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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROtlNAE 

27,4 (1986) 

COVARIANT APPROACH TO NATURAL TRANSFORMATЮNS 
OF WEIL FUNCTORS 

lvan KOLAŘ 

Abstract: We deduce that the natural transformations of a 

Weil functor T into a Weil functor T are bijectively related 
with the B-admissible A-velocities. The covariant character of 
such an approach is suitable for some concrete problems in diffe­
rential geometry. * 

Key words: Weil algebra, near point, Weil functor, generali­
zed velocity. 

Classification: 58A05, 58A20 

The geometrical significance of Weil algebras and the relat­

ed functors l9l, has been recently underlined by the theorem that 

all product-preserving functors from the category of connected 

smooth manifolds into itself are determined by a finite number of 

Weil algebras £ll,C33. In both these papers it is also proved 

that the natural transformations of Weil functors are bijective­

ly related-with the homomorphisms of the corresponding Weil al­

gebras. However, such a description is of contravariant charac­

ter, while in the greater part of differential geometric problems 

the covariant approach is to be used. That is why we present an 

independent proof of -the latter result, in which we -replace the , 

near A-points of A. Weil t9J, by an equivalent concept'of an A-

velocity generalizing the classical k -velocities by C. Ehresmann 

[23. Our idea of a B-admissible A-velocity originated in the ad­

missible separated jets used in the special case of the.natural 

transformations of the iterated kr-velocities functors [81. We 

deduce that all natural transformations of the Weil functors 

can be characterized by means of certain reparametrizations, a 

special case of which we discussed for the second tangent func­

tor in,!53. The basic purpose of our example is to show that such 

reparametrizations are suitable for some concrete problems in 

differential geometry. - Our consideration is in the category 
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C*^ and all manifolds are assumed to be paracompact. 

1 . In the algebra RCx,,...,x. 3 of all real polynomials in k 
variables, consider the ideal <x, ,...,x.> generated by x,,...,x. 

and its (r+l)-st power < x, ,... ,x.>r+ . By [9-1, a Weil algebra 

can be defined as a factor algebra A = RCx, , . . . , x. J/Jt , where .A is 

any ideal satisfying <x, , . . . ,x. > .~J A '̂x, , . . . >xk>
r+ . We shall 

need the following modification of this approach. Let E(k) be the 
k 

algebra of all germs of smooth functions on R at zero, m(k) be 
r+1 ~~ the ideal of all germs vanishing at zero and m(k) be its 

(r+l)-st power. Any ideal Ji in E(k) satisfying m(k) ^> Jlo m(k)r+ 

will be called a Weil ideal and the corresponding Weil algebra is 

defined by A=E(k) /JL . Since E(k)/m(k)r+1 = RLx1,...,xk]/<xx , . . . 

...,x.>r+ , our second definition of a Weil algebra is equivalent 

to the first one. 

Let M be a manifold and A be a Weil algebra. According to [93, 

a near A-point on M means an algebra homomorphism X-.C M —>A, 

where C^M is the algebra of all smooth functions on M, see also 

[ 6 3 . All near A-points on M form a fibred manifold M — > M and e-

very smooth map f :M—*- N is extended into f :̂l —*• N by compo­

sition with the induced homomorphism f* :C°° N -^C^M, i . e . f (X) = 

=X <? f* . This defines the Weil functor corresponding to the Weil 

algebra A. For A =m(k)r+ , such a functor coincides with the 

k -velocities functor by C. Ehresmann, which assigns to every ma­

nifold M the space TFM=3**(Rk ,M) of all r-jets of Rk into M with 
r r r source zero and the extension Iixf^T^M —-» TJ*N of any map f:M—> N 

is defined by the composition of jets, C23. The covariant approach 

to an arbitrary W«il functor is based on the following definition, 

the basic idea of which is due to A . M o r i m o t o . Let E(M,x) be the 

set of all germs of smooth functions on a manifold M at a point x . 

Definition 1 . Let A = E ( k ) / J l be a Weil a lgebra . Two maps 

g,h:R — * M, g(0)=h(0)=x, are said to be A-equivalent, if 

(1) q> o g - ^ o h e Jl 

for every germ cpe E (M,x ) . Such an equivalence class will be de­

noted by j g and called an A-velocity on M. The point g(0) will 
A 

be said to be the target of j g. 

Denote by T M the set of all A-velocities on M. It is easy 
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to see that T R = A. The target map its a p ro jec t ion T M —> M. Fur­

ther, for every f:M-*N we define TAf :TAM -*- TAN by TAf(jAg) = 

= j (fog). Obviously, T is a functor. Every A-velocity j g 6 

<s T M determines a near A-point X £ M by 

(2) X(9) = jA( <p« g) for all <? e C^M. 

Morimoto proved that (2) is an identification M ^ 1 M, which is 

a natural equivalence of functors - and T , [73. 

2. Let tBc E(p) be another Weil ideal. Denote by 0. or On 

the zero element .of A=E (k)/J l or B = E(p)/J5> , respect ive ly . Gi­

ven a map f : (Rk ,0) —-> (Rp,0), it holds f*(ft>) c A if and only if 

(3) jA(<y*f)=oA for all a? € J3 . 

Indeed, j (ip o f)=0A means cpo f e A . Since j (90 f) = 
=TA<f(jAf), condition (3) depends on jAf only. 

Definition 2 . If (3) holds, then jAf £TARP is called a 

B-admissible A-velocity. 

A practical procedure for finding the B-admissible A-velo-

cities is based on the following lemma. 

Lemma 1, Let <p^ , oo = l , . . . , q be a system of generators of 

the ideal fit . If 

(4) A c ? * * f)=0 for all cc-l q, 

A 

then j f is a B-admissible A-velocity. 
<L 

Proof. Every cj> e B is of the form 51 9 ^ h^ , h^ e E(p). 

Since f*( cp ) e A by assumption and A is an ideal, we have 

f*(cp)= i; f*e(%G)f
sf(hoC) € A , QED. 

Lemma 2. If jAf eTARP is B-admissible, then jA(g»f) de­

fends only on j g for every map g:Rp—> M. 

R R 

P r o o f . By D e f i n i t i o n 1 , 3 g = j h means c p ^ g - c p o h e ^ f o r 

a l l cp e E ( M , x ) , x = g ( 0 ) . Then q> * g o f-c$>oh o f e f * ( J*,) a A , QED. 

Pro 

the maps 

Proposition 1. Let X=j f be a B-admissible A-velocity. Then 
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(5) i^:T
B
M-> T

A
M, j

B
g v->j

A
(gof) 

X R A 
determine a natural transformation i :T —> T . 

X 
Proof. By Lemma 2, i

 M
 is well defined. Given a map h:M —> N, 

we have iX
( T
B

h (
 j B g ) ) ^ ^ j

B
(h . g)) = j

A
(h o g o

 f
 ) = T

A
h(i^ j

B
g)), so 

v 
that i is a natural transformation, QED. 

3. From now on we restrict ourselves to the natural trans-

R A R 

formations i:T *—*T with the property that every i
M
:T M •~~

> 

— > T M is a base-preserving morphism of fibred manifolds. We are 

going to deduce that Proposition 1 determines all such natural 
R A 

transformations of T into T . 
R R n 

There is a distinguished element 1 =j (id ) in T"R
M
. 

P
 R

P o 

Obviously, it holds j
B
f=j

B
(fo id )=T

B
f(l ). Since Weil functors 

R
P P 

are product-preserving,, every singleton pt is transformed into a 
D 

singleton, i.e. t (pt)=pt. 

Lemma 3. If 0:pt—> R is the map transforming a singleton 

into O&R, then 0
R
 = T B (T(pt) . 

P r o o f . Let 0:R
P
—»* R denote the constant map of R

p
 into 0&R. 

This can be factorized by 0 = 0 e ct, where c t : R p .—^pt is the uni­

que map. Then 0
R
 = j

B
(6)=T

B
0(l ) = T

B
0(T

B
(ct)(l )) = T

B
'0(pt), QED. 

B A 
Lemma 4. Every natural transformation i:T —$> 1 satisfies 

i
R
(o

B
)=o

A
. 

Proof. The'naturality condition on 0:pt — * R gives a commu­

tative diagram 

TBTJ . • 
pt •-. e- TBR ь TAtf 
pt > TAR 

Hence Lemma 4 follows from Lemma 3, QED. 

-.8 .—A 
Lemma 5. For every natural transformation i *. T —*T ^ 

i
 p
(lp)^T

A
R

p
 is a B-admissible A-velocity. 
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Proof. Consider cp:R
p
—'•> R such that its germ at zero be­

longs to % . The naturality condition on <p gives a commutative 

diagram 

T
B
RP Л T

B
R 

A
R
p _ 

T ҙ> 

T"R 

*R 

"^ T
A
R 

Clockwise we obtain i
R
(T cp ( l

D
) )

= i
R (

n
o )

= n
A
 D v

 Lemma 4. If 

i
 n
(l

n
)=j f, then counterclockwise we find 0

A
 = T cp(j f ) , which i-5 

R
P P , A 

equivalent to (3), QED. 

Proposition 2. There is a bisection between the natural 
' n A 

transformations i:T —>-T and the B-admissible A-velocities gi­

ven by 

(6) vv--A<-
Proof. We have to prove that every natural transformation 

i : T — > T is determined by the B-admissible A-velocity ( 6 ) . For 
B B o 

every j g e T M, the naturality condition on g . R H
— > M gives a 

commutative diagram 

T
B
RP -

Л т
в
м 

X
RP 

A
R
p 

т
A
g 

T
rt
R T

A
M 

For 1 E T
B
R

P
, we obtain i

M
( j

B
g)=j

A
(g • f ) , QED. 

B A 
To find all natural transformations of T into T , 

P 

4 . To find all natural transformations of T" into T", we 

first have to determine all B-admissible A-velocitiea by means of 

( 4 ) . Then the natural transformations are given by (5), which re­

presents a kind of reparametrization of the B-velocities. As a 

very simple illustration of this procedure, we determine all na-
2 

tural transformations between the functor T, of the classical 
2 

1 -velocities and the iterated tangent functor TT. Since the clas­
sical tangent functor is the Weil functor of the algebra of dual 

2 — 
numbers D=R£t3/<t >, the iterated tangent functor TT is the Weil 

-- *} o 
functor of the tensor product D & D=Rtt,r3 /<t , a > according 



o 

to a general theorem 193. On the other hand, T, corresponds to 

the Weil algebra EsRluDACu*) . 

As an auxiliary result, we first determine all natural trans-

' ? • 
2 

written as t=hu+ku . Since the Weil ideal of D is generated by 
2 2 2 

t , such an E-velocity is D-admissible if and only if (hu+ku ) 6 

&<u >. This implies h=0. Having some local coordinates x1 on a 

manifold M, the induced coordinates P 1 on TM or a1, b1 on T,M 

are given by x + | xt or x1+a1u+b1u , respectively. According to 

(5), the coordinate expression of all natural transformations 

T — > T2 is 

(7) ai = 0, b 1=k| 1, k€R. 

Geometrically, this represents the constant multiples of the 

well-known injection of TM into the kernel of the jet projection 

T2M ~H*TM. 

2 
Now we discuss the natural transformations TT-—>T,. Every 

2 2 
E-velocity on R at zero can be written as t=h,u+k,u , X =h9u+ 

2 2 2 
+k2u . Since the Weil ideal of 0 ® D is generated by t and *t , 
the admissibility condition implies h,=h9=0 similarly as above. 

i l l • • * • * . 

Denote by c , d , e the induced local coordinates x1+c1t+d1*^+e1tt 

on TTM. Using (5), we deduce that all natural transformations 

TT ~-^T2 are 
(8) ax = 0, b1=k1c

1+k2d
1, k^k-eR. 

There are two well-known natural projections of TTM into TM. The 

geometrical meaning of (8) is that we take any linear combination 

with constant coefficients of both projections and apply the ker-
2 

nel injection into TjM. 
2 

Finally we determine all natural transformations from T, 

into TT. Every D €> D-velocity on ft at zero can be written as 

u=k^t+k2«e +k,ti; . The E-admissibility condition requires 

(kjt+kg-r +k-jtt ) e < t , t >. This is always satisfied, so that 

any such veloqity is E-admissible. This leads to the following 
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2 
3-parameter system of natural transformations T, —>TT 

(9) c1=k1a
1, d1=k2a

1, ei=k3a
i+2k1k2b

1 

2 
For k,=k2 = l, k,=0, we obtain the classical injection vM:T,M—> 

— > TTM transforming any 2-jet of a curve ^ R - ^ - M at zero in­

to the tangent vector of the induced curve T*y on TM. There are 

two natural vector bundle structures on TTM over TM. For k^^O, 

(9) represents the composition vM(k,,k2) of vM with constant mul­

tiplication by k, with respect to the first structure and by k2 

with respect to the second structure. Further, we can compose the 

jet projection TTM —*- TM, the kernel injection TM—> T^M and 

vMfT^M—>TTM. Clearly, (9) is 

the latter map with vM(k,',kJ> 

2 
vMfTfM—»TTM. Clearly, (9) is the sum of a constant multiple of 
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