~
m holds. 

2) (A^ t t B)lc(A weakly 1-generic) & (B NAP-set) holds for 

no sets A and B of NNs. 

Proof, Using the s-m-n-theorem we get a recursive function 

g such that for any NN m W , v* 4 x: 3 y(lh( <$ ) > m & x = 

« (uz(ih( cr2)»3.ih( tf )*-ftrf .c</2fcft(arcr( drz,t))* 
-2ah(rf,) 

* 2 y ))}. 
The last equality shows how to construct a recursive function h 

having together with g the properties described in 1). 2) follows 

immediately from 1) and Remark 8. , 

In the terminology used in Demuth tll3 0'-almost every set 

of NNs is a NAP-set, The class of all sets B of NNs fulfilling 

B & y 0' has 0'-measure 1. Thus, most of sets of this class are 
NAP-sets and, as we have seen in Theorem 13 and in Lemma 19, tt-

under any such set there are semigeneric sets but no weakly 1-ge-

neric sets. 
** 

Remark 20. Let < W > not cover the empty string and let A 

be the least set (in the lexicographic ordering) not covered by 

< W m > . Then the r.e, set -C x : ( Vy)y^x(lh( cT )*lh( cTx) «-> ( < Wm> 

covers <$*))} and A are tt-equivalent. Thus, according to the 

quoted results on NAP-sets, there is a r.e. NAP tt-degree. 

Theorem 21. There is a hypersimple and thus semigeneric set 

E of NNs such that no set A of NNs fulfilling A ,6.t E is weakly 

1-generic. 

Proof. By Remark 20, Oekker's theorem and part 2 of Lemma 

19 there is the desired set E. 

Theorem 22. There is a weakly 1-g/eneric r.e. tt-degree. 
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Proof. Let f be an increasing recursive function such that 
f(0) = 0 and for any NN p there is a NN q fulfilling 2 f ( p )-l£q £ 
-*2f(p+X)-2 and ( < W q > c o v e r s A ) , 

We construct a partial recursive function ae of two variab­

les with the following properties. Let m and n be NNs and let 

k ^ ^x(n^2 f ( x )-l) and t ^ ( 2 f ( k + 1 ) + 1 - 2 ) . Let us remember 

that Vy(lh( oTy) = f (k+1) «=* 2
f (k + 1 ) - l ^ y ̂ t ) . For any NN x 

9e«m,n>,x) is defined if and only if n 4 x -£ 2f 'k+ -2 and 

Vz(lh( oT ) = f(k+l)=^ (<W Y> overlaps <f * <$ )) hold. If 
-- * m z 

ae«m,n>,x) is defined then there exists a NN w such that < W > 
covers d*w, <?m * ^t-x ~ ̂ w and 3 e^ m» n>>x)= <,w,x + l>* 

There are recursive functions g and g and 0'-recursive 

functions hQ and h fulfilling: W (<-̂  n>)is the range of 

&x a € « m , n > , x ) , ho«'m,n»= ac«m,n>,(w.x(3««m,n>,x) is defined)), 
h(0)=<0,0>, h(p+l)=h0(h(p)), W g ( 0 ) - K 0 , 0 > l a n d W g ( p + 1 ) = 

= v HA/ W „ r„\ h° l d for anv NNs m> n and P. 
** Wqft* 9 o U ; 

Let c be a NN for which WQ= \ x: 3 vyz«v,y>£ W g ( z ) & lh( cT) = 

= lh( crv)8( crx^crv)5-

Then the increasing sequence i?t2(b(x))-l}c°<sl contains all 

NNs p for which < W > is a dense set. Further, for any positive 

NN x the string ^ i ( h ( x ) ) i* covered by < W ^ ^ ^ . ^ > and 

extended by the string d^, (n(x+x))-
 Let A be a (unique) set of 

NNs covered by cTw (h(x)) *or anv N^ x* ^nen ^ is obviously weak­

ly 1-generic set being the least set (in the lexicographic or­

dering) not covered by the set <lW y and according to Remark 20 

the proof is completed. 

Now we shall present some results on the structure of semi-

generic T-degrees and tt-degrees. 

Theorem 23. There is a hyperimmune set E of NNs such that 

E <-• 0" and (0 < T C ̂ T E «-^ Q semigeneric) holds for any set C 

of NNs. 

Proof. The construction of E will proceed in stages . For 
each NN n at the end of stage n we shall have a string *£-._-, 
(covering the set under construction) such that a) l n ( t n , ) > 2 n 

and any covering with index m (i.e. of the f o r m < W m > ) , where 
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m ^ n , covers any set C of NNs for which the function «̂ x C(x) is 

the extension of the function 9 n ) 

b) no recursive function with index m, m ^ n , majorizes any 

set of NNs covered by X„ , . 
3 n+l 

Let xQ^JV* 
Stage n. We have a string x . Let A be the set 

*x:x<lh( r n ) ^ r n ( x ) = l}. 

Substage (a). See whether y is a recursive f u n c t i o n . 
If so, find a NN p„ such that lh( tV ).£p„ and no set B, > i-n n r-n > 

AntO,pnl* 1£ B, is majorized by 9>R. 

If not, define pn ̂  l h(* ). 

Let xn =#- AnC0,pnl*l (thus, ̂  extends r ). 

Substage (b). Let JPn w=-s^ p : ^ n & <j> 2c ( ̂ ( w ) is defined 

and ^ ( w ) ^ l ) } for any NN w. 

Case 1. The set C\ *$ of strings is dense in (̂ o : X s 

£ ip}. Construct recursive sets B and C„ such that a? covers > « n n n 

B„ and g> n is the characteristic function of C„. Denote P„ the n 3r n n n 
set -\x:x-s n &.(< W x> covers Cn)} . 

If Pn*0> find NNs sR and t such that for any NN m 6 P n the 

string CntO,tnl is covered by < W > , lh( r )^s n and the functi-
BnC0,sl 

on </n is defined at each NN x^t R. Oefine r j .—s-

^^ n ' n 
When Pn=0 define ^n+l^ r n-

Case 2. There are a NN w and a string 0 such that x £ 6f 
and no extension of 8 belongs- to tf . Find such pair w,^ and 

define tr , ̂  r . 
n+l ^^ 

This completes our description of stage n. 

Observe that X is defined for any NN n and let 

E =?* «£ x: 3y(x ---lh( x ) 8c f v(x) = l)i. The described construction is 

obviously recursive in 0M, E is the desired set (E 2 - 0" is ex­

cluded by Theorem 9) and the proof is completed. ^ 

Corollary 24. There is a hyperimmune T-degree under 

degT(0") which contains.semigeneric sets only. 

Remark 25. Let A and B be sets of NNs such that deg--(A) is 

hyperimmune-Iree and B -&TA. Then, according to £71, we have 

B 6xx A and deg--(B) is hyperimmune-free (consequently, degj (A ) = 
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= deg^.(A) and by Theorem 9 this degree is either semigeneric-

free or containing semigeneric sets only). 

Theorem 26. There is a set A of NNs such that A" «sT0" and 

degT(A) is a hyperimmune-free minimal T-degree which contains 

semigeneric sets only. 

Proof. It is sufficient to modify slightly the proof of The­

orem XVII L8, pp. 276-2793. Let us remember that in the proof 

the construction of (the characteristic function of) nonrecursive 

set A, the T-degree of which ds minimal, proceeds in stages. For 

eaoh positive NN n at the end of stage n we have two characteris­

tic functions of (different) recursive sets, say A? and A«, and 

an increasing recursive function hn for which (a.o.) hn(0)>0 

and AnC0,hn(0)-13--- A£0 ,hrT(0)-l3, where l ^ i ^ 2 , hold. 

For any NN p we modify 

a) stage 2p+l so, that we choose h p + (0) so great that not 

only the functions cp and ^ x A(x) differ on the segment 
o i n 

ix:x<h p (0)} but we also have*, when < W > covers both sets 

A2pand A2p, then it covers the string A2p+1f0,h2p+1(0)-l3 and, 

consequently, the set A; 

b) stage 2p+2 using the hint from Exercise 13,34 E8,p. 2983 

to ensure the T-degree of A to be a hyperimmune-free one and 

A" s , 0" to hold. 

According to Remark 25 the described modification of the quo­

ted proof ensures the existence of the desired T-degree . 

We shall need the following result of Jockusch and Simpson 

(quoted here in our termino logy ) . 

Theorem 27, There is a proper covering < W^> such that any 

pair B, C of different sets of NNs not covered by <£W. > forms a 

tt-minimal pair, i.e. B and C are nonrecursive and A^.. B fe. 

U--xi C =->(A recursive) holds for any set A of NNs. 

Theorem 28. There is a set C of NNs such that C" « T 0" 

and degT(C) is a hyperimmune-free minimal T-degree which is se-

migeneric-free. 

Proof. Let b be the NN from Theorem 27. By Cl, Theorem 2.43 

there is a set C not covered by 4 11. > (and thus non-semigeneric) 

such that C" 35T 0" and degT(C) is hyperimmune-free. According 

to Remark 25 this degree is semigeneric-free and for any set E of 
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NNs we have E*£T C «=-> E -£tt C. Using this fact and properties of 

<W f a> we can easiiy show (as in CX2J) that degT(C) is a minimal 

degree. * \ 

As we have seen, there are both pure semigeneric and semige-

neric-free minimal T-degrees (or tt-degrees). Now we shall show 

that the class of aXX semigeneric T-degrees is not closed upwards. 

Lemma 29. Let < W g> be a proper covering and C a set of 

NNs such that degT(C) is hyperimmune-free. Then there is a set A 

of NNs not covered by < W g > and such that (A€> C) H ss?T C" and 

deg T(A® C) and degT(A) are both hyperimmune-free and semigene-

ric-free. 

Proof. Under the supposed conditions any C-recursive func­

tion is majorized by some recursive- f u n c t i o n . Let (JT be the class 
of all sets of NNs of the type B © C, where B is any set not cove-

__. n p 
red by < W > . Then T is a r.b. TTV> -class and by relatiyizati-
on of [X, Theorem 2.43 there is a set A of NNs not covered by 

< W g > such that (A €> C) M s»T C
H and d e g T ( A © C ) is C-hyperimmune-

free and thus also hyperimmune-free. The set A is obviousiy non-

semigeneric. To complete the proof it is sufficient to use Theo­

rem 9 and Remark 25. 

By means of constructive mathematical analysis we can prove 

the foXlowing result; 

Lemma 30. For any NAP-set A and any set B of NNs such that 

0 < t t B £ t t A holds there is a NAP-set C fulfilling Cs_-T B-=tt C. 

/ 
Example 31. By Remark 25, Theorem 26 and Lemma 29, where 

a 5B£ e(0), there are sets C and A of NNs such that among the fol­

lowing three hyperimmune-free T-degrees degT(C), degT(A) and " 

degT(A ^ C) the first"one is semigeneric (hence NAP-free) and mi­

nimal, the second and third ones are semigeneric-free, the se­

cond one is a NAP T-degree and the third one is, according to 

Lemma 30, NAP-free. So, the class of all semigeneric (as well as 

that of NAP) T-degrees is not closed upwards (for NAP T-degrees 

this result was proved in Kufcera 13l by a different method) . 

Theorem 32. Under any hyperimmune-free NAP T-degree there 

is no minimal T-degree. 

Proof. As it follows from Kufiera E3, Theorem 51, no NAP 

T-degree is a minimal one. By use of Remark 25 and Lemma 30, the 
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proof is completed. 

At the end, we present two results without proofs. 
* 

Theorem 33. Let (u(<W > ) < 1 and let B be an A-recursively 

enumerable set. Then there are a set E not covered by 4. W > and 

an-A-r.e. set C such that B-£-r C -S*.. E and, consequently, 

E - t t A ' -

Remark 34. In the last theorem, the condition <a(<W > ) < 1 

is substantial. Indeed, according to 3ockusch and Soare tl, p. 483, 

for any nonrecursive set B there is a proper covering <t W . > which 

covers any set E of NNs fulfilling B<£-- E. Thus, {U , (<W d > ) = l 

must hold. 

Theorem 35. Let A and C be sets of NNs. Then C 4^+ A' holds 

if and only if there are a recursive function f and an A-recursi-

ve function g of two variables such that for any NN m C(m)= 

= lim g(m,y) and -S^ |g(m,y)-g(m,y+l)|^f(m) hold. 

A d d i t i o n . A. KuCera has informed me that in Ceitin's paper 

Cl3] there are results which can be, according to a result of 

Ku§ner([14, Theorem 1]), reformulated as follows and which, con­

sequently, are a weaker form of part 1 of Theorem 9 and of Corol­

lary 12: 

a) (A,B r . e . ) < £ ( 0 < . . B^.. A)k(A semigeneric) ==> B semi-

generic, 

b) any hypersimple set is semiganeric. 

For details see Demuth, Kudera "Remarks on 1-genericity, se-

migenericity and related concepts", in this volume. 
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