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INTERPOLATION SPACES X ¢ (E)
Mieczystav MASTHO

Abstract: There are given necessary and sufficient conditi-
ons under some assumptions on the couples of Banach lattices E
and F, that for some couples of Banach lattices X, the spaces
(f) and X;(F) intermediate with respect to (X (E)'Y /(E)) and
I

YVO(?), qﬁ(?)) respectively are (positive) interpolatlon spaces

with respect to (X;O(E)'X?1(E)) and (X (r), v -

Ke¥ words: Peetre’s K-functional, Calderon-Lozanovskii spa-
ces, interpolation spaces.

Classification: 46E30, 46E35
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1. Introduction. Let A and A1 be two Banach spaces. We say
that A=(A_,A;) is a Banach souple if both A  and A; are continu-
ously embedded in some Hausdorff topological vector space.

A Banach space is called intermediate with respect to A& if
A n Ajc AcA +A; with continuous embeddings.: Let A and' B be two
Banach couples and let T be a linear operator mapping A +A1 in-
to B +Bl We write T:A— B if the restriction of T to A defi-
nes a bounded linear operator from A into Bx’ i=0,1.

Let- A and B be two intermediate spaces with respect to A
and B, respectively. We say that A and B are interpolation spaces
with respect to A and B if every linear operator T such that T:R—
—> B maps A into B. If A=B and A=B we say simply that A is an
interpolation‘space‘with respect to A.

The closed graph theorem implieé that if A and B are inter-
polation spaces with respect to A and B, then there exists a po-
sitive constant C such that N

(1) ”‘A-"B‘c max “T\Ao—’ao’ ‘T\Al“’sl”
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for any T:A—= B (see [4), p.34).

Let (£2,%,m) be a complete &-finite measure space and let
us denote by L%=L°(Q ,Z= ,) the space of all equivalence classes
of (-measurable, real valued functions finite m-a.e. on £ equ-
ipped with the topology of convergence in measure. A Banach space
Xc L® is called a Banach lattice (on (Q,= , ) if [ x(t)| 2
¢ |y(t)| a.e. and ye X implies that xe X and |l x\lxékyllx

A Banach lattice Xc L® has the Tatou property if for every
a.e. pointwise increasing sequence (xn)"n°=1 of non-negative func-

vion in X with sup Wx_ W, < « , the function x, x= 1im x , is
mza NX m—w N

in X with “"“x=,,3i"‘m“"n“><'
For a Banach 1lattice X on (Q,=,m) and a weight function
w (a.e. positive measurable function on QL ) by Xw we shall deno-

te the space of all functions x such that xw e X with the norm
Wxfy, o= lixwl
Xw X N
Notation: The equivalence f~ g means that clf(t) £g(t) £
éczf(t) for some positive constants c; and c, and all te R :=
:=(0,00).

2. _The Calderon-lLozanovskii space @(X). A real function
@:00,00)>%[0,00)— 10,00) belongs to the class U if it satis-
fies the following conditions:’

(1) @(As, At)= Agp(s,t) for each Az 0 and s,te R,

(ii) U<q>_(s,t)émax{~-3—, %}?(u,v) for each s,t,u,ve IR,

U denotes the class of functions @ :00,00)x [0,00) —
—>[0,00) concave on IRZ,
LeU-

Let X be a couple of Banach lattices on (1 ,¥,u) and let
@ e . We denote by q}(Y)= W(XD,XI) the Calderodn-Lozanovskii
space of all xeL  such that for some x;e X.\, “x.llx.é 1, i=0,1

positive homogeneous. We observe that

and for some Ae R, holds x| £ 2 @(|x ol Ix 1 (;,-a.e.
We put l\x\\(gl y=int J\ .

Note that q:(Y) is a Banach lattice 1ntermed1ate with res-
pect to X . If in Darticulal‘ we take @(s,t)= s1" %% g <x <1,
we obtain the space Xx1-% )( introduced by Calderon [2). The

Ve
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space @(X) was investigated by Lozanovskii in [51.

Pragosition 1. Let X be a couple of Banach lattices and let
@gr P10 P e'ﬁ., then
(2) v(X)= (@ (X)), @(X))
with equivalent norms, where w(s ;\t)=cy( Cyo(s,t), ga‘l(s,t)).
Proof. We observe that w & U . If x € yw(X), then |x| £
4 J\'qr(lxol,lx 1I) a.e., for some A >0 and for some x; € X;,
lix;ly 1, i=0,1. Hence |x| <2 ¢ (y,,y,) a.e., where y;=
_ L 2 . C
= g (Ixg 1, Ix D), Iyiig (x) €1, 170,1. This implies that
x € g( 9 (X), ¢,(X)) and “X"‘f(?o(y),‘?l(-)_())é Hxl)v(s(-), whence
w(X) cty(qzo'(Y), Cfl(i)) with continuous embedding. N

On the other hand, let x € (& (X), @, (X)), then
I x| 5\’7(cy(lx0|,|x1|93.e., for some A >0 and for some
xiecgi(x), “xi“@i(Y)él’ i=0,1.

For an ¢ > 0 there exist yD,yc;eX o yl,yl'e X1 such that‘
\lxolé(1+a) CJ’O(UD!»‘YI‘), “yollxoélr “yl“xlélt
Ixpl e+ &) g Uygl, ly 1), “yc;llxoé 1, \\yl’\|xlé1,
so we have
Ix] £ Aglixgl,Ix D& Qre) Agle Uy l, 1y, D),
g CUygl Iy 1) €201+ 8) A (@ (xg,x1), @1(x(,x1))
where ’
x;= 3 maxCly; |, ly; D ex;, llxi’llxis 1, i=0,1.
Hence x ¢ y(X) and llxﬂw(x)SZ(h &) lix "q<%(7>n<?1(7))' Since
is an arbitrary positive number, we obtain \lxllw(—x) <

(x))» this implies (@ (XY, o, (X)) ey (X)
embedding and the proof is complete.

< 21\xl\q(q (Y),q,l
with cont?nuo,us

Let E and F be two Banach lattices, then we say that a li;
near operator T:E—~—> F is positive, if 0 éTx a.e. for each
0<£xekE. ’

Let X and Y be two couples of Banach lattices and let X and
Y be two Banach lattices intermediate with respect to X and V,
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respectively. We say that X and Y are positive interpolation spa-
ces with respect to X and Y, if every positive operator T:X — ¥
maps X into Y boundedly with’ '

llTle_)Yec max £ A TH nrh

t
XO-+Y0’ Xlﬁ Y1
for some constant ¢ independent of T. If X=Y and X=Y we say that
X is a positive interpolation space with respect to X. We can

easily show:

Proposition 2. Let X and Y be two couples of Banach latti-
ces , then the spaces @(X) and ?(V) are positive interpolation
spaces with respect to X and Y.

By Proposition 1 and 2, we get the following

Corollary 1. Let 7, Y be two couples of Banach lattices and
let @,,¥,, ge 2, i=0,1. Then the spaces (g , ¢,)(X) and
c!(wo, x}'l)('Y_) are positive interpolation spaces with respect to
(¢,(X), @ (X)) and Cyy(V), ¥;(Y)).

Proposition 3 (cf. [61). Let ¢, ¢, @& U, yy, ¥, vel

and let c be a positive constant, then the following inequality

(. v) @oCu,v) g (u,v)
(3) -zm s, 4 ¢ max { '4’0(5’”’ Wl(s,.t)}

tor each s,t,u,ve R,

holds if and only if @(u.v)$€ cle(q’o(u,v), ¢,(u,v)) and

N fon~y
y(u,v)= cze(wo(u,v), qfl(u,v)) for some function © € U and so-
me cohstants cl,c2>0.

3. The interpolation space KE' Let A be-a Banach couple
and let Ec L% R,,dt/t) be a Banach lattice such that min(1,t) ek,
then the space

‘A‘E:= fa e A +A :K(s,aR) e EY
is a Banach space with the norm
“a\KE= WK(e ,a,T)“E,

CAy, 816 Al}

where K(t,a;I)=in»f;-\liao\\Ao+tlalﬂ Al:a:ao+al, a,

te (R+, is the K-functional of Peetre: For each ae Ao*Al
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K(t,a:K).is a concave function on R_, so for each s,te IR

(8) min(1, ) K(t,a:A)£K(s.a:h).
If aeKE then by inequality (4) we get
AN 2 —
(5) K(t,a;" =P (t) \\al\AE,
where @c(t)= imin(1, %)"E‘} We observe that the function @
is guasi-concave (0 <@ (1) <€ max(1, -;—) @g(s) for each s,t e R, ).
We say that a Banach couple A is of type (A) (cf. [1]) if
for each te IR_ there exists an element ay, such that
(6) cy min(1, P£K(s,a:h) £c, min(l, P
for some positive constants €y. €y and all s e IR_. .
Example. Let )(0 and X1 be two symmetric spaces defined on
(0,w) (see [4]) with the fundamental functions §>X (t):=
i
1= '\’C(o,t) I Xi’ i=0,1, where 76(0-.” is the characteristic func-

tion of the interval (0,t). If the function & ,(t)=
= on(t)/ @Xl(t) is such that <1>01( R,)= (R,, then a couple

(Xg,X,) is of type (R). ,
Really we have K(s, 7 (g t);Y)=min( ¢y (t),s <l>x1(t)). Since
’ o

for each t < IR, there exists ty such that & ,(t,)=t, so for

Xy Txiﬁ_) (gt ) %e obtain K(s,x;;¥)=min(1, ).
o

Theorem 1. Let A be a Banach couple of type (A ). If the
spaces KE’ Ap intermediste with respect to (Ag ’KE ) and
’ o 1

(IF ,TF ), respectively are interpoclation spaces'with respect

0 —
to (%, ’KE ) and (Ap ,TF ), then there exists a constant c>0
o 1 o 1

such that .
9 (s) Gels)  Ig(s)
n el £ c max 1% O Cngt) }
v o

for each's,t ¢ R_.
Proof. Let A be a couple of type (AR). Put Ag= -ﬁaas:?\: R,

£, (ha)=2 , se R, . Then K(s,ag;A)2 ¢, and
- 717 -




|fs(a)| £ % K(s,a;A) for a €A . Hence f_ is a continuous linear
1 1

functional on a linear subspace As of a Banach space A°+A1 with
the norm K(s,a;R). By the Hahn-Banach theorem the functional fs
can be extended to the functional fsxdefined on the whole space
Ao"'Al such that

- 1 .
(8) [f (a)f = ) K(s,a;R) for each aeA +A;.
For each s,t e |R+ we define operators Ts’t:A0+A1~—> A°+A1,

Ts,ta=fs(a)at. Let ae_KEi, i=0,1, then from (5),(6) and (8) we

have
l\Ts’,caI\KF‘= Ik ¢ 3 ,fs(a)at;'ﬁ')“F;Ifs(a)l MKk(g ,at;'K)llFi ‘é
i
|IT (a)| ¢ =
cc,|E ()| Umin(1, g /DN = s e 2 K(s,aih) o
2|E5(a)| liminC1, ¢ SR TACAL
Cy ?E§5)
‘5, oo Nely
1 Fi Ei
Hence, we get .
c ?E§S)
(9) “TS,t‘iE—’KF < a—: FFL(T)- N i=0,1.
i i i

Let us see that <g(s)a_e T\'E , i=0,1, and
i

.

Y (s)
“Ts,t( QE(S)as)“KF z Cl -—(?;-(T)-— , whence
. Y (s)
(10) “TS,t“Ke‘)KF < Cl 'v':_-(—f)- .

By inequalities (9),(10) and (1) we obtain (7}. From Proposition
3 and Theorem 1, we obtain Corollary.

Corollary 2. If for a Banach couple A of type (A) the Ba-
nach space ~.A-E intermediate with respect to (TE ’KE ) is an in-
o 1

terpolation space. with respect to (KE ,AE ), then there exists a
o 1

concave function € on R, such that

Ge(t)~vye (1) ® (tpEl(t)/ vp (£)).
o 0
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The following theorem can be proved in a similar way as the
theorem 1.

Theorem 2. Let (XO’XI) be a couple of Banach lattices of ty-

pe (A). If the spaces X £ RF intermediate with respect to
(YE ’YE ) and (YF ,Y} ), respectively are positive interpolation
o 1 o] 1

spaces with respect to (Yk ,Xg ) and (Xp ,7% ), then there exists
a constant ¢ >0 such that ° 0 1
1

: G (s) N
(11) 7;;(f7 £ ¢ max { G 9F§t7}
0

for each s,t e m+
We say that a Banach lattice E= L°(_R+, %i) is the parame-
. [ @ 1 1 -
ter of the K-method if L A Ll/sc EcL *Llls and the Calderon

operator Sx(t)= _&mmin(l,%)x(s) gﬁ is bounded in E (see [3)).

In the sequel, iet Ei’ Fi’ i=0,1 be parameters of the K-met-

(1 o« _(1co «w
hod such that Ei-(L ’Ll/s)Ei’ Fi—(L ’Ll/s)Fi, i=0,1 and

(gg /og JORI= R, Cap /g YR D= R,

—

Theorem 3. Let ., v;, @,V e U and let EXD,Xl) be a cou-
ple of Banach lattices of type (A). The sp?ges X?(E), XV(?) in-
termediate with respect to (X (E)’ XQ (E)) and
(X (F)’ W’(F))’ respectlvely are pos1t1ve 1nterpolat10n spaces
w1tb respect to (Yq (F) X q (F)) and (YV (F)’ " (F)) if and only
if there exists a constant c >0 such that the inequality (3)
holds.

Proof. We easily obtain that ('?(f(E)('t)ﬁ/(f( rpEo(t),gaEl(t)),

so the necessity follows from Theorem 2. Now, let the inequality
(3) hold, then by Proposition 3, there exists the function &¢ U
and congtants €1:C5 > 0 such that ?(u,v)éclé(?o(u,v), cyl(u,v))
and y(u,v)= cza(ayo(u,v), ¥,(u,v)) for all u,ve R, . From Pro-
position 1 we have
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(12) @) c 8(g,, 9)(E)= 8( (), ¢, (E)),
w(F)28Cy, v)(F)= 8w, (F), ¥ (F)
with continuous inclusions. Since the operator S is positive, by .

Proposition 2 the spaces @(g , q?l)(f) and 8(+y,, ¥;)(F) are the
parameters of the K-method. By Corollary 2 in [81] and (12) we get

@)= © O @) %, () Fog (0,4 (ENFolg, 0@
XS(YO)'\VI (T:-)_Xe(‘l‘lo(F) Vl(F))_ a(x (F)r (F))C K‘F(F) with con-

tinuous inclusions. Now, if the operator
T:(qu(f),qu(g)) __’(Xx(o(f)vxmyl(?))
is positive and "GX.,(E)' then

frxt _gec Wixlys < _ écn
wF) b O @)Xy (7)) %, (E)’?(E))

P

< 03 max {“T“ (E)# (F)’ “T‘Lf (E)-—)W (F)} \X“Xq —

by Proposition 2, where €y Cg and cy are some positive cons-
tants. The proof is complete.

. From Proposition 3 and Theorem 3 we obtain

Corollary 3. Llet ¢, 9, ¥ e and let X be a couple of
Banach lattices of type (A). The spaces K;(E)’ oF) are positive

interpolation spaces with respect to (X (E)’YCP (E)) and

(X (?-) <g (--)) if and only if ¢(u,v)~ Q(Cfo(u v), @ (u, v))
with some function Qe €.

If the spaces Xi’ Fi, i=0,1 have the Fatou property, then by
@ result of ovéinnikov L7) we obtain an analogous interpolation
theorem if we take "interpolation" instead of "positive interpo-
lation" in Theorem 3.
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