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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,2 (1986)

ORDINAL INVARIANTS AND EPIMORPHISMS IN SOME
CATEGORIES OF WEAK HAUSDORFF SPACES
D. DIKRANJAN and E. GIULI °)

Abstract. In some categories A of weak Hausdorff spaces the
epimoTphisms are characterized as maps with dense image with res-
pect to the A-closure. In many cases the A-closure is represented
as the idempotent hull of another closure operator and the (ordi-
nal) number of iterations is related to the tightness of the un-
derlying space and the co-well-poweredness of the category A.

Key words: Weak Hausdorff spaces, epimorphisms, ordinal in-
variants, A-closure. '

Classification: 54830, 54010, 18B30

0. Introduction. Various versions of weak Hausdorffness are
spread in the literature. An extensive bibliography and many inte-
resting results can be found in the survey of Hoffmann ([131).

The present paper is a continuation of the study of epimorphisms
and co-well-poweredness of epireflective subcategories of the ca-
tegory Top of topological spaces and continuous maps (see [4],(5],
163,111 and [24)). For this purpose we focus on two types of we-
ak Hausdorffness studied in [13].

Let P be a class of topological spaces and let ﬁggg(ﬁ) deno-
te the category of topological spaces X such that for every Pe P
and for every continuous map f:P—> X, f(P) is a Hausdorff subspa-
ce of X (in the notation of [131 this is P,). For P = . «,}, whe-
re N, denotes the one-point Alexandrov’s compactification of the
discrete space of the natural numbers N, Haus(P) coincides with

x) Supported by the Italian Ministry of Public Education.
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the category SUS of topological spaces in which every convergent
sequence has precisely one accumulation point, namely its limit
point. Tozzi ([24)) showed that SUS is co-well-powered describing
explicitly the epimorphisms in SUS. Let Comp denote the class of
all compact spaces and let Em denote the class of all topological
spaces of cardinality less or equal to a given cardinality m.
Husek and the second author ([11)) studied the epimorphisms in
Eggg(ﬂm) and Haus(Comp) showing that the latter category is not
co-well powered. In [11) and [24) the epimorphisms were descrihed
by means of a closure operator which "measures" epimorphisms, in-
troduced‘by Salbany ([21]) and examined in various subcategories
of Top by the authors ((41,(51,16),(103). This operator was repre-
sented as the idempotent hull of more explicit closures - the se-
quential closure in [24) and the compactly determined closure in
[11) (see [1] for these closures).

The aim of the present paper is to give a unified approach
to all these cases. In Section 1 the epimorphisms in Haus(P) are
characterized. As a corollary it is shown that the category
Haus(HComp), where HComp is the class of all compact Hausdorff
spaces, is not co-well-powered (Theorem 1.14). It is established

also that the inclusion Haus —» Haus(HComp), where Haus is the

class of all Hausdorff spaces, does not preserve epimorphisms.
The codomains for which any epimorphism in Haus(P) is surjective
are also characterized (Proposition 1.11).

In Section 2 an ordinal invariant co(X) is introduced which,
for P = {N,3 , gives the sequential order and for P = Comp the k-
order both introduced by Arhangel “skii and Franklin (L1}). We show
that the cardinallt& of co(X) is always less or equal to t(X)*,
where t(X) is the tightness of the space X in the sense of Arhan-
gel ‘skii (Theorem 2.2). It is shown that the category Haus(P) is
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co-well-powered whenever the ordinal co(X) is bounded for X €
€ Haus(P)

In Section 3 another type of weak Hausdorffness is consider-
ed For a class P of topological spaces and (X,¢)e Top, we denote
by (X,2%) the coreflection of (X,r) into the bicoreflective hull
c(P) of P in Top, i.e. Mc X is closed in «% iff, for every Pe P
and for every continuous map f:P— X, f'l(M) is closed in P. The
space (X,%) is called c-space if «=«® (for P = Comp these are
the well known compactly generated spaces (k-spaces); for P = iN_}
the c-spaces are the sequential spaces). Denote by £3 the catego-
ry of all topological spaces (X,®) such that the diagonal Ax is
closed in (XxX,( % »x)%). This weak version of the Hausdorff se-
paration axiom was introduced by McCord ([20)) for P = HComp and
by Lawson and Madison ([19)) for P = Comp. Further information can
be found in [13). In Theorem 3.4 we describe the Ps-closed sets
by means of the c(P)-coreflection (for the definition of A-clos-
ed set see Section 1). In particular we recover the characteriza-
tion from [24] of the epimorphisms in the category US of topolo-
gical spaces in which every convergent sequence has the unique 1i-
mit point (US = ({Nmk)s, see [13)). We prove that, under a mild
condition on P, Haus(P)c Py and finish the description of an exam-
ple given in [13], 2.9.9.

It is shown in [7) that the inclusion Haus(HComp) c (HComp)3

is proper and that (HComE)3 ¢ SUS. This answers some related qu-
estions pesed by Hoffmann in [131, 4.2,

1. Epimorphisms in Haus(P). It was proved in [13}, 1.9,

that the category Haus(P) and £3 are quotient-reflective in Top
(i.e they are closed under the formation of products, subspaces

and refinements). Here we recall some necessary definitions and
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results from [4). If £,g:X—> Y are continuous maps Eq(f,g) will
denote the equalizer in Top of f and g, i.e. Eq(f,g) =$xeX:
£(x) = g(x)}.

1.1. Definitions. Let A be an epireflective subcategory of
Top.

(1) A subset F of a space X is said to be A-closed in X iff
there exist Ae A and continuous maps f,g:X —> A such that F =
= Eq(f,g).

(2) The A-closure of a subset M of X, denoted by [M], is the
intersection of all the A-closed subsets of X containing MT

(3) A subset D of X is said to be A-dense iff{D]At = X.

The A-closure is an extensive, monotone and idempotent opera-
tor, in general not additive. For a topological space (X,vr) we de-
note by YA the coarsest topology on X which contains all the A-
closed set; as closed subsets.

To define A-closure it is not necessary to have subcategories
A of Top. For categories of algebras Isbell ([15]) introduced the
A-closure in the same way (it is called dominion there). It is
clear then that a morphism £:X—> Y is an epimorphism in A iff
1(X) is A-dense in Y ([10],[15)). The difficulties come when one
has to calculate explicitly the A-closure (see the zig-zags in
[15), or the various cases of epireflective subcategories of Top
in 141,151,161,111) and 1[24). For an exhaustive bibliography about
the problem of the epimorphisms, see [17].

For XeTop and McX we denote by XLJMX the adjunction space
determined by the‘inclusion Mc X, i.e., XIJMX is the quotien$ of
XUX = Xx40,1% obtained by identifying each (m,0), me¢M, with
(m,1). q:XUX—XU,X denotes the natural quotient map. The maps

ky:X —>XUX, p:XUyX —X are defined by k,(x)=q(x,i) and p(x,i)=x,

i
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i = 0,1, respectively. The adjunction space plays an important rG-
le in the computation of the A-closure. We stress on the fact that
each retract of a space Xe A is A-closed (a retract is the equali-
zer of the retraction and the identity map of X). It is easily

seen also that A-closed sets go into A-closed sets under homeomor-

phisms of X.

1.2, Proposition. Let A be a quotient-reflective subcatego-
ry of Top. Then for every X€ A and McX the following conditions
are equivalent:

(1) M =M1,

(i1) XuUyXeA,

(i1ii) q(X=41%) = k;(X) is A-closed in X uIpX.

Proof: The equivalence (i)<=> (ii) is proved in [4). Since
ki(X) is a retract of XWX (ii)&e=> (iii). To prove (iii) == (1)
let s:XHyX —>X uMX be the symmetry; then s is a homeomorphism,
so s(k;(X)) = k,(X)is A-closed. Thus q(MUM) = k; (X)nk (X) is
A-closed and MuUM is A-closed in XUX. Now Mx 1} = g 1(M)

A (X%x11}) is A-closed in Xx41% since X <11} is A-closed in XuX

being clopen.

1.3. Lemma. Let A be a quotient-reflective subcategory of Top
and let Xe A and McX. Then the following hold:

(1) q(:MI=10,14) = [q(M={0,13)),

(2) Tk (0) = p LMD Uk (XD, 120,15 in particular
Tk (X)In Tk (0) = p~limi),

(3) M) = pk (XN Tk (X)) = plk (X)n [k, (X)]) =
= pCk (X0 k(X))

Proof: (1) Consider the adjunction space X LTM](X) and denote

- 399 -



by 7, G, ﬁo and ;1 the related maps and denote by t:X LUyX —>
—> X )X the quotient map. Then xo(lM]) = ﬁl(CMJ) and
M= 40,13 = g 271K (IM1)), so q(IMI=40,11) = t71(K (IM1)),
hence it is A-closed. (2) and (3) now follow easily from toq = q,
1.2(iii) and the fact that X uMX - X u[M)X is the A-reflection
of X‘TJMX'
The following condition for the class P was considered in [13]:
(x) 1If PeP, P%@ then PUQ eP for some non-empty space Q.
Roughly spoken, (X% ) ensures that we can add a finite number
of points to images of spaces from P, i.e., if PeP and f:P—X
is a continuous map, then for every finite subset F of X there ex-

ist P, e P and a continuous map f,:P; —> X such that fl(Pl) =
= f(P)VF.

1.4. Lemma. If P satisfies () and P+@, P+1{8}, then

Haus c Haus(P) c Top, .

Proof: By (x) every finite subspace of X € Haus(P) is a con-
tinuous image of a space from P; this yields the second inclusion,
the first is trivial.

Since Haus(P) is quotient reflective it is easy to see that
Haus(P) = Jop iff P = ispaces with at most one point}, so in all
other cases Haus(P)c Top . However, it may happen ﬂggg(g)dflggl,
for example if P is the class of all indiscrete spaces (L1313,
2.9.4). Finally, it is easy to see that EEEE(E)C'lﬁﬂl (this is
equivalent to Egg§(£)4>lggo) iff there exists a non-indiscrete
space Pe P; in fact fa‘this case there would exist a continuous
surjection of P onto the Sierpinski two-point space. So to prove
1.4 we do not need in fact (*); it is sufficient to have non-in-
discrete spaces in P.

The next two lemmas repeat in this more general set the argu-
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ments from [11), Prop. 3.3 and Lemma 3.4 and [241, Theorem 2.13.

1.5. Lemma. Let P be an arbitrary class of topological spa-
ces, then for every (X,e)e Haus(P), Thaus(P) Z T

Proof: Let XeHaus(P) and let F be a closed set in X. To show
that F is Haus(P)-closed it is enough to show that X WX e Haus(P)
according to 1.2. Let Pe€ P and let f:P —> XlJFX be a continuous
map. Take two distinct points x and y in £(P). If p(x)#p(y) in X,
then consider the composition p o f:P—> X. By Xe Haus(P) there ex-
ist disjoint open neighborhoods of p(x) and p(y), thus their pre-
images will be disjoint open neighborhoods of x and y. In the case
p(x) = p(y) we can assume without loss of generality that there
exists ze XNF such that x = q((z,0)) and y = q((z,1)). Now, for
U=XNF, q(U=40%) and q(U={1%) are disjoint open neighborhoods
of x and y in X UFX.

It follows from 1.5 that for any class P the functor FHaus(E):
:Top —Top defined by FHaus(g)((x’f)) = (X’THaus(E)) is a pre-mo-

nocoreflection in the sense of [231.

1.6. Lemma. Let P be a class of spaces satisfying (%) and
let Xe Haus(P). Then for every Pc P and for every continuous map

f:P—> X, £f(P) is a Hausdorff subspace of X and for every M ci(P),

Proof: Let x and y be two distinct points of f(P). By (%)

f(P) uix,y} is the continuous image of a space in P, so it is a
Hausdorff subspace of X. Let U and V be open neighborhoods of x
and y such that Un VA £(P) = . Then clearly UAVA£(P) = # and
x and y are separated in T(P). Let Mc E(P). By the previous lemma

LM]Haus(ﬂ)c M, so it suffices to show that M ciM] Take an

Haus(P)"
element x €M and two continuous maps h,g:X —> Y with Y e Haus(P)
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and McEq(h,g). Then h(M) = g(M) and x &M yields h(x)e (M) and
n(x)‘g_(_is. On the other hand Mc I(P) implies h(M)cm and
9(M)« g(Z(P)), so h(M) = g(M)ch(2(P)) and h(M) < g(£(P)). By the
first part of the lemma the left-hand side is a Hausdorff subspace
of Y, so if h(x)=g(x), then they can be separated in h(M). By vir-
tue of xe M and McEq(h,g) this does not occur. So h(x) = g(x),

therefore x ¢ Eq(g,h). This proves x ¢ [M]Haus(ﬁ)‘

‘Next we define a closure operator clp associated with P fol-

lowing the idea from [11].

1.7. Definition. For X €Top and McX define cl_P_(M) =

"—

= U{Mnt(P):PcP, £:P—> X},

In the following lemma we give some properties of this closure.

1.8. Lemma. (1) clp is an expansive, monotone and additive
closure operator satistyi;g clp(M)c M for every X eJTop and Mc X.

(2) For Xe JTop and Mcx,—xeclf_(M) iff there exists PsP
and a continuous map f:P —> X such that for every open neighborhood
U of x and for every open subset V of U satisfying VAM = UnM,
VAt(P)%@ holds.

(3) 1If P satisfies (%) then for every X e Haus(P) and McX,

clz(M) c uuﬂaus(ﬂ) .

Proof: (1) is trivial. To prove (2) observe that x e clp(M)
iff there exist P& P and f:P—> X such that xs M I(P), i.e., for
every open neighborhood U of x, UnMn TP *B. Suppose that the
condition in (2) does not hold; then there exists an open subset
V of U such that‘VnM = UNM and VAf(P) = @. Then clearly

VAT(P) = B and 8 = VAZ(P)DVAMAL(P) = UnMnE(P)+8 - a con-

tradiction. Now assume that x ¢ clp(M); then there exist P< P,

f:P —» X and an open neighborhood U of x such that UnMAf(P) = §.
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For every ze UnM choose an open neighborhood Vz of z contained

in U such that vznr(P) = @; then V = UiV, ize N M} is an open

subset of U satisfying VA M = UNnM and VA£(P) = @#. This proves (2).
(3) Let X< Haus(P) and McX; if Pe P and f:P—> X is a conti-

nuous map, then M= MAf(P)c £(P) so by Lemma 1.6 T=°[M:I-Iaus(P)c

c [M]Haus(l_’_)' This proves (3).°

1.9. Theorem.. Let P satisfy (k) and X e Haus(P). Then, for
any Mc X, the following conditions are equivalent:

(1) 'XWX& Haus(P);

(ii) M is Haus(P)-closed;

(ii1) M = clp(M).

Proof: The equivalence of (i) and (ii) follows from 1.2,
while the implication (ii) => (iii) follows from 1.8 (3). To prove
(iii) => (1) take a space Pz P and a continuous map f£:P— XUpX.
Let x and y be two distinct points in f(P). If p(x)# p(y) then x
and y can be separated as in the proof of 1.5, i.e., projecting
on X by p. Assume that p(x) = p(y); then p(x)¢ M since x£y in
XUyX. By (iii) XQCIP(M), thus by 1.8 (2) there exist an open
neighborhood U of p(x; and an open subset V of U with VA M = Un M
and VAp(£(P)) = @. Then W = q(V=f03UUx41%) and W= q(Ux£0} UV>
=111) are open sets in XU X which contain x and y since p(x) =
= p(y)eU = p(W) = p(W") and p(x) 4M; on the other hand WAW N
Nnf(P) = B since q‘l(wnw'h f(P)) = (UUV) A(VULU) n
A (PUEMP)IUP(EP))) = (VUV) A (p(E(P))up(f(P))) = @.

1.10. Corollary. Let P be a class satisfying (% ). Then for
spaces in Haus(P) the Haus(P)-closure is the idempotent hull of

the closure clp. In particular for every (X,v)e Haus(P) the

Haus(P)-closure is a Kuratowski operator. Moreover, for every
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(X,%) e Haus(P), ('rl‘iﬁ(ﬂ))ﬁi‘ﬁ(g) = tﬁﬁ(f_)‘

Proof: The first part follows immediately from 1.9 and 1.8 (1),
since the idempotent hull of an additive operator is additive. Let
(X,®)e Haus(P) and Mc X, then cl,(M) = U{Mnf(P):Pe P, f:P— X3 =

=,5§Je ([Mr\[f(P)]Haus(ﬁ)] Haus(g)}by virtue of 1.6, so clf_(M) with

respect to ¥ coincides with clp(M) with respect to THaus(P)'
Thus (% haus(P) Haus(P) * * Haus (P)-
For any Pc Haus denote by Dis(P) the category of all spaces X

such that, for every Pe P and for every continuous map f:P—> X,
£(P) is a closed discrete subspace of X; obviously Dis(P)c Haus(P)
and if Pc Comp Dis(P) consists of all spaces X such that every
continuous map f:P—» X with P& P has a finite closed image. For
P = 2&’ Dis(P) consists of all spaces (X,x) such that <« is finer
than the co-« -topology, i.e., every subset of cardinality less or

equal to o« of X is closed.

1.11. Proposition. Let (X,»)e Haus(P) and let P satisfy (x ).

Then 'rHaus(g) is discrete iff (X,v)e Dis(P). Consequently a space
X in Haus(P) belongs to Dis(P) iff every epimorphism Y— X in

Haus(P) is surjective.

Proof: By virtue of 1.9 and 1.6 'tHaus(ﬁ) is discrete iff

every image f(P) of a spacé PeP is closed and discrete in X.

1.12. Examples. (a) By 1.11 if for some class P satisfying
(%), Haus(P) = Dis(P), then the epimorphisms in Haus(P) are the
surjective continuous maps. If Pc Comp and consists of connected
spaces, then Dis(P) becomes a "disconnectedness" in the sense of
Arhangel “skii and Wiegandt (2] and Herrlich (12}, i.e., Dis(P)
consists of all spaces X such that every continuous map f:P— X

with Pe P is constant. Such an example can be found in [131, 2.7
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(if m is an infinite cardinal number and Xm is a Tl-space with co-
finite topology and cardinality m, take P = %Xm}). More about this
category can be found in Section 3; it will be denoted by Ym.

(b) Let m be an arbitrary infinite cardinal number. It is
known that for a space X, t(X)€m iff for every Mc X, M =
= ClHaus(Em)M =uU{5:5cM, and card S£€m} in fa?t, being Sc M, B =
= Sa M. This is why t(X)£m always implies t::}cﬂﬂﬂi(ﬂm)' On the

P . . _ . _
other hand d(X)£ m also implies * = % Haus(ﬂm) obviously (the con

verse is not true: if (X,¢) is any non-separable metric space then

m
T while d(X) > ﬂo). Let X be the power {0,1§2

z
Haus(ﬁﬁo)

where 10,1} has the discrete topology, then d(X)£m so %=

y while t(X) = 2™ Finally observe that if (X,z) ¢

Haus(gm

m m
< Haus(P_) and == then t(X)<22 . In fact, if t(X)»22

¥ Haus (P, )
then there exists a non-closed subset M of X such that, for every
Sc M with card §% 22m"§c M, i.e., M is Haus(P )-closed by virtue
of 1.9 and M is not closed, so t<’c'_‘.a..“_§(ﬂm)'

Let A>B be two quotient reflective subcategories of Top. If
for every X& A and for every McX, LM]A = LMJB then A = B by the
diagonal theorem proved in {11}, Theor;m 2.2.-However, it is pos-
sible to have [M]A = [MJB for every Xe B and Mc X as the following
lemma shows. - -

For a class P let P’ denote the class of all continuous ima-

ges of spaces from P, then Haus(P) = Haus(P’). In general Haus(P)c

c Haus(P " Haus).

1.13. Lemma. Let P be a class satisfying (>) and closed un-
der continuous images and let X e Haus(Pn Haus). Then for every Mc

<X, LM} = LM}

Haus(P) Haus (P n Haus) "

Proof: It follows from the definitinns.
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1.14. Theorem. Let P be a class of topological spaces satis-
fying () and closed with respect to continuous images. Then
Haus(P) —> Haus(Pn Haus) preserves epimorphisms. In particular

Haus(Comp) —» Haus(HComp) preserves epimorphisms and Haus(HComp)

is not co-well-powered.

Proof: By virtue of 1.13 it remains to prove only the last
statement. The category Haus(Comp) is not co-well-powered (see 111]
Theorem 4.3); this is why the fact that Haus(Comp) —> Haus(HComp)

preserves epimorphisms implies that E§E§(ﬂggmg) is not co-well-po-
wered according to Corollary 3.3 from [51.

The next example is given in [13), 3.5 to show that Haus(Comp);
§ Haus(HComp). Let Q, be the one-point Alexandroff s compactifi-
cation of the rationals provided with the usual topology. Then
every quasi-compact set in 0;, is closed, so Q, € Haus(HComp).
On the other hand every continuous map f:Q,_ —> X, with
X ¢ Haus(Comp) is constant, i.e. the reflection of Q, in Haus(Comp)
is a single point. In fact in Q,, a #c cannot be separated sin-
ce a has not compact neighborhoods in Q. This is why f(a) and f(oc)
cannot be separated in X. Since f(Qa’) is Hausdorff this means

f(a) = f(eo).

2. The [ -order. Let A be a quotient-reflective subcategory
of Top such that, for any (X,®)eA, %pz © . Then (X,vA)i__A_,

(X)) s A and so on for all iterations. Denote by the subca-

A,
tegory of A consisting of spaces (X,®) such that = = T e It was
proved in [5), 4.12, that Ao is a coreflective subcategory of A.
In particular, (Haus(g))0 is a coreflective subcategory of Haus(P)
and the coreflection is given by (X’vﬂaus(g))"’ (X,%) according
to 1.10. By 1.9, for (X,%) ¢ Haus(P), 7Haus(g) has as closed sets
all subsets M of X which satisfv M = cl.(M), i.e. all sets M which
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e closed with respect to the family of subspaces {5?33} where

€ P and f:P—> X is a continuous map. Clearly eﬁggg(ﬁ) is coar-
er than «® (see the introduction). If every continuous image in
(X,%) of the spaces from P is closed (the subcategory of such spa-
ces is denoted by El in [ 131, then clearly these topologies coin-
cide. It was proved in [131, 1.5, that if PcComp and satisfies
(x ), then Haus(P)c P,. This remains true also for categories P
satisfying (> ) and consisting of quasi-H-closed spaces, i.e. spa-
ces X for which every open cover of X admits a finite subfamily
whose closures cover X.

Next we define an ordinal invariant and a cardinal function'

for the category (Haus(P))  first and then to all Haus(P) by means

of the (Haus(P))o_coreflection.

2.1. Definition. Let Xe Haus(P))  and MeX; then W =

= LMJHaus(ﬁ)' By 1.10 M can be obtained by iterations of CIE-

set M® = M a?d if M” has been defined for any ordinal (3 less
than an ordinal number « set M¥ = clP(Mﬁ) if o« = f3+ 1 for some
3 < oo, otherwise Vit =ﬁ&¥x MA Dennze by co(M) the least ordinal
o« with Ml oue Clearly MCO(M) = M and co(M) is the least or-
dinal with this property. Denote by CO(M) the cardinality of co(M)
and set ICO(M) = sup Lcard( o) :M** lg M*? (obviously PCO(M) =<
£CO0(M)). Finally set co(X) = sup {co(M):Mc X, PCO(X) = sup{PCO(M):
:Mec Xt and CO(X) = sup {CO(M):Mc X3. The ordinal co(X) will be cal-
led c-order, the cardinal PCO(X) will be called the point-wise
c-cardinal of X and CO(X) the c-cardinal of X.

For (X,v)e Haus(P) set co(X,) = co(X,«'ﬂggg(E)), so co(X,z)

is defined for (X,v)e Haus(P), too.

The c-order generalizes the sequential order and the k-order

introduced by Arhangel ‘skii and Franklin T11. If X is a c-space ,
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then the c-order coincides with the P-order defined by Kannan (16]
(as a matter of fact the only cese when this does not occur is the

category Haus(fm)o; however in spite of ""’Haus(f_m)* ®C in general

for a space (X,r)cHaus(f_m), the P-order of Kannan coincides with
the c-order in this case, too; it is in fact & 1 ([16], Ex. 5.4.1).

For an example of a space (X,%)e Haus(_F:m) with tHaus(P )+’cc
—_—tm

take X = &0,1}2"‘. Then ¥ = 'cHaus(P yi on the other hand t(X) =
= 2™, so there exists a non-c-f;;;d-gubset M of X with t(M)>m,
then M is closed in % °.

For P = Comp, PCO(X) and CO(X) were introduced in [3]. Clear-
ly PCO(X)&CO(X) &PCO(X)* and CO(X) < card(co(X)). It was proved
in {31 that for P = QEE: PCO(X) & t(X). The next theorem shows it

for any class P satisfying (x ) (a similar result can be found in
£251.

2.2. Theorem. Let P be a class satisfying (k) and Xe Haus(P).
Then PCO(X) & t(X); in particular if CO(X) = PCO(X), then CO(X) =
= t(X) otherwise CO(X) = t(X)*.

Proof: Suppose that PCO(X)> t(X); then there exists AcX such
that PCO(A) > t(X). Let o« be the least ordinal with cardinality
t(X)*; then A**1& A% | otherwise A%*l - A% - 3% AP which would
imply PC(X)< t(X)*. Hence there exists an element x e A**1\ A% , SO
for some Ps P and a continuous map f:P— X, x6 TP A A% )NA®
Then there exists Ccf(P)~ A® such that x €T and card C &t(X).
Since A% = p\z)«. A® , every element of C is contained in some I ,
f < e . Since t(X)* is a regular cardinal, C is contained in some

AP . Thus xa Cc f(P)nAR c AP*lc A% _ a contradiction.

The next theorem shows that the c-order is related to the co-

well-poweredness of the category Haus(P).
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2.3. Theorem. Let P be a class satisfying (%) and such that
for every X & Haus(P), co(X) & o« for a fixed ordinal e« . Then

Haus(P) is co-well-powered.

Proof: Let Xe Haus(P) and Mc X. It is enough to show that
the cardinality of [MJHaus(ﬁ) is bounded by a cardinality which
does not depend on the space X. By 1.9 [M)Haus(P) is the idempo-
tent hull of clP and the number of iterations is less or equal to
o . So it suffices to see that card c1P(M) is limited by a car-
dinality which does not depend on X. For every P& P and every con-
’ 2card M

tinuous map £:P—> X, T(P) is Hausdorff, so card(MnE(P)) & 2

On the other hand the different subsets of M of the type Mnf(P)

card M 22card M

are at most 2 , so card clP(M)qa

We do not know if the converse of 2.3 is true. For the cate-
gory Ury of Urysohn spaces the Ury-closure is the idempotent hull
of the known & -closure and the number of iterations is unbounded
in Ury. This was used by Schroder [22] to prove that the category
Ury is not co-well-powered.

The next corollary covers 3.6 (d) from L11) and 2.18 from [24)

2.4, Corollary. Let P be a class satisfying (%) and such
that d(P) is ' bounded for Pe P. Then Haus(P) is co-well-powered.
In particular, if all spaces of P have bounded cardinality, then

Haus(P) is cowell-powered.

Proof: In view of 2.3 it suffices to show that the c-order
is bounded in Haus(P). Assume that for every Pe P d(P)& m. Denote
m
by oc, the least ordinal of cardinality (22 )*; then co(X) € &< for

every X & Haus(P). In fact, it suffices to see that for every McX

ML =M% 1t x eM™1, then for some P& P and £:P —> X

—_— m
XeM® A E(P). Now d(f(P))&d(P)g m, so card r(P)ﬂZ2 . Now by



card(ov) > card £(P) there exists 3 << such that t(P)AMZc MP ,
so xeM® A £(Prc MF*L hence xe M.

Observe that if P4 Haus the restriction on the density of
the spaces of P gives no restriction on their cardinality, so P
may have arbitrarily large spaces (see 1.12(a) above for such spa-

ces).

2.5. Examples. (a) Let m be a fixed cardinality; denote by
dP,, the class of spaces X with d(X)&€m. Then Haus(_d_gm)c Haus(ﬁm)
and both categories are cowell-powered by virtue of 2.4. The in-
tersection of all Haus(f_m) when m varies is Haus.

(b) Let for every cardinal m, Dm denote a discrete space of
cardinality m. Then Haus({{mml) = Haus(Comp ng_E_m) since every com-
pact Hausdorff space X with d(X)£m is a continuous image of ﬁDm.

Denote by @ _ this category; it is co-well-powered by 2.4. The

m
intersection of all Qm is Haus(HComp) which is not co;well-po-
wered. Finally denote by @'m the category Haus({0,11} 2 ); clear-
ly Qm c $'m and the intersection of all m'm is the category
Haus(D) where D is the class of "all dyadic compact Hausdorff spa-
ces. We do not know if this catégory is co-well-powered (observe
that P = 44D 1 satisties () since 30, « gD U 3D,; the same
holds for 10,132).

(c) Let P be the class of all compact metrizable spaces;
then every Pe P is a continuous image of {0,1}*‘) so Haus(P) =
= Heus({o,li%). It contains @' for every m.

If a class P does not satisfy (s ) we can form the class P*
of spaces of the form PU F where Pe P and F is a finite discre-
te space. Obviously P* satisfies ().

(d) ﬁgﬁ({o,n%)gm(m‘ )A SUS (here T is the unit in-

terval). To show it we use the one-point extension "X of a topo-
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logical space X defined in [13]: for X € SUS take for a base of
neighborhoods of the point e in "X the complements of finite uni-
ons of convergent sequences in X. If. X is sequential then nXt‘=§_U_S_
(1131, 3.8). Now set X = 4n,1§’<°; then "X e 5US and "XtHaus({O,llxo)
but ania_u_g({I&* ) since every continuous map £:1—> "X is cons-
tant (if F = ¢ Yoo ), then F is a closed subset of I. If F = @
then f is constant since I is connected and X is totally discon-
nected. Assume that F# @; we shall prove that F = I. If F<%1 and
(a,b) ia an open interval with {a,b¥ecF and (a,b)nF = @, then
£f((a,b)) is connected in X, so it is a single point, say z. Then
£71({z}) is closed in I and contains (a,b), hence intersects F -
a contradiction.)

(e) SUS ¢Haus({I%*): by 3.8 from [13] Ny €SUS; on the other
hand "I is a continuous image of I Ufood so n1¢ﬂili5_({ll" ). Fi-

nally note that Haus({I3* )cC ,  since Xz,,o is a continuous ima-
2

ge of I. On the other hand X“oe Haus(4I3*) since every continuous
map £:1 —> X is constant. In fact, assume that f(I) is not a sing-
le point; then I =U{ f—l(x):xsx} is a disjoint countable union
of closed sets. This contradicts the Theorem of Sierpinski ([81,
6.1.2).

(f) Let X be a connected Hausdorff space with d(X) = m>1.

hen Haus( §3D_3)c Haus(4X3* ) c Haus(4I3* ), since there exists a
Haus({ 40, Haus

. ntinuous map of X on I.

3. Epimorphisms in P3. Let P be a class of topological spa-

ces. For (X,x) « Top and Mc X define clE(M) =U{f(f‘1(M)):Ps£
and £:P —> X§.
3.1. Lemma. The n:.l2 has the following properties:

(1) it is monotone, expansive and additive; moreover,
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clE(M)c clP(M) for every Mc X;

(2) ;or every continuous map f:X — Y f(clg(M))c cli(f(M));

(3) for every (X,z) e Top and McX, c1lP(M) = M ift M is ~C-
closed;

(4) 1if (X,w) is a c-space then the ordinary closure of (X,x)
is the idempotent hull of cli and the number of iterations is given
by the E-order (for E = P) defined by Kannan ([161);

(5) if Y&Py and f,g:X—> Y, then Eq(f,g) is c1? —closed in

X; in particular every £3-closed set is c1E -closed.

Note that the converse in (5) is not true. Take for example
P ={Ngb? ; then £3 = US and clg -closed sets are the sequentially
closed sets. There exists a space X&eUS and McX which is sequen-

tially closed and not US-closed (see [24], Ex. 2.12).

3.2. Definition. For X € Jop and Mc X denote
M = pCe1ftk (X)) k (X)) = plk () n 1k, (0 = plerfak (x))n
nefag o).

It is easy to establish that the equalities hold and that for
every Xe Top and McX clf-(M)c<M)P by virtue of 3.1 (2).

3.3. Lemma. <'M>P is an expansive, monotone operator and for
every X& Py and Mc X <M>P‘c [M1p .

- =3
Proof: In fact by 3.1 (5) clf(k, (xX)e [ 00Jp , 1= 0,1,
P P

hence cl—(ko(x))r\cl—(kl(x))c ([ko(X)JE}r\[kl(X)]E}) and by

1.3 (3), p(ik°<x)lp}n [kl(x)JP}) = [M]PJ.

3.4. Theorem. Let P be any class of spaces closed with res-
pect to closed subspaces, X& £3 and Mc X. Then the following con-

ditions are equivalent:
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"

(1) M
(ii) M

<M)£;
[Mlp

Fs
_ P .
(11i) kg (X) = c1l=(k (X)) in X U \X;

(V) kg0 = c1f(k (X)) and K (x) = 1Bk ().

Proof: (ii) =» (i) by 3.3 and (iii)e=> (iv) since k (X) and
kl(X) are exchanged by the homeomorphism s of X u mX. On the other
hand (iv)<=> (i) by the definition. To finish the proof we have
to prove (iv) = (ii).By'virtue of 1.2 it is enough to prove that
X UMX €£3, i.e., that for every Pc P and every continuous maps
£,9:P— X U X, Eq(f,g) is closed in P. For i = 0,1 denote P% =
= f'l(ki(X))c P. By the hypothesis ki(X) is cl-t -closed in XU yX,
hence P; is closed in P. Define P;(i = 0,1) in the same way, then
P; is closed in P. Finally define fi:P;-—y ki (X) and gi:P; — K (X)
as the restrictions of f and g, respectively. For i = 0,1, P%,—\ Pli;
is a closed subspace of P, so it belongs to P, hence for pe fi,

Dogi:P}nPé — X, Eq(fi,gi) is closed in P%AP;, so it is closed

in P. In the same way one sees that Eq(fi,gi)n P}n P; is closed

1 . .
in P. Therefore Eq(f,g) =.Y% P;nP;r\ Eq(fi,gi) is closed in P.

3.5. Corollary. The P;-closure in each X€ Py is the idempo-
tent hull of < Yp.

3.6. Example. For P =4 N}, for every X e Top and McX,
<M)P = {xe X: there exists X, —> X in X such that for every open
neighborhood U of x and for every open set Vc U with VA M = Un M,
x &V only for finitely many ni.

In fact, by 3.2 xe(M)P iff there exists a sequence -&xn} in
X such that kl(xn)-——> ko(x) -i.n X\ yX. Since the basic neighbor-
hoods of k, (x) in X W\ X are q(U=4i0%wVx<i1}) where U is an open

neighborhood of x in X and V is an open subset of U with VA M =
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= UnM, there is nothing to prove.

Observe that <M>,c clp(M), in this particular case it follows
from 1.8 (2). On the o;her ;and it is easy to see that x S <M», iff
there exists a sequence Xa—> X in X such that for any subsqu;n—

ce an ¥, X s{xn }A M (this form of the closure was given in 1241,
k k

2.19; see also 2.21). Assume, in fact, that there exists a subse-

quence {xn % such that x¢{xn tAM; then there exists an open
k K
neighborhood U of x such that UnMndix } = @. In the same way as
k

in 1.8 (2) we find an open subset V of U with VAM = UAM such that
xnk¢ V for every k. Conversely, assume that there exists an open
neighborhood U of x such that, for some open subset V of U with
VAM = UnM, xnk+ V for infinitely many k. Then clearly Vn{_nk}=

= @B and UnMAix_ § = VAMAL
Ny

X ¥ =P, so x&ix_ tnM,
"k ¢ "k

The following theorem, for Pc Comp, can be obtained also from
1.4 and 1.5 of [13).

3.7. Theorem. If P is a class of topological spaces satisfy-

ing (%) then Haus(P)c P5.

Proof: Let X eHaus(P), then by the diagonal theorem (Theorem
2.1 of L[11)) the diagonal Ax in X=X is Haus(P)-closed. Since,

for every (Y,%)e Haus(P), 'tHaus(g) £+C it follows that by is

also =°-closed. By the definition of Py this means that XeP;.

3.8. Corollary. SUS < US preserves epimorphisms. While

SUS is co-well-powered, we do not know if US is.

3.9. Examples. (a) Haus(4I3*)4 US. In fact, take any conver-
gent sequence X' —> x such that the space ixt u{xn:n =1,2,...1 is

T1 and blow up the pnint x. The space X obtained in this way is T1
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and X4 US. On the other hand X & Haus({I}* ) because of the theorem
of Sierpinski.

(b) Let m be a cardinal and P = 4Xm} be as in 1.12 (a). We
discuss first the topology % for an arbitrary (Y,f)clggl. Con-
sider first the case m = Ko A sequence {xni in a Tl-space is
said to be a 0-sequence if it is homeomorphic to X” provided with
the relative topology (see [18]). Now clE(M) is exagtly the 0-se-
quential closure of M, i.e., the limits of O-sequences in M. The
c-spaces are exactly the 0O-sequential spaces, i.e., the spaces in
which every 0-sequentially closed set is closed. Let us observe
that t:l-'i is an extensive, monqtone and additive operator, in gene-
ral non idempotent, as the following example shows. Set Y2 z{oo} v
uin,:ina 1,2,..  Jodx  :m,n = 1,2,...% where each z, = fxn]L;{xmn:

tm = 1,2,...% is open in Y2 and has the cofinite topology, a basic

oo

neighborhood of {1 has the form :nﬁfh Zn\ Fn, where for nZ k Fn
is a finite subset of Zn\i xni. Now for M = {xmn:m,n =1,2,...3,

w ¢clfn = Oz, and @« clftax in = 1,2, ) a1l
The space Y2 is in fact a slight modification of the space S2 con-

sidered in [1) to show that the sequential order is not idempotent.

Let us mention that for m > %, an analogous description of the
reflection +° can be given by means of 0-nets (here by 0-net we
mean a net whose relative topology in the whole space is the co-
finite topology. This definition differs from [9]). It is obvious
in all cases that, for any (X,%)e Top, X & ¢, (cf. 1.12 (a)) iff
<C is the discrete topology. This is why for P = 4X ¥, X 4P

implies that X<X & € ( A x is not closed in the coreflection).
It is easy to see that for Y’tlggl, Y e %h iff Y=Y e fh. Hence
we get X & ?m' On the nther hand if X € €, then XxX & fh, S0 Ax
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is closed in the c-coreflection of X>=X. We have proved in this

way
3.10. Theorem. For every cardinal m and P = {Xm{, EJ = Ym'
This answers a question of Hoffmann and completes 2.2.9 of
£133.

Question. 1Is the P,-closure a Kuratowski operator?

To answer this question it suffices, in account of 3.5, to

prove that < )P is an additive operator.

Hu3dek remarked to us that in all statements where (>k) is
needed, it suffices to take Haus(P) = {Xe Top: for each f:P— X,
Pe P, £(P) is Hausdorff} instead of Haus(P), which includes also

.

other classes.

References

[1] ARHANGEL ‘SKII A. and FRANKLIN S.: Ordinal invariants for to-
pological spaces, Mich. Math. J. 15(1968), 313-320.

[2] ARHANGEL “SKII A. and WIEGANDT R.: Connectedness and discon-
nectedness in topology, Gen. Top. Appl. 5(1975), 9-33.

[3) BOONE J., DAVIS S. and GRUENHAGE C.: Cardinal functions for
k-spaces, Proc. Amer. Math. Soc. 68(3)(1978), 355-378.

[4] DIKRANJAN D. and GIULI E.: Closure operators induced by topo-
logical epireflections, Coll. Math. Soc. Janos Bolyai,
41, Topology and Appl. Eger (Hungary),1983 (to appear).

[£5] DIKRANJAN D. and GIULI E.: Epimorphisms and cowellpoweredness
of epireflective subcategories of Top, Rend. Circolo
Mat. Palermo, Suppl. 6(1984), 121-136.

L6 DIKRANJAN D. and GIULI E.: S(n)-8-closed spaces, preprint.

L7) DIKRANJAN D. and GIULI E.: Inclusions preserving epimorph-
isms, preprint.

4:}] ENGELKING7§.: General Topology (Polish Sci. Publ.,Warszawa
1977).

£9) FRANKLIN S. and ROBERTSON L.: 0O-sequences and O-nets, Amer.

- 8416 -



[101

[11)

(12)
[13)
4

151

(161

[17)

[18)

{19)

[20)

{211

{221
(23]

(24)
(251

Math. Monthly 72(1965), 506-510.

GIULI E.: Bases of topological epireflections, Topology Appl.
11(1980), 256-273.

GIULI E. and HUSEK M.: A diagonal theorem for epireflective
subcategories of Top and co-well-poweredness, Annali
Mat. (to appear).

HERRLICH H.: Topologische Reflexionen und Coreflexionen, Lec-
ture Notes in Math, 78 (Springer, Berlin, 1968).

HOFFMANN R.-E.: On weak Hausdorff spaces, Arch . Math. 32
(1979), 487-504.

HOFFMANN R.-E.: Factorization of cones II, Lecture Notes in
Math, 915 (Springer, Berlin, 1982), 148-170.

ISBELL J.: Epimorphisms and dominions, Proc. of the Conferen-
ce on Categorical Algebra (La Jolla, 1965), Springer,
1966, 232-246.

KANNAN V.: Ordinal invariants in topology, Memoirs Amer.
Math. Soc. Vol. 32 No 245 (1981). *

KISS E.W., MARKI L., FROHLE P. and THOLEN W.: Categorical
algebraic properties. A compendium on amalgamation,
congruence extension, epimorphisms, residual smallness,

and injectivity, Studia Scientiarum Math. Hungarica 18
(1983), 79-141.

LEVINE N.: A note on convergence in topological spaces, Amer.
Math, Monthly 67(1960), 667-668.

LAWSON J. and MADISON B.: Comparisons of notions of weak
Hausdorffness, Topology Proc. Memphis State Univ. Con-
ference 1975, Ed. by S.P.Franklin and B.V.Smith Thomas
(New York-Basel, 1976), 207-215.

McCORD M.: Classifying spaces and infinite symmetric pro-
ducts, Trans. Amer. Math. Soc. 146(1969), 275-298.

SALBANY S.: Reflective subcategories and closure operators,
Lecture Notes in Math. 540 (Springer, Berlin, 1976),
548-565.

SCHRUDER J.: The category of Urysohn spaces is not co-well-
powered, Topology Appl. 16(1983), 237-241.

THOLEN W.: Prereflections and reflections, Comm. Algebra
(to appear).

TOZZI A.: US-spaces and closure operators. Preprint.

ARHANGEL "SKII A.V., ISLER R. and TIRONI G.: On pseudo-radial
spaces, Comment. Math. Univ. Carolinae 27(1986),137-154.

D. Dikranjan: Institute of Mathematics, Bulgarian Academy of Sci-

ences, 1090 Sofia, Bulgaria

E. Giuli: Department of Pure and Appl.Mathematics,University, 67100

L Aquila, Italy
(Oblatum 23.9. 1985)

417 -



		webmaster@dml.cz
	2012-04-28T12:47:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




