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COMMENTATIONES MATHEMATICAE UNfVERSITATIS CAROLINAE 
27,3(1966) 

ON THE OPTIMAL CONTROL OF NONRESONANT ELLIPTIC 
EQUATIONS 

Darko 2UBRINIC 

Abstract: In this note we obtain a result on the existence 
of optimal controls for nonresonant equations describing a dist­
ributed parameter system. 
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Classification: 49A22 

*• I n t roduc t ion . In this paper we shall study the optimal 

control problem for. nonresonant elliptic equations defined on a 

bounded domain in Rn. Similar problems have been studied for inst­

ance in £2] and £43. Here we obtain the existence result of opti­

mal controls. 

Throughout the paper SX will be a bounded domain in Rn. We 

shall consider the optimal control problem whose state equation 

is described by the nonlinear elliptic equation of the following 

form 

(1) -Au « g(x,u,Vu) • p(x) in H 

u = 0 on 311 

Me impose on g the so called nonresonance condition, insur­

ing thus the unique solvability of the state equation for any gi­

ven peLjCil). Roughly speaking, this means that the growth rate 

of the function g with respect to the second variable should be 

away from the spectrum of - A . 
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Next, let a nonempty set U in L2(il) be given, which we in­

terpret as the set of admissible c o n t r o l s . To formulate the opti­

mal control problem we must also define the cost functional 

0:U—>R^ 

where R+ i s the set of nonnegative reals . The functional 3 will 

be of the form 

3(p) » 3%W + 3 2 (u ) , J p O ^ O 

where u is a solution of the state equation (1), generated by the 

control p. A typical example would be for instance 

Jl ( p ) * v f& p d x » v ̂  0 

32(u) = 4
 (u " z) dx 

where z is a given target function in L2(JQ.) (see 123). Now the 

optimal control problem consists in finding the control pe U, ge­

nerating the state u via (1), such that 3(p) is minimal , i.e. 

(2) roin (J-(p) + 09(u)) 

Me shall denote this problem in short as the problem (1),(2). 

2. The unique solvability result. Let us now formulate a re­

sult which is an immediate consequence of the main result in [33-

Theorem 1. Let g: H>*RxR n—> R be a mapping of the Cara-

thgodory type, i.e. measurable with respect to the first variable 

and continuous with respect to the remaining 1+n variables. Assu­

me also that g(-,0,0) € L2(-0L), and let there exist & ** 0 and 

kg N such that for two distinct consecutive eigenvalues ^ . ^ k + i 

of -A with the Dirichlet boundary condition, we have the fol­

lowing nonresonance condition* 

(3) & k • $ -4(g(x,ui,p) - g(x,u2,p))/(u1 - u2)*£ A k + 1 - * 
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Furthermore, let 

(O l9(x,u,p1) - g(x,u,p2)Uc |px - p2l2 

(5) c<e/.A.£ /2 

where | |2 is an l2-norm in R
n -

Then for every p e L 2 ( H ) there exists a unique weak solution 

of (1) in the Sobolev space H0(JX). 

Me shall denote the usual scalar product and the norm in 

L2(-QL) by ( , ) and II l0 respectively, and for the Sobolev spa­

ce HJ(IL) we define 

(u,v)1 « J^VuVvdx, |ul1 - (u,v)*
/2 

In the proof of the existence of optimal controls, a crucial 

role is played by the following fundamental lemma, which descri­

bes how the solutions of (1) depend on p . 

Lemma. Let the conditions of the theorem 1 be satisfied. The­

re exist effectively computable constants C p C 2 > 0 , independent of 

p and u, such that for any p and u satisfying (1) we have 

(6) .lullĵ C-̂  1- C2llp»0 

Noreover, for any two solutions (p^,u,) and (p2,u2) of (1) 

we have 

(7) lux - Ugl-^Cglp-^ - p2lQ 

Proof. For the sake of simplicity we shall prove (6) only, 

because (7) can be obtained in a similar way. 

We shall use the method of the proof analogous to that in 

[3.3. 

So let ( <p-) be a sequence of eigenfunctions of -A , norma­

lized by B y J = 1, with the corresponding eigenvalues A.. As 

is well known, the sequence ( A^) is such that 
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0<Kl< &2 &%^& . . . *%i—><» 

and i t is easy to check that 

(8) l ^ \ - X\'2 

The sequence ( *$ t) is complete and orthogonal in both L2(J1) and 

H*(m. Let 

H" = span - C ^ , . . , qkl 

H+ = span i<9i:i^kl 

We thus have H*(.Q.) = H~ © H+ and consequently, a solution u of 

(1) has the form 

u = u~ + u* 

r - ( * k
 + \ + 1

) / 2 

with u~ c H~ r espec t i ve l y . Let 

(9) 

u = -u + uT 

Oefining 

A = g(x,u,^u) - g(x,0,Vu) - rz 

B = g(x,0, Vu) - g(x,0,0) 

C = g(x,0,0) + p(x) 

we can rewrite (1) in the following way 

(10) - A u - r u = A + B + C 

00 

Let u = , -E . Zi^i be the Fourier series of u with respect to the 

basis ( 9 A) in L 2(H). Note that 

(see (8)). Multiplying (10) by tf and integrating over JD- , we get 

(11) 4 X 4 \ \ - ( A k + 1 + A k ) / 2 | z^ A / (A + B + Off dx 

Using the Cauchy's inequal i ty , HuMQ = lullQ and 
| A M ( ( X k + 1 - ;Xk)/2 - * ) | u | 

| B U c | V u | 2 
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•b«*t2/4s • ab2, s>0 

with a suitable choice of a and b, we arrive to the following in­

equalities: 

(̂A+BX? dx*(ct\k+1-v/--**->4?4 4+(-c2/iahf< v * 
fACu d x ^ ( s 1 + s 2 ) ^ z^( lg( . ,0 ,0) ( 2 /4s 1 + Bp«2/4s2) 

Note that t - s 1 + s2 can be made as small as we want. Let 

d = max ( iMs-p lMsr , ) 

Now from (11 ) we obtain 

( 1 2 ) & *i V i ^ a ^ - . Q ^ ) ! . 2 • Hpt*) 
where 

ai = ( | l - (A k + 1 +A k ) / 2 | - (A k + 1 - a k ) + ( e - s ) - t ) / A i - c2/4s 

As a consequence of 

i&k =? a12:(e - s ) / Ak-c2 /4s-t/ Xl 

i>k =^ a i x ( e - s ) / Ak+1-c2/4s-t/Xx 

we see that by putting s = & /2, using (5) and choosing t (i.e. 

s. and s2) small enough, it is possible to achieve that 

m * min -{a^ic N}>0 

So (12) implies 

mlkjl2^d(\lg(-,0,0)l2 *lpl2> 

and (6) follows. 

QED 

2. The optimal control problem. Here we would like to for­

mulate the main result of this paper, concerning the existence of 

optimal controls. It extends our previous result in [4]. Me assu­

me that the domain & is sufficiently regular, in order to be ab­

le to apply L2- regularity theory of the Dirichlet problem. 
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Theorem 2. Let SL be a bounded, regular domain, g:XX>«.Rx 

s* R n—> R as in Theorem 1 and U a bounded, closed, convex subset 

in L2(-CO. Moreover, let the function 

3 1:U->R + 

be weakly lower semicontinuous and 

02:H^(il)—*R+ 

lower semicontinuous. Then the optimal control problem (1), (2) 

has at least one solution. 

Remark. It is easy to see from the proof which follows that 

if 3 is coercive, i.e. 0(p)—+ oo . \pi\Q—> oo , then we can drop 

the boundedness condition on U. 

Also note that the condition on 32
 i n "tne theorem is weaker 

than to impose a lower semicontinuity on the functional 32:L2(jQ. )-< 

'-*R +. 

Proof of the theorem 2. First, as IX is regular, we can use 

• well known regularity result from til to obtain that (1) imp-
2 

lies u e H^(il) and 

(13) . .u» 2 *C 3 ( l |g ( . ,u , Vu) l l0 + l|pli0) 

2 
where ll lu is the usual norm in H (Jl), and C, independent of u 

•nd p. From the conditions (3),(4) it follows easily that there 

exist constants C,, Cc and C, such that 

||9C.,u, Vu)»0-6C4 + C5!luil0 + C6U\& 

**C4 + <C5/J\*
/2 + C£)\\u\ 

where in the last inequality we used the Poincare* inequality. 

Combining this with (13), and using the lemma, we obtain that 

there exist constants C-*, C« such that 

Uuii2£c7 + c 8 M 0 
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The rest of the proof is the sane as the proof of our main 

result in 143 (see the steps 2 and 3). 

QEO 

Let us add finally that in the case when g is independent of 

Vu, we can drop the regularity condition on il . This corresponds 

to the following distributed parameter control system 

(14) - Au = f(x,u) + p(x) in II 

u = 0 on 9-0. 

Theorem 3. Let XI be a bounded domain, f: -0.x R — * R a para-

thgodory function such that f(•,0),6 L2(.ft) and the nonresonance* 

condition has the form 

\+ e *(f (x,ux)-f (x,u2))/(u1-u2) * \ + l - & , e > 0 

where e > 0 and X k, V . are two distinct, consecutive eigenva­

lues of -A . If U is a bounded, closed, convex subset in L2(jQ.), 

3,:U—> R+ weakly lower semicontinuous and 3 2:L 2(H)—>R + lower 

semicontinuous, then the optimal control problem (14),(2) posses­

ses at least one solution. 

The idea of the proof consists essentially in proving the 

complete continuity of the nonlinear operator 

L 2 ( J 2 . ) 3 p t—>ueL2(Sl) 

defined by (14). The detailed proof of this fact can be found in 

the final remark in L4J. 
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