Commentationes Mathematicae Universitatis Carolinae

Libor Vesely
On the multiplicity points of monotone operators on separable Banach spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 3, 551--570

Persistent URL: http://dml.cz/dmlcz/106476

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/106476
http://project.dml.cz

COMMENTATIONES MATHEMATICgAaEé) UNIVERSITATIS CAROLINAE

3 (1

ON THE MULTIPLICITY POINTS OF MONOTONE OPERATORS
ON SEPARABLE BANACH SPACES
Libor VESELY

Abstract: It is proved that the set of multiplicity points
of monotone operator T on a separable real Banach space is con=-
tained in a countable union of Lipschitz hypersurfaces with
"linearly finite convexity on a subset". If T is a subdifferenti-
al of a proper convex function, the hypersurfaces are & -convex.
Analogous results are obtained for the sets of n-dimensional and
n-codimensional multiplicities. Applications to singular points
of convex sets are given. This paper improves and generalizes
the results of L.Zajidek.

Key words: Multiplicity points of monotone operators, line-
arly finite convexity, Lipschitz surfaces in Banach spaces, con-
vex analysis, subdifferentials of proper convex functions, singu-
lar points of convex sets, J-convex functions.

AMS Subject Classification: Primary 47 H 05
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% Intro duction

Let T be a set-valued monotone operator on a separable real
Banach space X (i.e. T:X —»expX® and <x-y,x*-y*» 20 whenever
x*eTx, y¥e€ Ty) and let

A, = {xex: din(corx)®n},

AR {xﬁ:X: coTx contains a ball of codimension n} N
where coTx denotes a convex hull of the set Tx.

The smallness of the sets An,An was investigated by E.H.
Zarentonello [8], N.Aronszajn [1] and L.Zajidek [6],[7]. The
theorems were applied to operators FM’VM (“vertex—" and "face=-
-operator") being connected with singular points of a closed con-
vex set M, in [8],[7].

In this paper, the results from [68] and [7] were improved
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and generalized.

L.Zajidek has proved (see [7]) that the set A, can be cove-
red by countably many Lipschitz surfaces of codimension n. If
T=98f for some comtinuous convex function on an open convex set
UcX then it is possible to write " & -convex surfaces" instead of
"Lipschitz surfaces" (see Eﬂ). In case X is a Hilbert space or
n=1 and x* is'separable, the set A of a general monotone opera=-
tor T can be covered by a countable union of Lipschitz surfaces
of dimension n (see [7]).

1.1 Problem: It is still an open problem whether the set A,
(or An, if x*is separable, respectively) can be covered by coun-
tably many §-convex surfaces of codimension n'(or dimension n,
respectiﬁely} if T is a general monotone operator.

Following main results of the present article suggest that
the answer could be positive:

8/ The Lipschitz surfaces from [7] have an additional property
- "linearly finite convexity on a subset". This result easily
gives an existence of a Lipschitz surface of codimension n (di-
mension n, respectively) which cannot be a subset of A, (An, res-
pectively) for any monotone operator T.

b/ If x* is separable then the set A1 is contained in a coun-
table union of curves with finite convexity. It gives a positive
answer to 1.1 in the special case X=R“. ~,

¢/ The result from [61 is generalized to the case Tzaf; where
f is a proper convex function. It makes possible to improve the
results from [7], ﬁﬂ concerning singular points of convex sets.

4/ It is shown thet the Lipschitz surfaces covering the set A"
are in a certain sense d-convex on a subset if T=df.

The author is grateful to RNDr.L.Zajicek,CSc. for his advi=-
ce and remarks which helped to get the final version of present
paper.

2. Definitions and
auxiliary propositions

All linear soaces of oresent paper will be real linear spaces.
Let M be a subset of the real line R . We shall deunote by P(M)
the system of all sets A<M, which contain at least three elements.
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Let X be a Banach space and f£:M—#X, For any a,b&M, afd,
we define Qf(a,b) = LQE{-EL « We shall write Q(a,b) in=-

stead of Qf(a,b) when it is clear which mapping is concerned to.

2.1 Definition (cf. [2]): Let X be a Banach space, MC R and
£:M—»X, For Pa{x°<x,‘<...<xn<xn+1} € P(M) we define

K(f'P) = E; le(xi-'\’xi) - Qf(xi'xi+q)l N
and put .
K (em) = {sup{K(f,P): PeP(M)} ir P(M4p ,
. 0 if P(M)=g .
HKA(£,M) is called convexity of £ on M.

2.2 Lemma: Let X be a Banach space, MCR and £:M~»X. Then
K(£,P) € K(£,Pu{m}) holds for any P& P (M), meM,

Proofs Let P=fxg x,“...txn‘txnﬂ} € P (M) There are four possi=
ble positions of the point m.

a/ me€P;

b/ mex, or X, ,<m§

c/ X,€M<X, OF X <m<x . ;

4/ X.< m<x.+,‘ for some 1% j€n-1 .,
We shall perform the proof of the most complicated case 4/ only,
since the proof of ¢/ is similar and a/,b/ are obvious.

If we shortly denote x=xa._,‘, y=xj, z=xjm, w=xj+2, we have
following situation:
X€y<m<z<w,

Let k € X be such thet

k’fsz) - Q(y’z) - f(zz-k

m-y Z=m °
Then IQ(x,y) - Q(y,2)} + 1Q(y,2) - Gz,w)} = HQ(x,y) - 5,-;%12]*“
+ l-—L)——r;m-k - QGz,w) 1 €lqx,y) - Uy,m I + lfrf:_’g"k" + lfgx_}};—k' +

+ 1Q(m,2) - Q(z, W)l = IQ(x,y) - ¢(y,m) N + 1g(y,m) =~ O(m,2) +
+ 1Q(m,z) - Q(z,w)] and hence K(f,P)€K(f,Puim}).
(We have used following equalities:

em-kd | )=kl g fCn)-k _ Iy fo(y,m) - oln,2d) L)

M= 2= m=
/7
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2.% Proposition: Let X be a Banach svace, MG R, f:M—>X, If
¥ (f,M)< o0 then f is a Lipschitz mapping on M.

Proof: Suppose f is nct Liosschitz. It is evident that taere
exist two voints a,b€il such that a<b and f is not Lipschitz
on at least one of the sets M = Mn(b,+0), M_= MN(-o,ad.

e can assume f to be not Lipschitz on M+ without any loss of
generality. There exist u,v€M,6 such that u<v and

120, v > % (£,M) + 15 (a,b)l. Then X(£,M) < 1Qcu, v - Io(a,
<12(,b) - 2, € 1Q(,b) - Qb,u)l + 1Qb,u) - Qu, M =

= k(f,{a,b,u,v}) € X(f,4) and this is a contradiction. ///

Z.4 Proposition: Let X be a Banach space, McR, f:M —X and
X(£,MM)<eo, If x€F is a limit point of M from the right (from
the left, respectively), there exist

fl(x,l‘ﬂ.) = lim Q. (x,y) (£'(x,M) = 1im Qf(x,y), resp.) .

yx+ J>xX-
ye&M YEM

Proof: Suppose fi(x,l‘-“.) doesn’t exist. Then there must exist €>C
such that for any §>0 there exist ¥,z,w€M satisfying
x<y<z<w<ex+d and JQ(x,y) - Qx,z2)I>€
But 19(Cx,y) - 0Gx,2) € 1Q@&x,y) - Q(y,2) + 1Q(y,2) - s(w,z2)0 +
+1QG,2) - cw,2) 1 = (£, {x,7,2,w}) + K(£,{x,2,w}) &
€ 2KEMNIx,x+8) )= 2X(£,M N (x,x+8)). (The last equality is
an easy consecuence of 2.3.)
Hence X(£,Mn (x,x+8)) > 2~  for any &§>0. Let N>§7[(f,M)be
positive integer. Since we have for any d>C an existence of
P from @ (Cin(x,x+8)) such that K(f,P) > e , it is possible
to find 2,,P5,...,P € (M) with following properties:

max Pk+‘| < min Pk for k=1,25ee4,N=1

x(s,py) > e TOr  §=1,200e,N o
Then XK (£,5) < N § ‘?;K(f,Pk) s x(r, .l:_J'pk) < XK (£,0) and
tais is & contradiction.

The croof of existence of £'(x,M) is analogous. /17

2.5 Theorem: Let X be a Banach space, N <R, f:M —X. Then there
exists a manoing F:R-—»X such that
VxeMm Fx)=£x) m
X(F,R) = X(£,M). )
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Proof: If X(f,M)= +e, F can be an arbitrary extension of f &
If M has two or less elements then F can be defined as affine
mapping satisfying (1). Suppose M has at least three elements
and "X (f,M) <@ . The needed extension will be constructed in
several steps.

8/ Extension on M (closure of M).
X is complete and f is Lipschitz on M (by 2.3). Eence f has a
unique continuous extension g on M. Choose €>0 and arbitrary
P'{xo< xX,< "“xn+‘l} € P(M). The continuity of the mapping
q(u,v)-Qs(u,v) on the set {[u,v]eTxM: utv} gives existence
of Py={y <« 7,<.cc <y, 4} € P(M) such that

.

IQg(xjaxj+1) - Qg(yj,yjm)l < 2% Y j=0,’|,...,n‘.
Then
K(g,P) < K(g,P,) + 2“'2% = K(£,P,) +€ = X(£,M) + €.

Hence X (g,M) = sup{k(g,P): Pe P(M)} < X(z,M) + £ .
Since € was arbitrary and the inequality X (f,M) € X(g,F) is
evident, we have X (g,M)=X(c,M) .

b/ Extension on M1={x €R: % « xes}, where @=infM , s=supM .
The complement of M can be written as a finite or countable uni-
on of disjoint open intervals:

R W =0 0l 500, ,
keA
where Ac{1,2,3,...}, J_=(-,®) , J,= (s,+0), J,= (g,b),
ak<bk, k&GA. J_,J+ can be empty and, obviously, ak,bke'f'l' for
any k€ A.
It is easy to see that M= Mu LJJk . Let us define

g¢x) if xeWM
neo - _{
g(ak) + Qg(ak,bk)(x-ak) if xe(ak,bk) .

Obviously Qh(ak,x)=Qh(x,bk) -Qh(ak,bk) =Qg(ak,bk) for any xe€(ay,b)
and h=f on M. 3
For arbitrary P € P(M,\) we define

P, =P b3 p,=p,N0LJ 5 .
1 "’H{ak‘k' 2 17 sk
PnJ, AP

Then Py contains at least two points and P2C M. If Py contains
just two points then PCJk for convenient k € A and then
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K(h,P)=0 € X (f,M). Let P, contain more than two elements. Then
P,€ P (M) and by 2.2 and (3):

K(n,P) € K(,P,) = K(h,P,) = K(g,PZ)S.'K(g,l‘_f;) =X(,M) .

Since P € #(M;) was arbitrary then X (n,M))= X(£,M) .
¢/ Extension on R .

Define h(x) if x €M,

F(x) = { h(s) + h!(s,M,)) (x-s) if xeJ,
h®) + n! (e,M,)(x-8) if xeJ_ .

Let us suppose J+;4¢,J_;é¢ . The other cases are more simple.
Let P€ P(R) and €>0. Choose P, € P(R) such that PcPp,,
J_nP,‘ﬁﬂ, J+nP,];l¢, M,‘nP,];éﬁ. Define

Py = Pqu{s,s} = {xo<x,,<...<xi<ls<x:.L 4 <X €8 <X 1<

<...<xn

+ +1

- <
and Py {xi<6<x cea <X <SeX

m+'l} ¢

There exist yG(C—'i,xi_m), z&(x ,s) such that
LHCENRENCERLES LI
10z Cx; ,@)-Qp@ 1) = IF!@) -qp(s, 1)l < 2 &,
IQF(xm,s)-QF(xm,z)l < % €,
1Qp (2,3, ) =Qp (2,8) 1 = IFL(8)=Qp(z,8)N < %e .

i+1

Then 2.2 , (3) and simple triangle ipequalities imply

K(?,P) € K(F,P;) € K(F,P,) = K(F,Pa) <
<K(F,{B,y.xi+,],...,xm,z.s}) +E = K(h,{@,y,xim,...,xm,z,s}) + €
€X(hM) +€=XK(t,M)+ € .

P and € were arbitrary, hence X (¥F,R) = X (£,M) . ///
2.6 Definition: Let X,Y be Banach spaces, MCX, @:M—>Y and

x,h € X. Let Mx.h' {tek: x+th €M} and let us define mapping
yl,h’Mx,h—.Y by the formula

Yy,n(t) = ylxsth) .

We shall say that Y has linearly finite convexity on M , if
sup{X((’x’h,Mx’h): x,heX, Ihl=1} is finite.
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Thus ¥ has linearly finite convexity on M iff its restric=
tion on any straight line p has finite convexity on Mnp and
all these convexities have a common upper bound.

Let us note that a mapping Y , possessing a linearly finite
convexity on a neighbourhood of a point x €X, has all one-sided
directional derivatives at x (by 2.4).

2.7 Definition: Let X,Y be Banach spaces, McX and ¥:M—>Y,
The mapping y is said to be S-convex on M iff there exists a
convex Lipschitz function g ot X with property:
for each y*&Y$ly"l=1, there exists a convex Lipschitz function
hy,on X such that y"oy = hy.- g onM.

2.8 Observation: A real function f on a subset M of a Bapach
space X is d-convex on M iff f can be extended to afunction on
X representable as a difference of two convex Lipschitz functi-
ons.

2.9 Remark: Let MCR, f:M —+R . Then f is d-convex on M iff
X (£,M) is finite. This yields from well-known results (cf. [21)
and 2.5 .

2.70 Observation: Let M be a subset of a Banach space X and
Y:M—>R%, y=[y,,cc,p ] . Then

/i/ ¥ is 5-convex on M iff yk is J-convex on M for k=1,...,0.
/ii/ If ¥ is §-convex on M, there exists a §'-convex extension
of y defined on the whole space X. Both propositions are easy
consequences of the definition 2.7, /ii/ yields from /i/.

Let us note that if X,Y are metric spaces, M&X and f:M~—»Y
is a Lipschitz mapping, then there exists a Lipschitz extension
X —>»Y of f in the following cases:

/i/  Y=R"

/ii/ X,Y are Hilbert svaces

/iii/ X=R and Y is a Banach space.
(For references see [?1).

It is not known to the author whether there exist extensions
of mappings with linearly finite convexity keeping this proper-
ty, if dim X>1 (even in case X= RZ,Y-—R), and &-convex exten-
sions of & -convex mappings if dim Y = o0 .
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2.11 Definition: Let E be a subset of a Banach space X and
n<dim X be a positive integer. We shall say that E is a Lips-
chitz fragment of dimension n (of codimension n, respectively )
and denote E€$ (E € %", respectively) if the following condi-
tion is satisfied: There exist a subspace Z of X of codimension
n (of dimension n, resp.), a topological complement W of the spa-
ce Z in X, a set MCVW and a Lipschitz mapping \{:M -»Z such
that E = {w+ Yew): weM} .

If 2,M,W can be chosen in such way that in addition Y is
8-convex on M or y has linearly finite convexity on M then we
shall say that E is a ;-convex fragment or E is an LFC-fragment
of given dimension or codimension. The notation will be following:
E(DCn, EeDCn, EE€LFC,, E€LFCR.

Fragments with M=W are called surfaces. Surfaces of dimen-
sion 1 (of codimension 1, resp.) are called curves (hypersurfaces,
resp.).

2.12 Notation: Let ¥ be a given system of subsets of a Banach
space X. By &% we denote the system of all sets representable
as a union of countably many elements frcm Y. ( For exam;ﬁle:
E€&DC" means that E can be written as a countable union of &-
-convex fragments of codimension n).

2.13% Observations: g/ Every E(&n has @ -finite n-dimensio-
nal Hausdorff measure. In particular, if X=Rm, m>n, then E is
of Lebesgue measure zero.

b/ Every surface from -'Cn has infinite but es-finite n-dimensio-
nal Hausdorff measure and its Hausdorff dimension is n.
&/ As consequences of 2.5 , 2.10 and extensiontheorems for Lip-
schitz maopings we obtain the following propositions:

Every Etben is a subset of a Lipschitz surface of codimen-
sion n.

Bvery Ee€ & is a subset of a Lipschitz curve.

Every E&DC;l is a subset of a §-convex surface of codimene
sion n.

Every EGLFC,‘ is a subset of an LFC-curve.

If X is a Hilbert space then every Eek,n is a subset of a
Lipschitz surface of dimension n.
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3 Multiplicity points
of monotone operators

By exp A we shall denote the system of all subsets of a
set A and by coA the convex hull of A.

The dimension (codimension, resp.) of a convex set is meant
as the dimension (codimension, resp.) of its affine hull.

Let X be a Banach space with dual space X* and T:X —» exp x*
be a monotone operator. We shall use the following notation:

A, = {x €x: dim(coTx)»n}

n

A" = {x €X: coTx contains a ball of codimension n}

goh T = {[x,x*Texxx% x%eTx}. .

3.1 Definition: Let 'D,"i" be monotone operators on X. We shall

write TeT if gph Tcgph T . T is called a maximal monotone

operator if Ted implies =T .

3.2 Observation:

g/ For every monotone operator T there exists
a maximal monotone operator Tvnax such that TCT

by Zorn's
lemma.

max?

b/ It is easy to see that Tx
monotone operator.

is always convex if T is a maximal

By a proper convex function (ct. [3]) it is meant a mapping
f:X—DRu{+w} satisfying following two conditions:

Vx,yex Vae(0,M) fax+@-y) < atx) + (1-)£() )
dom £ = {x€X: f(x)<+e0} £ 9 . ¢))

3.3 Definition: Let f be a proper convex function on a Banach
space X and x€X. If xe€dom f , we define
A(x) = {x*ext VzeX £(2) 3 L&) +lz-x,x"D} .

We put df(x)=P in case f£(x)=+0. The mapping Of:x+—>Bf(x) is
called subdifferential of f.

It will fit to define df=m@P for fmw +eo.

5.4 Remark: Subdifferentials of proper convex functions are
monotone but not conversely. There exist monotone operators which
are not subdifferentials (fB]). The characterization of subdiffe-
rentials of proper convex functions using the notion of a cycli=-
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cally monotone operator is due to R.T.Rockafellar (see [4]) -

The main result of this paper is contained in the following
two theorems.

3.5 Theorem: Let T be a monotone operator on a separable Ba-
nach space X and n<dim X be a positive integer. Then Ane sLrCh.

If in addition Tcdf for some proper convex function f on X
then A €®DC” .

3.6 Theorem: Let T be a monotone operator on a Banach space X
with separable dual space X and n<dim X be a positive integer.
Then An‘GLFCn. If in addition Tcdf for some proper convex
function f on X then AnCGDCn .

These theorems say that the sets Aﬁ and A" can be written
as a countable union of images of special Lipschitz mappings
(defined on a subset of a Bsnach space of codimension n or dimen-
sion n, respectively).

Both proofs are practically equal and we shall do it simul-
taneously.

At first we state the following simple lemmas without a proof
(see ['71, Lemma 1, Lemma 2). An oven ball with centre ¢ and radi-
us r>0 is denoted by N1(c,r).

3.7 Lemma: Let X be a separable Banach space. Then there exi-
st a countable system 7 of n-codimensional subspaces of X’and
a countable system x of n-codimensional affine subsets of X’such
that: /i/ Any n-dimensional subspace PC x* has a topological

complement V€ .
/ii/ 1f P,V are as in /i/, JGX', €>0 then there exists
t € (c*+P)N [ L(c*,€) such that L=t+Ve¥ .

3.8 Lerma: Let Y be a separable Banach space. Then there exi-
st a countable system ¥ of n-dimensional subspaces of Y and a
countable system # of n-dimensional affine subsets of Y such
that: /i/ Any subspace PCY of codimension n has a tovological

complement ve?V .
/ii/ 1f ®,V are a8 in /i/, & Y , £ >0 then there exists
t € (c®*+P)Nnf1(c*,€) such that L=t+Ve XL .
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39Proofof35and56 Let X,T be as in 3.5 (in 3.6, resp.)
and A=A (A=A", resp.). Without any loss of generality we can
suppose ’l‘x to be convex for any x (see 3. 2\

a/ Decomposition of A.

Let x be an arbitrary element of A. Then there exist a point
and a subspace ch ¥ of

cxi'l‘x, a positive rational number Ty
dimension n (of codimension n, resp.) such that
(ce+P InNley,r) < Tx o

Let m be a rational number such that Hc I<mx. Lemma 3.7 (3.8,
resp.) guarantees an existence of a topologlcal complement V 3 4
of P, and a voint t € (cx+Px)nﬂ(c -E.r ) such that

=t, +V, el .
Let us flnd a rational number qy such that 13 l‘qx y Where
X -X —>P is a projection in the direction of Vx'

For any r,m,q positive rational, V€¥ , L& 1let us denote

B(r,m,V,q,L) = {xeA: r=r, n=m, V =V, q =q, Lx=L} .

It is clear that A=UB(r,m,V,q,I) and the union is countable.

Let r,m,V,q,L be fixed. We shall show that the set B=’
=B(r,m,V,q,L) is a Lipschitz fragment of codimension n (of di=~
mension n, resp.).
b/ "Parametrization"of B.
Define Z="V. Let W be an arbitrary topological complement of Z
in X and Y=W%t. Then Y is a topological complement of V in X%.
The following proposition is true: (6)

2% 7® iff there exists y% Y such that 2z%*=y* on 2 .
There exists a point Yo €Y such that L—y +V, Let us denote
= {weWw: Szcz w+z 6B} ,

i.e. Mis a proaectlon of B on the subspace W in the direction of
zZ .
¢/ B is a Lipschitz fragment.
Let Bf@. Let Wy.W, €M, 2,,2,€2 such that X =W +2; € B for
i=1,2. Let us denote ti-txi, x;= :n:xi

Let y%eY be an arbitrary functional from a unit sphere in Y.
Define
+ r *
ty = t,] +231£1(y )
T *
t] =ty - 3g XG0,
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The fact t: ,tXETx,‘ follows from inequalities
It:-—quﬂ < |t1-cx1| + Ii—a x, G <r , lt;—qul <r .,
The monotonicity of T implies
0 & {x=Xp, b=t 2 T (5% =
= wymwny, ty-tst E—?C,I(y“)> {z,|-z2, 57 .
(We have used the fact that the runctlonals th=ts y'—:l:,‘ Cad)
are elements of V.) Now we obtain
¥ (21-z2,y') P9 _2_q<w -w. ,t,‘-tzi %—ﬂq(y')> €
Fg lwq-w, (lt,]-c I +hey l + lta-cxl\ + lc | + 2—]1’ 1)
Fq vy l(Z+m+5+mn+3)= Siﬂ‘.r_) Iw,]--w2
Then by (6)
|z1—z2| = sup{l(z,‘-zz,y*ﬂ yer, -1} « _Q_Q____ lw,‘—w2 .

If we take W(w) €2 (for we€M) such that w+ y(w) €B , we obtain

a correctly defined mapping which is Lipschitz on M and satisfies
= {w+ Paw): weM} .

4/ ¥ has linearly finite convexity on M.

Let w_ €W, hew, Ihl=1. Denote DaMwo,h , F= Y"’o'h (see 2.6).

If D contains less than three elements then x(F,D)ao by the de~
finition. Let D have at least three elements and

{a,<a < ...<d <d_ ,}eP(D) .
For 0€j€s+1 1let us introduce following simplifications:

Xy = Wy + djh o+ F(dj)

ta. = txj’

xj =X,
x.'s are obviasly points from B, The monotonicity of T implies

0€i< j€ssl => (h,tj-ti> »0 .

Let us choose an arbitrary number i € {1,2,...,8} and a functio-
nal y"€Y such that Iyl=1.

+ - r * =~ = - L *
Denote  t] = t+ ?-axi(y) v BD o=ty Exi(y) . We have
t;,t;t'l‘xi\ similarly as in the part ¢/. Using the monotonicity
of T we obtain
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0 & Lx;=%X;_q2b7=5 4P = (d3-d; )b, b=t 4> -
- %a (di"di-’1)<h’ Uti(y')> - %a <F(di) -Fla;_4),v*> and hence

* 2 _ .
{Qpld;_4,d4;),7% € f-(h,ti—ti_p {n, 7, Gy » .
Analogous calculations with

+_
0 € <xi-xi__,] ,ti-ti_,1>
O & $xy 4=%; 585,978 >
+
0= <xi+’l_xi’ti+’l_ti>
will afford the following inequalities:
-4Qpld;_1,4,),7% € 234n,t-t,_ 1>+ <, Ty
- - »
<Qp(dl’dl+q),y> < —9 <h, £ 41 ti> + <h,7£i(y W
2
(QF(dl' i+1 ,y‘) < T (h t. —ti>- <h, Il(y‘)> .
Then for any y*e€ Y, Iy'-1
* 2 -
1<Qp(a;_1+d4;) ~Qpd;,d; ), 3" ] < £ &byt -8, 42
and hence by (6)
- 29 -
1Qp(d;_4,85)-Qpdy,a; D1 € £ <h,ty -t .

i1

Then
2
g lQpcdl_q,d )-Qp(a;,8; PN € Lt g+t -t,-t > £
29(Je,, he B Rebe 0ele ) < _ASL«:%Q

because lt;j“ < Itj—cx_l + lcx.u < '2 + 0.

So we managed to estimate X (F,%) from above indevendently on
the choice of LA and h, and that is why !f has linearly finite
convexity on M.
4/ ¢ is d-convex on M if Tc 3f.
Let T€3f for some proper convex function on X. Without any
loss of generality we can suppose T=@f. Now Tx ie always convex

Let y"¢Y, Iy*l-1. For any x € B we shall denote w, the projec-
tion of x on W in the direction of Z. Then wxeM and
x=w + PG ) . A functional tl =t - -2—-1 (y*) is an element of Tx
beca\xse ﬂﬁ!x(y')l<-2 .
Let us denote

B w, ) = £(x) - (\'(wx).tx)

By G ) = £0x) = CYtw )t >
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51,111 are finite real functions on M.
Let xoi B be fixed. We shall define two continuous affine

functions on W: axolw) = flx)) + {w—xo,tx°>

bxo(w7 = £(x) + (w-xo,t;o> .

For any x €B the functionals t -t  ,t -ty are in V and t, ,t
[e]

x X, x X, X,
are in ?f(xo) , hence

axo(wx) = flx) + (x'xo’tx(? - (\f(wx),tx°> <

€ f£(x) - <y(wx),txo> = £0)- LYl )yt > = gyw)
o %o

Similarly bxo(wx)‘h,](wx) . bx(wx

o “o
The functions a, ,bx are Lipschitz with the constant m+r

8, (wx ) = f(xo) - ('f(wxo),txo) = g,](wxo) .

) = h,](wxo) .

o
. - T
(since |txol<m+r , |txol<m+ §<m+r).
The former properties enable ®s to say that the functions

glw) = sup{axo(w): xoeB}
hiw) = sup[bxo(w): onB}

are Lipschitz convex functions on W satisfying €=8,, h=h,1 on M
and the function g does not depend on the choise of y¥. For any
x €&B
I [5) S S »
h, W) = gq(w, ) r <\'(wx),7[x(y ) er <plw ), y*> .
= 29 - 29
Put G(w) = gw), HT(W) < hiw) .

We have proved that for any y*eY: y% 1 4 =Hy,-G on M where
Hy.,G are convex Lipschitz functions on W and G is independent
on y*. Hence Y is §-convex on M regarding (6).

The theorems 3.5,3.6 are proved. ///

The following proposition is a direct conseguence of 3.5,
3.6 and 2.13 .

3.10 Corollary: Let T be a monotone operator on a sevarable
Banach space X end n<dim X be a cositive integer. Then the set
An can be covered by countably many Lipschitz surfaces of codi-
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mension n. If T € 3f for some proper convex function f then the
set An can be covered by countably many DC-surfaces of codimensi-
on n.

I x* is separable then the set A’| for a general monotone opera=-
tor T can be covered by countably many LFC-curves.

If X is a separable Hilbert space then A" can be covered by coun=
tably many Lipschitz surfaces of codimension n.

2.11 Observation: Let us observe that in case X= Rz, 3.10 ensu~
res a countable covering of the set A1 of a general monotone ope-
rator T on l{a by LFC-curves which are simultaneously DC~hyper-

surfaces in this case. (Compare the problem 1.1.)

There are sometimes considered monotone operators on x* 'with
values in X, e.g. an operator T_1 "inverse" to a monotone opera-
tor T on X: ’

T_qrxtﬂ;exp X

T_ () = {xeXx: x%Tx} .
In this cases the following version of 3.6 is useful. (The proof
is similar; instead of NxM| =sup {<¢x*,x*: 1x™=1} use B} =
=sup{<x,x*>: Ixl=1} and change the roles of X and X*.)

.12 Theorem: Let X be a separable Banach space, T:X'-«-exp X
be a monotone operator and n<dim X be a positive integer. Then
"Pe eLFCn. If Tcdf for some proper convex function f on X* then

n
A GGDCn.
4 Operators Vy,Fy

Let M be a nonvoid convex subset of a Banach space X. We
shall state the definition of a vertex-operator VM:X-dvexp x*
and a face-operator FM:X*—a-exp X which are in close connection

with singular points of M (cf. [81).

4,1 Definition: Let

o] if xeM
Sh(x) = { ’
+00 if x¢M;
sw(x')= sup{<m.,x*>: meéM} , x"ex'.
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SM is called indicator-function of M and is a proper convex fu-
nction on X. The function sy satisfies sy (tx‘)=t.sM(x‘), sM(x'J»y")‘
‘sM(x‘)+sM(y") for any t>0, x®y*eXx¥. Hence if dom sy 1is not
empty then Sy is a proper convex function on X"".

4.2 Definition:

Vo () {y{y’eX’: <x,y‘)=aM(y*)} if x €M,
X =

" ] if x ¢éM;
Fy(x® = {yem: (y,x‘):sM(x*)}. xfex®.

4.3 Note: g/ If X=R™ then Vy(x) is the set of all normals of
M at x and is called vertex of M at x. The set FM(x’) forms a face
of M perpendicular to x¥.

p/ It is obvious that the operators VM'FM are monotone and their
images VM(x),FM(x") of each point are convex. Following simple
lemma says alittle more.

4.4 Lemma: VM = 38 N FM [ - aSM .
lowing equivalences hold:

x'eVM(x) &> YmeM 0p<m-x,x*>e> VzeX SM(:) 25M(x)+
+{z=X,x*> &> x"eaSM(x) .
o/ If Fy(x*kp then Fy(x*)cdsy(xM is evident. Let x €Fy(x®).
Then any z'€X* satisfies SM(Z')) {x,2Y = sM(x')+ £(x, x>  and
hence x € asM(x"‘). /17

4.5 Theorem: If X is separable then An(VM) € ac™(X) ,
n #*
A"(Fy) €aDC (x9) .
1¢ x* is separable then An(vM) € &DC (X) , An(FM) € &DCc™(x*).

The propositions of the theorem yield from 3.5, 3.6, 4.4 . ///

Using known extension theorems it is possible to obtain
following new result.

4.6 Theorem: Let M be a nonempty convex subset of a separable
Banach space X. Then: . .

/i/ The set of points x€M for which VM(x) is at least n-dime-
nsional can be covered by countably many DC-surfaces of codimen-~
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sion n,.

/ii/ If in addition X* is separable then the set of all nor-
mals x* to M at faces FM(x’) being at least n-dimensional can be
covered by countably many DC-surfaces of codimension n, and the
set of all points x €M with a vertex VM(x) containing a ball of
codimension 1 can be covered by countably many LFC-curves.

5% Existence of "bad"
Lipschitz surfaces

We shall show that there exist Lipschitz surfaces of codi-
mension n (dimension n, respectively) which cannct be a subset
of A, (A", resp.) for any monotone operator T satisfying assump-
tions of the theorems 3.5, 3.6 .

We shall use the local geometric term of a contingent of a
set at a point (cf. [5]).

5.1 Definition: Let X be a Banach space, x € X, Mc X. Then we
define cont(M,x) as the set of all nonzero vectors v éX which
satisfy the following condition:

There exist sequences {xn}cx, {an}ck such that
/i/ anM ,
/ii/  a,>0 ,
/iii/ An-4>0 ,
/iv/ X_=X

I n -V H-’o .
"jx;

5.2 Construction: Let X be a Banach space, W,Z closed subspaces
of X such that X=W® 2z (i.e. X is a topological sum of W,Z).
Let h€Ww, zoe Z be nonzero vectors and U be a topological comp=-
lement of 1lin{h} in the space W. We shall define a Lipschitz
mapping F:W—»Z by the formula

F(th+u) = f(t)zo te€R, ueu ,
where f is a real Lipschitz function on R which has right deri-
vative fl(t) at no rational point t. (Existence of f is guara-

nteed by a standard category argument.)
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Denote E = {w+F(w): weW}. Let q € R, u € U, x=qgh+u +f(Q)z € E.
It is easy to prove that cont(E,x) contains the set

C = {o!h+u+Bz oty #>0, uelU, xD fla)sB ¢ «D*f(q), yeY},

where D f * f denote the lower and upper Dini derivatives of f
and Y is a topological complement of 1m{z° in 2.

Hence int(cont(E,x))408 if anh+u°+f(q) z, with q rational.(7)

5.3 Lemma: Let X be a Banach space, W,Z be closed subspaces of
X such that X=W @ 2. Let woe W and G:W-—>7Z be a Lipschitz map-
ping having all one-sided direct_ional derivatives at W Denote

M= {wiGlw): wew} ,
X = Wy o+ G(wo) N
Iw:x —»W a projection in the direction of Z .

Then, if v1,v2&cont(M,x), xw(v4)=xw(v2) then v, =v, .
Proof: Let v,‘,vzecont(M,x), tlw(v,‘)=:xw(v2)=7. The vector ¥

is nonzero because G is Lipschitz. Let Zqs B‘Z be such that
vi-v+zi (i=1,2). Let U, be a topological complement of 1in{v}
in W, 3:W-—>1lin{v} a projection in the direction of Uy ,
xX:W—»U, a projeation in the direction of ¥ . By 5.1 we have

+G(w i) J\n’i>0, A, i 0,

n i® n i n,i
*h,i7X .
‘ni'(““i"‘. R a ol (i=1,2).
Let &) ;€ R be such that a4V = Wy(wn 4~Wy? - Then
lim ;.E-al =1 (8)
n»® “n,i
because

I(-;-'—_ - vl= Vo, (o, NI —0 .
n,1 ’

Without any loss of generality we can suppose a, i>0 (i=1,2 ,
yi”
n=1,2,... ) « Then

Glw vay o) ~Gw)) - Iwn.i'*G(wnli) =W =G(w ) e
an i it 3n i i
k] 1
y - : Y - - -
. a, ;¥ . a) ;¥ (wn,l W) . G‘"o*%,i") G("n,i) le
n,i An,i An,i
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%n,i
&1 o0+ |- P [. 1+ Qed Iy (a, (NV—>0
?
where L is the constant from the Lipschitz property of G.
Then (8) and the existence of a directional derivative 5+G(wo,7)
imply 2z,= 3'+G(wo,v) =25 . 17/

5.4 Theorem: Let X be a separable Banach space (X has separable
dual X%, resp.), n<dim X be a positive integer. Then the set E
from 5.2 with dim Z=n (codim Z=n, resp.) is a Lipschitz surface
of codimension n (of dimension n, resp.) which cannot satisfy
Eca (E <A™, resp.) for any monotone operator T on X.

resp.). Then (in the notation of 3.9) Ee<UB(r,m,V,q,L) .

There exist . ,m ,V ,q,,L,, & positive number & and a point

x,€ E such that the set B°=B(r°,m°,vo,qo,Lo) is dense in

Enﬂ.(xo.é') , by the Baire Category Theorem.

Let Zos“-vo, wo be a topological complement of Zo in X and x

X-—vwo be a projection in the direction of Z_. The set- Mo'

=% (B)) is dense in S=‘J:°(Enﬂ(x°,5)) s which is an open set

containing the point I (x ). By the part 4/ of 3.9, there exists

a Lipschitz mapping YO:MO—-» Zo with a linearly finite convexity

on M, such that B°={w+ N CRE wGMO} -

Yo has unique continous extension tio on Mo_'_ This extension is

Lipschitz, has linearly finite convexity on Mo and has by 2.4

all one-sided directional derivatives at each point m:o(x)es .
int(cont(E,x))=@ for every x€En ﬂ(xo,;) by 5.3 .

But the construction of E implies that there exists a point

X=qh+u+f(q) zern.ﬂ.(xo,i) with q rational. Then cont(E,x) has

nonempty interior by (7) and this is the needed contradiction.

/7
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