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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
27,3 (1986) 

ON THE MULTIPLICITY POINTS OF MONOTONE OPERATORS 
ON SEPARABLE BANACH SPACES 

Libor VESELÝ 

Abstract: It is proved that the set of multiplicity points 
of monotone operator T on a separable real Banach space is con­
tained in a countable union of Lipschitz hypersurfaces with 
"linearly finite convexity on a subset". If T is a subdifferenti-
al of a proper convex function, the hypersurfaces are ©^-convex. 
Analogous results are obtained for the sets of n-dimensional and 
n-codimensional multiplicities. Applications to singular points 
of convex sets are given. This paper improves and generalizes 
the results of L.Za:jiSek. 

Key words: Multiplicity points of monotone operators, line­
arly finite convexity, Lipschitz surfaces in Banach spaces, con­
vex analysis, sub-differentials of proper convex functions, singu­
lar points of convex sets, ^-convex functions. 
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1. I n t r o d u c t i o n 

Let T be a set-valued monotone operator on a separable real 
Banach space X (i.e. T:X —*expX* and <x-y,x*-yf> >0 whenever 
x*CTx, y*€ Ty) and let 

An - {x€X: dim(coTx)»n} , 

kn » {x € X: coTx contains a ball of codimension nj , 
where coTx denotes a convex hull of the set Tx. 

The smallness of the sets A ,An was investigated by E.H. 
Zarantonello [8], N.Aronszajn £l] and L.Zajicek f6j,f7-7. The 
theorems were applied to operators ^MIVM ("vertex-" and "face-
-operator") being connected with singular points of a closed con­
vex set Mt in f8j t [?1. 

In this paper, the results from [6j and [7] were improved 
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and generalized. 

L.Zajidek has proved (see f7j) that the set A can be cove­
red by countably many Lipschitz surfaces of codimension n. If 
T-*3f for some crawfctnuous convex function on an open convex set 
U c X then it is possible to write " #-convex surfaces" instead of 
"Lipschitz surfaces" (see fjS]) • In case X is a Hilbert space or 
n*i and X41 is separable, the set An of a general monotone opera­
tor T can be covered by a countable union of Lipschitz surfaces 
of dimension n (see [7l)» 

1.1 Problem: It is still an open problem whether the set A 
(or An

f if X* is separable, respectively) can be covered by coun­
tably many ^-convex surfaces of codimension n (or dimension n, 
respectively) if T is a general monotone operator. 

Following main results of the present article suggest that 
the answer could be positive* 

§/ The Lipschitz surfaces from t?l have an additional property 
- ttlinearly finite convexity on a subset". This result easily 
gives an existence of a Lipschitz surface of codimension n (di­
mension nf respectively? which cannot be a subset of An (A

n, res­
pectively) for any monotone operator T. 

* 1 

£/ If X is separable then the set A is contained in a coun­
table union of curves with finite convexity. It gives a positive 
answer to 1.1 in the special case X~-H • **%, 

c/ The result from Isl is generalized to the case T*df\ where 
f is a proper convex function. It makes possible to improve the 
results from {7I» fsi concerning singular points of convex sets. 

&/ It is shown that the Lipschitz surfaces covering the set An 

are in a certain senfi% o-convex on a subset if T-*df. 
The author is grateful to RNDr.L.Za;jicek,CSc. for his advi­

ce and remarks which helped to get the final version of present 
paper. 

2. D e f i n i t i o n s a n d 
a u x i l i a r y p r o p o s i t i o n s 

All linear soaces of oresent paper will be real linear spaces. 
Let M be a subset of the real line ft . We shall denote by P(M) 
the system of all sets ACM, which contain at least three elements. 
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Let X be a Banach space and f:M—*X. For any afb*Mf Mb f 

we define Qf(afb) -
 f ̂ f c ^ ^ * We shall write Q(afb) in­

stead of Qj»(a,b) when it is clear which mapping is concerned to. 

2.1 Definition (cf. [2]): Let X be a tanach space, M C l and 

f:M—*X. For P*{x0<x1<...<x_<x A € P(W) we define 

K(r,p) - jfj IQ^X^.X.) - QfC^.x^)! 

and put 

X(f fM) - f sup{K(f,P): P€*>(M» if P(M)t0 f 

to if P(n)*0 . 
JfC(£fM) is called convexity of f on M. 

* 
2.2 Lemma; Let X be a Banach spacef McR and f:M -*X. Then 

K(ffP) * K(ffPu{mJ) holds for any P€p(M) f m€M. 

Prooft Let P-"{x0«x1*...*xn<xn+1} € P(VQL There are four possi­
ble positions of the point m. 

a/ m*Pf 

b/ m < xQ or xn^ < mf 
c/ xQ<m<x/| or x

n
< r a < x

n + 1 ; 
&/ x.<m<x. , for some 1 * a * n-1 . 

We shall perform the proof of the most complicated case d/ only, 
since the proof of c/ is similar and a/fb/ are obvious. 

If we shortly denote x=x. A% y=x.f z~x, -f w=x. ~f we have 
following situation: 

x < y < m < z < w . 
Let k # X be such t h s t 

m-.y ^ V f ' z~m 

Then iQ(x fy> - Q(y,z) l + lQ(y f2> - Q(zfw>f » |Q(x f y) - ~ r | * ^ * 

• l ^ S = * - QCz>w)l «'«<***> - Qfy.«>l - l f f f i ~ k t * ' *£,"*' + 
4* |Q(mfz) - Q(z,w)l « >Q(x,y) - Q(y,m)i + §Q(yfm) - 0(m,z)l + 
+ iQ(mf2s) - Q.(z,w)| and hence K(f f P ) * F(f „P u {m} ) . 
(We have used following equalities: 

*-fifc--* - ̂ ^ - l-|S=- - ^ * - lob.-) - *(-,->- - > 
/ / / 
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2.5 Proposition: Let X be a Banach sr>ace, M C R , f:M—*»K. If 

X(f,M)< oo then f is a Lipschitz mapping on M. 

Proof: Suppose f is net Lipschitz. It is evident that tnere 

exist two ooints a,b€M such that a < b and f is not Lipschitz 

on at least one of the sets M -= M n(b,+OD) , M_= Mr»C-a>,a). 

We can assume f to be not Lipschitz on M without any loss of 

generality. There exist u,v€M such that u < v and 

lQ(u,v)H > X ( f , M ) + I;(a,b)f. Then %(f ,M) < | QCu,v)J - l0(a,b)( 

<|?(a,b) - Q(u,v)| « lQ(a,b) - Q(b,u)U + lQ(b,u) - Q(u,v)I = 

== K(f, {a,b,u,v}) * X(f fM) and this is a contradiction. /// 

2.4 Proposition: Let X be a Banach space, M c R , f:M —•X and 

?C(f,M)<«> . If x€K is a limit point of M from the right (from 

the left, respectively), there exist 

f!(x,M) = lim Qf(x,y) (f*(x,M) = lim Qf(x,y), resp.) . 
y-«c+ " y-»x-
y« M y€ M 

Proof: Suppose f ' (x,M) doesn ' t e x i s t . Then the re must e x i s t £>0 

such t h a t for any o>0 there e x i s t y,"z,w€M s a t i s f y i n g 

x< y < z < w < x + ^ and | Q ( x , y ) - Q ( x , z ) I > £ . 

But lQ(x ,y) - C(x ,z ) l « lQ(x,y) - Q(y,z)I + lQ(y,z) - Q(w,z)I • 

+ lQ(x , z ) - Q(w,z)l » K(f ,{x,y ,z ,w}) + K(f, {x,z,w}) « 

« 2X(f,Mf\[x,x+J) )-- 2X(f,Mn(x,x+£)). (The last equality is 

an easy consequence of 2.3.) 

Hence X ( f ,M n (x,x+<D) > 2~1£ for any S > 0 . Let N> |)ftf *M)be 

positive integer. Since we have for any ^ > C an existence of 

P from tf (.1 A(x,x+^)) such that K(f,P)> 2~",£ , it is possible 

to find î  ,? p,... ,P^ € (P(M) with following properties: 

max Pk+/J < min Pk for k=1,2,... ,N-1 

K(f,P.) > 2"16 for a-1,2,...,N . 

Then X(f,M) < N | * T K(f,Pk) * K ^ f » y p k ^ ?C(ffM) and 

uhis is a contradiction. 

The proof of existence of f^(x,M) is analogous. /// 

2.5 Theorem: Let X be a Banach space, K c R , f :M -*X. Then there 

exists a raaooing ?:R—*X such that 

Vx«M F(x) * f(x) (1) 

X(F,R) * #(f,M) . (2) 
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Proof: If X(f,M)=- +00, F can be an arbitrary extension of f *• 
If M has two or less elements then P can be defined as affine 
mapping satisfying (1). Suppose M has at least three elements 
and X(f »M) <OO . The needed extension will be constructed in 
several steps. 

a/ Extension on M (closure of M). 

X is complete and f is Lipschitz on M (by 2.3). Kence f has a 

unique continuous extension g on M. Choose £>0 and arbitrary 

P* {xQ< x^ < ... -* xn+-1 ] € (P (M) . The continuity of the mapping 

q(u,v)»Q (u,v) on the set {[u,v]€MxM: u/vj gives existence 

of P1*{y0< y1< ...
 <y n + 1} * P(M) such that 

, Qg ( x^ Xd+1 ) - V y d ' y d + 1 ) I U ^ ^ 0=0,1,.-.,^. 
Then 

K(g,P)< K(g,P1) + 2n.J- . K(f,P1) + 6 * #(f,M) + 6 . 

Hence K (g,M) - sup{K(g,P): P€<P(M)} ̂  X(f,M) + £ . 
Since € was arbitrary and the inequality X(f,M) *« X(g,M) is 
evident, we have X(g,"H)« X(f ,M) . 

b/ Extension on M,---{x € R : & * x« s}, where er=infM , s--supM . 
The complement of $ can be written as a finite or countable uni­
on of disjoint open intervals: 

RvM - J u l j Jv u JA , 
" k€A K + 

where AC {1,2,3,...}, J_»(-O»,CJ) , J+s- (s,+oo), Jk= <
a
k*

b
k)» 

ak<bk, k€A. J_»J+ can be empty and, obviously, ak»bk€M for 
any k € A. 

It is easy to see that M^* M u LJJk • Let us define 

f g(x) if x€¥ 
h(x) - J 

V. S^ak) +
 QgCak»VKx""ak"> if x € C ak* bk^ * 

Obviously Qh(ak»x)-QhC-«fbk)--Qh(ak,bk)--Q (a^,^) for any x€(ak,bk> 

and h-f on M. (3) 
For arbitrary P€P(M^) we define 

Pi s P u U Cak*kJ * p? s P1 x LJ Jk • 
1 k€A * K * k€A K 

PAJk/0 

Then Pp contains at least two points and P~C M. If P~ contains 

Oust two points then P C J
k ->or convenient k€A and then 
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K(h,P)»0*X-(f,M). Let P2 contain more than two elements. Then 
P2€f(!5) and by 2.2 and (3): 

K(h,P) < K(h,P1) - K(h,P2) « K(g,P2)<X(g,M) « X(f ,M) . 

Since P € f(M1) was arbitrary then X (hfM/|) = X(f ,M) . 
c/ Extension on R . 

Define f hCx) if x€M1 

F(x) • J hCs) + h^(s,M1)(x-s) if x € J+ 
I h ^ ) + h+(©,M1)(x-<5) i f x € J _ . 

Let us suppose J . / 0»J_ /0 • The o ther cases are more simple. 
Let P € f (R) and * > 0 . Choose P1 € <P(R) such t ha t P<-P1 t 

J^nP,,/-^, J + n P 1 / 0 , M1r\P1>-0. Define 

P2 - P / | u { « f s } *- { x Q < x 1 < . . . < X i < < 5 < x i + 1 < . . . * x m < s < x m + 1 < 

< . . . < x n } 

and P5 « { x . < < S < x i + 1 < . . . < x m < s - - x m + 1 } . 

There exist y€(cS,xi - ) , z€(x ,s) such that 

lQF(«fx.+1)-QF(y,xi+1)| < \ t , 

|QFOcit^)-QF(«fy)l - lF+(G)-QF(<5,y)I| < ^ £ , 

lQF(xm,s)-Qp(xm,z)l < I 6 , 

lQF(z,xm+1J-QF(z,s)I - |F^(s)-Qp(z,s)I < ̂ £ . 

Then 2.2 , (3) and simple triangle inequalities imply 

K(F,P)*J K(F,P1) <? K(F,P2) - K(F,P3) < 

<K(F,{«,y,xi+1f...,xm,z,s}) +£ « K(hff0,y,xi+1,... ,xm,z,s}) + £ 

t i X C h ^ ) + £ « #(f,M) + £ . 

P and € were arbitrary, hence #(F,R) - J£(f,M) . /// 

2,6 Definition: Let X,Y be Banach spaces, MCX, y:M—»Y and 
xfh€X. Let Mx j» {t € R : x+th€M} and let us define mapping 
y> h:Mx h—*Y by the formula 

y x h(t) « y(x+th) . 

We shall say that y has linearly finite convexity on M , if 
sup{X(y x nfMx h ) : x,h€X, lhl-1 } is finite. 
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Thus y has linearly finite convexity on M iff its restric­
tion on any straight line p has finite convexity on Mnp and 
all these convexities have a common upper bound. 

Let us note that a mapping y , possessing a linearly finite 
convexity on a neighbourhood of a point x€X, has all one-sided 
directional derivatives at x (by 2.4). 

2.7 Definition? Let X,Y be Banach spaces, McX and y:M —*Y. 
The mapping y is said to be o-convex on M iff there exists a 
convex Lipschitz function g oli X with property: 

for each y#4Y* Iy*|s1, there exists a convex Lipschitz function 
h f on X such that y*«y - h «- g on M . 

2.8 Observation: A real function f on a subset M of a Banach 
space X is <T-convex on M iff f can be extended to a^function on 
X representable as a "difference of two convex Lipschitz functi­
ons. 

2.9 Remark: Let MCR, f :M—*R . Then f is cT-convex on M iff 
X(f,M) is finite. This yields from well-known results (cf. £2J) 
and 2.5 . 

2.10 Observation: Let M be a subset of a Banach space X and 
y>:M-*Rn, y=~ [y1f..., y n] . Then 
/i/ y is ^-convex on M iff y, is 0-convex on M for k»1,...,n. 
/ii/ If y is $-convex on M, there exists a <T-convex extension 
of y defined on the whole space X. Both propositions are easy 
consequences of the definition 2.7» /ii/ yields from /i/. 

Let us note that if X,Y are metric spaces, MCX and f:M—*Y 
is a Lipschitz mapping, then there exists a Lipschitz extension 
"P:X —•Y of f in the following cases: 

/i/ T- R n 

/ii/ X,Y are Hilbert spaces 

/iii/ X= R and Y is a Banach space. 
(?or references see [?]). 

It is not known to the author whether there exist extensions 
of mappings with linearly finite convexity keeping this proper­
ty, if dim X>1 (even in case X* R ,Y*-R), and <T-convex exten­
sions of S-convex mappings if dim Y • CO • 
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2.11 Definition: Let E be a subset of a Banach space X and 
n<dim X be a positive integer. We shall say that E is a Lips-
chitz fragment of dimension n (of codimension nf respectively) 
and denote E€$£ (E€$Cn

f respectively) if the following condi­
tion is satisfied: There exist a subspace Z of X of codimension 
n (of dimension nf resp.)f a topological complement W of the spa­
ce Z in X, a set MCW and a Lipschitz mapping tJ:M —*Z such 
that E » {w+ ytw): w€M) . 

If ZfMfW can be chosen in such way that in addition y is 
0 -convex on M or y has linearly finite convexity on M then we 
shall say that E is a 0 -convex fragment or E is an LFC-fragment 
of given dimension or codimension. The notation will be following: 
E€DCnf E€DC

n, E€LPCn, E€LFC
n. 

Fragments with M-=W are called surfaces. Surfaces of dimen­
sion 1 (of codimension 1, resp.) are called curves (hypersurfaces, 
resp.). 

2.12 Notation: Let If be a given system of subsets of a Banach 
space X. By ©if we denote the system of all sets representable 
as a union of countably many elements from if. (For example: 
Ei©DC means that E can be written as a countable union of d-
-convex fragments of codimension n). 

2.13 Observations: a/ Every s*J£ n has or-finite n-dimensio-
nal Hausdorff measure. In particular, if X=-fcm, m>nf then E is 
of Lebesgue measure zero. 
h/ Every surface from & has infinite but ©r-finite n-dimensio-
nal Hausdorff measure and its Hausdorff dimension is n. 
$/ As consequences of 2.5 • 2.10 and extensiontheorems for Lip­
schitz mappings we obtain the following propositions: 

is a subset of a Lipschitz surface of codimen-

is a subset of a Lipschitz curve. 
is a subset of a i'-convex surface of codimenw 

Eveгзr 3 € K П 

s i o n n . 

Every E € * д 

E€DC Eveгy 

E € * д 

E€DC 

s i o n n . 

Eveгy E € L?C. is a subset of an LFC-curve. 
ct space then e 

Lipschitz surface of dimension n. 

Tf X is a Hilbert space then every E € & is a subset of a 
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3* M u l t i p l i c i t y p o i n t s 
o f m o n o t o n e o p e r a t o r s 

By exp A we s h a l l denote the system of a l l subse t s of a 
se t A and by coA the convex h u l l of A. 

The dimension (codimension, r e s p . ) of a convex se t i s meant 
as the dimension (codimension, r e s p . ) of i t s a f f ine h u l l . 

Let X be a Banach space with dual space X* and T:X-**exp X 
be a monotone ope ra to r . We s h a l l use the following n o t a t i o n : 

An • {x€X: d im(coTx)»n} 

An » | x € X : coTx conta ins a b a l l of codimension n } 

gph T » {Ex^^CXxX^ x*€Tx} . 

3.1 Definition: Let T,T be monotone operators on X. We shall 
write TCT if gph TCgph T . T is called a maximal monotone 
operator if TC? implies T--T . 

3.2 Observation: a/ For every monotone operator T there exists 

a maximal monotone operator ™msJi such that
 T C T

m a x» by Zorn s 

lemma. 

b/ It is easy to see that Tx is always convex if T is a maximal 

monotone operator. 

By a proper convex function (cf. C33) it is meant a mapping 
f:X—*Ru{+<*>} satisfying following two conditions: 

V x , y € X V*€<0,1> f(Ax+Cl-a>y) -S 3 f (x ) + ( l - 3 ) f ( y ) (4) 
dom f =- {x€X: f (x)< +co} / 0 . (5) 

3.3 Definition: Let f be a proper convex function on a, Banach 
space X and x€X. If x €dom f , we define 

"df(x) • {x*€Xl Vz€X f (z> >tCx>+<z-x,x#>} . 
We put f̂(x)=-0 in case f(x)=+oo. The mapping "df:xt—+Df(x) is 
called subdifferential of f. 
It will fit to define 3f»0 for f •+<». 

3.4 Remark: Subdifferentials of proper convex functions are 
monotone but not conversely. There exist monotone operators which 
are not subdifferentials (C3l). The characterization of subdiffe­
rentials of proper convex functions using the notion of a cycli-
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cally monotone operator is due to R.T.Rockafellar Csee t-f]) * 

The main result of this paper is contained in the following 
two theorems. 

3*5 Theorem; Let T be a monotone operator on a separable Ba-
nach space X and n<dim X be a positive integer. Then A €<5L?Cn 

If in addition TcBf for some proper convex function f on X 

3.6 Theorem: Let T be a monotone operator on a Banach space X 
with separable dual space X* and n-cdim X be a positive integer. 
Then AnC(3LFC . If in addition TcBf for some proper convex 
function f on X then An€<.5DC . 

n 

These theorems say that the sets A^ and An can be written 
as a countable union of images of special Lipschitz mappings 
Cdefined on a subset of a Banach space of codimension n or dimen­
sion n, respectively). 

Both proofs are practically equal and we shall do it simul­
taneously. 

At first we state the following simple lemmas without a proof 

Csee [7.39 Lemma 1, Lemma 2). An open ball with centre c and radi­

us r>0 is denoted by iT(c,r). 

3.7 Lemma; Let X be a separable Banach space. Then there exi­
st a countable system T of n-codimensional subspaces of X and 
a countable system iC of n-codimensional affine subsets of X such 
that: /i/ Any n-dimensional subspace PCX has a topological 

complement V € T . 
/ii/ If P,V are as in /i/, c*€X , £>0 then there exists 

t € Cc*+P)nA(c*,€> such that L=-t+V€*6 . 

3*8 Lemma: Let Y be a separable Banach space. Then there exi­
st a countable system T of n-dimensional subspaces of Y and a 
countable system 16 of n-dimensional affine subsets of Y such 
that: /i/ Any subspace PCY of codimension n has a topological 

complement V€ T • 
/ii/ If §>,V are a« in /i/, c*€ Y » t > 0 then there exists 

t € (c#-t-P,)nJlCctf€) such that L-t+V € it . 
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3.9 Proof of 5>5 and 3.6;- Let X,T be as in 3.5 Cia 3.6, reap.) 
and A=A CA-=An, resp.). Without any loss of generality we can 
suppose Tx to be convex for any x Csee 3.2). 
a/ Decomposition of A. 

Let x be an arbitrary element of A. Then there exist a point 
c €Tx, a positive rational number r and a subspace PC X of 
dimension n Cof codimension n, resp.) such that 

C C X + P X ) A A(cx>rx) C Tx . 

Let m be a rational number such that 8c„l<m . Lemma 3.7 C3.8, 
X X X 

resp.y guarantees an existence of a topological complement V € T 
of Px and a point t x € fcx+Px)nilCcx, £ . r x ) such that 
L -=i +V € AS . 
x x x 
Let us find a rational number q such that tJtt^q , where 
3Cx:X-*Px is a projection in the direction of Vx. 

For any r,m,q positive rational, VC T , L £ ^ let us denote 
BCr,m,V,q,L) =- {x€A: rx=-r, mx=m, .VX=V, qx=q, Lx*-L } . 

It is clear that A=-UBCr,m,V,q,LN) and the union is countable. 
Let r,m,V,q,L be fixed. We shall show that the set B» 

«B(r,m,V,q,L) is a Lipschitz fragment of codimension n Cof di­
mension n, resp.). 
b/ "Parametrization"of B. 
Define Z=nr. Let W be an arbitrary topological complement of Z 
in X and Y-=W . Then Y is a topological complement of V in X . 
The following proposition is true: C6) 
z*€ Z* iff there exists y*€ Y such that z*--y* on Z . 

There exists a point y € Y such that L=y +V. Let us denote 
M * {w«W: 3z€Z w+z€B} , 

i.e. M is a projection of B on the subspace W in the direction of 
Z . 

c/ B is a Lipschitz fragment. 
Let B/0. Let w^,w2€M, z/J,z2€Z such that x.«w.+z. € B for 
i-1,2. Let us denote t. «t , X.*7t 

1 xi x xi 
Let y*€Y be an arbitrary functional from a unit sphere in Y. 
Define 
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The fact t^t^fTx,. follows from .inequalities 

It'-e^l < It.-o^l • if-X.Cy*;! < r , It'-c^l < r . 

The monotonicity of T implies 

0 * ^x1-x2,t1-t2.tf50C1(y*k)> « 

- <w1-w2,t1-t2tf^t«1(y*)> ± <z1-z2, f-j y*>. 

(We have used the fact that the functionals t1-t2 , y*"-X1(y
f) 

are elements of V.) Now we obtain 

T<z1-z2,y*> * |
fl<:w1-w2ft1-t2if5X1(y*)> « 

« f» I w ^ l OVO^I + I % I + lt2-cX2H + |cX2l + £ 5 ! * ,11) 

< | f l | w r w 2 K f + m + f + m + f ) « q(?ayg>lw1-w2i . 
Then by (6) 
|2l-z2l« suplkz^z^y*^: y*€Y,|y»l»l} el *&*m) Iw^Wgl . 

If we take y(w) € Z (for w € M ) such that w+tf(w)€B , we obtain 
a correctly defined mapping which is Lipschitz on M and satisfies 

B - {w+ y(w): w€M} . 
d/ y has linearly finite convexity on M. 

Let w Q€W, h€W, |hl«1. Denote D»MW n » F» y w h (see 2.6). 
o* o' 

If D contains less than three elements then -v(F,D)»0 by the de­
finition. Let D have at least three elements and 

{d 0<d 1<...-cd g«td s + 1)Cf(D) . 

For 0tf:j<s+1 let us introduce following simplifications: 
x « v + d.h + F(d.) 0 o :j 0 

x. s are obvictely points from B. The monotonicity of T implies* 

0*i<:jtfs+1 •==-> <h,t.-t.>>0 . 

Let us choose an arbitrary number i€ {1,2,...,sx and a functio­

nal y#€Y such that I^l«1. 

Denote tt « t±+ fq^ty*) f t? « t±- fq^ity*) * We have 

tt,tTf Txi similarly as in the part c/. Using the monotonicity 
of T we obtain 
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0 *<xi-x._1,t_-t._1> = Cdi-d..1Kh,ti-ti_1> 
r 

<Q_,Cdi_1,di),y*> £ |-<:h,ti-ti_1>-<:h,3CiCy*)> 

Analogous calculations with 

~" ^i^i-l^f ^ i ^ ^ - fq <i,<di) -F(di-_1) , y*> and hence 

M~"l-ľ bi~ ui-1' 
0 * ^ i + 1-x i tt i + 1-t_> 

0-.<xi+1-x_,t_+1-t_> 

will afford the following inequalities: 

-<QpCdi_1,di),y»> j. f - ^ h . ^ - t ^ + ̂ h, X.Cy*» 

~ <QF(
di.d

i+l>.y*> * f
3 Oi,ti+1-t_> + <h,3C.Cy*» 

<Q_,Cdi,di+1),y»> * §-> .Ch.t. +1-t_> - <h, * . Cy*» . 

Then for any y#« Y, ly*I=1 

l<QP<di-i.di)-QF^i.di+i).y*>l -J I 3 < h.*i+ i-*i.i> 
and hence by (6) 

lQ p(d i_ 1,d i)-Q pCd i,d i + 1)l «. |a <h,t. +1-t___> . 
Then 

&-Qp<d i_1,d i>-Qp(d i,d i+1)| * fa^h,t a + 1 + t 8 -t 1 -t 0 > * 
* f -Cl t^ i i+i t^+it^+lt^) < *-%-§*_ 
because It .II £ | t . - c I + Ic H < £ + m . 

J tj x-8 X_: --

So we managed to estimate X (FfD) from above independently on 
the choice of w and h, and that is why if has linearly finite 
convexity on M. 
d/ W is ^-convex on M if TC^f. 
Let TC?f for some proper convex function on X. Without any 
loss of generality we can suppose T« 3f. Now Tx i© always convex 

Let y*«Y, Iy*l--1. For any x€B we shall denote wx the projec­
tion of x on W in the direction of Z. Then wx<EM and 
x»w + y^w

x) •
 A functional *x*"kx~ §a*x*

y#^ id ^ e l m e n t of> ^x 

because lf5*x(y
t)l<f • 

Let us denote 

g1Cwx) » f(x> - <f(wx),tx> 

h4Cwx) » f (x) - <YCwx>,t£>. 
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g/| ,L are finite real functions on M. 
Let xA € B be fixed. We shall define two continuous affine o 

functions on W: a Cw> * f^O + <w"xo,tx ^ 
o o 

bx (w) = f(xQ) +<w-x0,t;> . 
o o 

For any x*B the functionals t -t ,t~«-t~ are in V and t ,t~ 
X A. X r\ f\ 

are in "dt (x > , hence 

a C w ^ = f ( x 0 ) + ^ x - x Q , t > - < f ( w x > , t x > < 
O 0 0 

*S f ( x ) - < y ( w x ) , t x > =- fCx)- < fCw x ) , t x >-= g l ( w x > , 

a x (w > . fCxQ> - < f (w ) , t > - g l ( w > . 
0 0 0 0 0 

Similarly bx Cwx)^h/)Cwx> , bx C wx > =
 h ^ x ^ • 

O 0 0 o . 
The functions a ,b are Lipschitz with the constant m+r 
( s i n c e I t " 1 -cm+r , I t x \< m+ -̂  <m+r J . 

o o 
The former properties enable tts to say that the functions 

gCw) * supta (w): x € B } 
x o ° 

h(w) • sup{b„ Cw): xrt € B } 
x o ° 

are Lipschitz convex functions on W satisfying g-g*, h=h,. on M 
and the function g does not depend on the choise of y*. For any 

X h1Cwx> - gl(wx> . §5 «f(wx),ttx(y*)> . f^ <y(wx), y*> . 

Put G(w> - |a g(w), H^w) « |a h(w) . 

We have proved that for any y*6Y: y% if =-Ĥ -G on M where 
H.-t.»G are convex Lipschitz functions on W and G is independent 
on y*. Hence if is f-convex on M regarding (6). 

The theorems 3.5»3-6 are proved. /// 

The following proposition is a direct consequence of 3.5* 

3.6 and 2.13 . 

3.10 Corollary: Let T be a monotone operator on a separable 
Banach space X and n < dim X be a positive integer. Then the set 
A can be covered by countably many Lipschitz surfaces of codi-
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mension n. If T C 3f for some proper convex function f then the 
set A can be covered by countably many DC-surfaces of codimensi-
on n. 

* 1 

If X^ is separable then the set A for a general monotone opera­
tor T can be covered by countably many LPC-curves. 
If X is a separable Hilbert space then An can be covered by coun­
tably many Lipschitz surfaces of codimension n. 
3.11 Observation: Let us observe that in case X* R , 3«10 ensu­

res a countable covering of the set kA of a general monotone ope-
2 

rator T on R by LPC-curves which are simultaneously DC-hyper-

surfaces in this case. (Compare the problem 1.1.) 
There are sometimes considered monotone operators on X* 'with 

values in X, e.g. an operator T* "inverse" to a monotone opera­
tor T on X: 

T^:X*-^exp X 

T^Cx*)- {x€X: x#«Txl . 

In this cases the following version of 3»6 is useful. (The proof 
is similar; instead of lx*li --sup{<x*,x**>: Ix1*!*̂  } use tx*| » 
s-sup{<x,x#>: |xf-=l} and change the roles of X and X . ) 

3>12 Theorem: Let X be a separable Banach space, T:X*—*exp X 

be a monotone operator and n<dim X be a positive integer. Then 

An€eLPC . If Tc£f for some proper convex function f on X* then 

An€©DCn. 

-!-. O p e r a t o r s V M » ^ M 

Let M be a nonvoid convex subset of a Banach space X. We 

*hich are in > 

with singular points of M (cf. £8]). 

-J-.1 Definition: Let 

shall state the definition of a vertex-operator V*-:X—*»exp X 
and a face-operator PM:X*—-> exp X which are in close connection 

•>> • { ° " T 
" <* +00 i f x ^ M ; 

sM(x*J-- supf<mtx
#>: m « M } t x*€X*. 
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Sy, is called indicator-function of M and is a proper convex fu­
nction on X. The function sM satisfies sM (tx*)-=t.sM(x*), sM(x*+y*)4f 
«; sM(x*)+sM(y

#) for any t>0, x*,y*€X*. Hence if dom sM is not 
empty then sM is a proper convex function on X*. 

4.2 Definition 

My**? 

t 0 

. {y*€X#; <x,y*>-=sM(y*)l if x€M, 

1 ^ if x^M; 

FM(x*)« {y€M: <y,x*X-sM(x*)} , x*€X*. 

4.3 Note: a/ If X= E m then VM(x) is the set of all normals of 
M at x and is called vertex of M at x. The%set FM(x*) forms a face 
of M perpendicular to x*. 
b/ It is obvious that the operators VM,FM are monotone and their 
images VM(x),FM(x*) of each point are convex. Following simple 
lemma says a little more. 

4.4 Lemma: VM « 3£ M , FM C 3 ^ . 

?£22f: &/ 1^ X ^ M t n e n VM(x)=0s-?iM(x). Let x€M. Then the fol­
lowing equivalences hold: 
x*€VM(x) <*••> Ym«M 0><m-.x,x*>M>^ Vz€X ^ M(») *S^(x)+ 

+<z-x,x*>4*> x'cJ^Cx) . 
b/ If FM(x*)=0 then FM(x*)ci9sM(x*) is evident. Let x€F M(x*). 
Then any z*€X* satisfies sM(z*)> <x,z> =- sM(x*) + ̂ x,z*-x*> and 
hence x € 2sM(x*). /// 

4.5 Theorem: If X is separable then An(VM) € <3DC
n(X) , 

An(FM) €<3DCn(X*). 

If X* is separable then An(VM) € GDCn(X) , An(FM) € CfDC
n(X*). 

Proof: 
The propositions of the theorem yield from 3.5, 3-6, 4.4 . /// 

Using known extension theorems it is possible to obtain 
following new result. 

4.6 Theorem: Let M be a nonempty convex subset of a separable 
Banach space X. Then: 
/i/ The set of points x€M for which VM(x) is at least n-dime-
nsional can be covered by countably many DC-surfaces of codimen-
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sion n. 

/ii/ If in addition X* is separable then the set of all nor­

mals x* to M at faces FMCx*0 being at least n-dimensional can be 

covered by countably many DC-surfaces of codimension n, and the 

set of all points x € M with a vertex VM(x) containing a ball of 

codimension 1 can be covered by countably many LFC-curves. 

5. E x i s t e n c e o f "bad" 

L i p s c h i t z s u r f a c e s 

We shall show that there exist Lipschitz surfaces of codi­

mension n (dimension n, respectively) which cannot be a subset 

of A (An, resp.) for any monotone operator T satisfying assump­

tions of the theorems 3-5» 3*6 • 

We shall use the local geometric term of a contingent of a 

set at a point (cf. C5-l). 

5»1 Definition: Let X be a Banach space, x€X, MCX. Then we 

define cont(M,x) as the set of all nonzero vectors vIX which 

satisfy the following condition: 

There exist sequences {x }cx, f a J c R such that 

/ І / x n 6M 

/ Ü / an>o 
'ІІІ/ яn->o 
/iv/ I X n " x 

и n 
l->0 . 

3.2 Construction: Let X be a Banach space, W,Z closed subspaces 

of X such that X=-W Q Z (i.e. X is a topological sum of W,z). 

Let h€W, z € Z be nonzero vectors and U be a topological comp­

lement of lin{hl in the space W. We shall define a Lipschitz 

mapping F:W—*Z by the formula 

F(th+u) -= fCt)zQ t € R , u€U , 

where f is a real Lipschitz function on R which has right deri­

vative f (t) at no rational point t. (Existence of f is guara­

nteed by a standard category argument.) 
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Denote I • {w+FCw): wiW}. Let q € Rf %*"*» x-=qh+uo+f (q) zQ€ E. 

It is easy to prove that cont(Efx) contains the set 

C m {dh+u+0zo+y: «*>0f u€U f <*D+f(q).*.£ * <*D
+f(q)f y € Y > f 

where D ffD
+f denote the lower and upper Dini derivatives of f 

and Y is a topological complement of lin{zQ} in Z. 

Hence intfcfontCEfx))/0 if x*qh+u +f(q)z with q rational. (7) 

5.3 Lemma: Let X be a Banach space, WfZ be closed subspaces of 

X such that X--W © Z. Let w €W and,G:W-*Z be a Lipschitz map­

ping having all one-sided directional derivatives at w . Denote 

M « {w+G(w): w « w } f 
x - wQ + G(wQ) f 
3Cy:X—%W a projection in the direction of Z . 

Then, if v^fv2 € cont(Mfx)f Xy Cv^s-Xytvp) then v^»v2 . 

Proof: Let V/pV^ € cont(Mfx)f Xy (v^)« X^ (v2> * ? • The vector V 
is nonzero because G is Lipschitz. Let z^z^cZ be such that 

v. • V +z* (i«1f2). Let U> be a topological complement of linCW 

in Wf 3Ĉ :W —*lin{v) a projection in the direction of Uy f 
3C:W—*Uy a projection in the direction of V , By 5.1 we have 

*n,i"wn,l40(wn.i)' An,i > 0» *n,i~n -* 0' 

A l X n - i _ X 
- v i > - n - * ° ( i - 1 , 2 ) . *-.- ( Чi 
- v i > - n - * ° ( i - 1 , 2 ) . 

R be such that ^n.i^-^Ч.І-^o^ • T h e n 

I І . Ҙэui . л 
П-W» Д П , І 

(8) 

n-*» "n
f
i 

because 

l (
^ * i "

 1 ) V І
" ' ^ ï ^ - i 0 1 

Without any loss of generality we can suppose a .> 0 (i»1f2 f 
n f i -

n « 1 f 2 f . . . ) . Then 
G(w +a.л .*) -G(w ) „ w„ ч-i-G(wм Л~w -G(w ) 

o пa«i# o Й | n t i n t i o o_ 
* "" i " s * Зl 
/% n Ą •*- /% -

П t l " П . l 

n . i V ' % i V

 + "n . i» -fr n . i-*o> + S("o+*n, i*>-<^ n ,D 
* n . i * n , i > n , i 
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* lAn>il + H- £-*- | . l v l + (l+L)|-t(WwrAnti))|---->0 , 
n,i 

where L is the constant from the Lipschitz property of G. * 
Then (8) and the existence of a directional derivative £ G C W fV) 
imply z,,- f+GCwQ,v)-z2 . / / / 

5.4 Theorem: Let X be a separable Banach space Cx has separable 
dual X*, resp.), n<dim X be a positive integer. Then the set E 
from 5»2 with dim Z«n Ccodim Z=n, resp.) is a Lipschitz surface 
of codimension n Cof dimension n, resp.) which cannot satisfy 
EC A CEcAn, resp.) for any monotone operator T on X. 

Proof: Let us assume the existence of T such that EcA n CE*-A
n-. 

resp.). Then Cin the notation of 3-9) E c UBCr,m,V,q,L) • 
There exist r

0»
mo»Vo?qotLo' a P08--"^^ number S* and a point 

xQ€E such that the set B0-*B(ro,mo,Vo,q0,L0) is dense in 
En/iCx ,f) , by the Baire Category Theorem. 

Let Z =-xV , W be a topological complement of Z in X and X Q: 
X-*W be a projection in the direction of ZQ. The set- MQ-
»- OC0(BQ) is dense in S--7t0CEn A(xQ,^)) , which is an open set 
containing the point 3t00-0). By the part d/ of 3.9f there exists 
a Lipschitz mapping yo-M *-*Z with a linearly finite convexity 
on M such that B «{w+ lfQ(w): w € M } • 
y has unique continous extension ^ on M . This extension is 
Lipschitz, has linearly finite convexity on M and has by 2.4 
all one-sided directional derivatives at each point X (x)€S • 
int(cont(E,x))-0 for every X € E A A C X Q , J ' ) by 5.3 • 

But the construction of E implies that there exists a point 
x-=qh+u+f(q)z €Er*A(xQ,$) with q rational. Then cont(E,x) has 
nonempty interior by (?) and this is the needed contradiction. 

/// 
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