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COMMENTATIONES MATHEMAT1CAE UNVERSITATIS CAROLINAE 

26,2 (1985) 

ON THE COMPLEXITY OF THE SUBGRAPH PROBLEM 
J. NEŠETŘIL, S. POLJAK 

Aba tract: The complexity of the problem "Does a giTen-
graph contain a complete subgraph with k Tertices?" is 0(n ). 

Key worde: Complexity of the subgraph problem, complete 
subgraph. 

Classification: 05C99 

.This note is motivated by the complexity of the following 

decision problem: 

Given a graph G and a positive integer k 9 does there exist 

a subgraph of G isomorphic to K^ (- the complete graph with k 

Tertioes)? 

The following particular question was considered indepen­

dently by L* LoTasz and one of us: 

Is the complexity of the above problem 0(n )? 

In this note we give a positive answer to this question 

in a slightly more general form* Let us note that we have been 

informed by L* LoTasz that F*K* Chung and R» Karp obtained in­

dependently also a solution to the above problem* 

Let us B%T%88 that all the solutions are based on the fast 

matrix multiplication and that it is not clear whether one 

could devise a purely combinatorial algorithm* 

1: Fast recognition of complete subgraphs 
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1.1; Firet we show how to detect a triangles 

Let G be a graph with vertices x-,.... .x^ and let A ho the 

adjacency matrix of G (i.e. a^. • 1 if i ^ x. form an edge of 

Gf a1:, * 0 o t h e r w i s e ) . Compute the matrix Bx- Jl . Then the 

graph G does not contain a triangle if and only if 

min(a:L.fh^) - 0 for all if i (ao b.^. is the number of pa the 

of length 2 between XJ, and x^)» The complexity of this proce­

dure is 0(n°°) proTiding wo use an (Xn06) algorithm for the 

matrix multiplication* It io well known that one may aohioTe 

ot < 3 (eee Concluding remarks) . If 0<ajM-=k$4 for eeme lf j 

then G contains a triangle of the form -ix^-jc^x^, The third 

Tortex ij. can be found in 0 (n ) etepo by checking all the remain­

ing vertioes* 

1.2: This procedure may be ueed for doteotlon of comple­

te oubgrapho of size 3£ in 0(n^,oC) otepo ao follows: 

For a given graph G of size n we construct an auxiliary 

graph H of also O(n^) with the following property: H contains 

a triangle iff G contains a complete subgraph of size 3& . 

Thue the detection of trianglea in H yield* an 0(n4"cC) 

algorithm for the detection of a complete subgraph of also 3.1 • 

The graph H may be defined ao follows* 

V(H) m ̂ Y£V(G)| \J\ m Jt oxd Y forma a complete subgraph 

in G} 

S(H) -{iYjY^h Y-^Y* and Y u Y ' forms a complete subgraph 

in G}. 

1.3s Let us also remark that the vertex sizes which are 

not diTioible b> 3 do not present a difficulty by the following* 

For a subset Y of vertices of graph G • (V,B) put lf(Y) * 

* -iT£V \ -iy.Ti e B for eTery ye Yj. 
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N(Y) is the set of all common neighbors of the set Y. 

Consider all graphs G1,...fGa which are induced by the sets 

N({xi)» -££?• Then a graph G^ contains a complete subgraph of 

size 31 if and only if G contains a complete subgraph of size 

3>e • 1. 

Similarly if we consider all graphs which are induced by 

the sets N(-{x,y}), {x,y$€£ we can detect a complete subgraph 

of size 3£ + 2. 

Thus, using the previous 0(n^*(*) for a 3£ -complete sub­

graph, we can detect a(3<£ + i)-complete subgraph of a graph 

with n vertices in 0(n*+^ , c C) steps, i » 0,1,2, 

2s Past recognition of arbitrary subgraphs 

2.1 j Here we prove 

Proposition. Let F be a fixed graph with k vertices. Let 

there exist an 0(n°**k)) algorithm for finding a K^ in a graph 

with n vertices. Then the following two problems can be solved 

in 0(n°^k)) steps for arbitrary graph G with n vertices: 

(1) Does G contain 7 as an induced subgraph? 

(2) Does G contain F as a (not necessarily induced) sub­

graph? 

We give two* proofs. 

2*2* Proof It For a given instance F,G of the problem 

((1) or (2)) we construct auxiliary graphs H.- and Hg of size lex n 

with the property that E* contains a complete graph of size k iff 

the answer to the problem (i) is positive, i » 1,2. 

Put VCa,) m VCHg) » V(F)xV(G). Denote by ^ f Eg and B- the 

following three setss 

•C(-^1tg1)f(-f2»«2^
€ B1 i f f *i*V(F) f g 1eV(G), ft4-f2 and g-j* gg. 
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« f 1 t « 1 ) t ( * 2 i « 2 ) U l f 2 i f f f i e V ( ? ) » « i ^ v ( G ) » i - f 1 i * 2 ? c B ( , ) 

and |g 1 f g2^ £B(G). 

U f 1 0 g - ] ) t ( - ? 2 i ^ > ^ S 3 l f f * i € • ( » > • « i^V(G) f € f 1 t f 2 ? f B(F) 

or {g 1 f g2}eB(G) # 

Put B(H-|) « B-jHBg, and ^(Hg) - S^nBy 

I t i s easy to see that these graphs have the desired properties . 
2»3s Proof l i t We consider only the case k • 3£ » 

We construct an auxi l iary graph H as follows: 

Let X-juXguX^ be a part i t ion of the se t V(F) into parts 

of s i z e Z • Denote by ? i the subgraph of F induced by the se t 

Xj and denote by F i . the subgraph of F induced by the se t 

X±uXi9 ±9 * m 1»2»3t i«M# 

Denote by V^ the se t of a l l embeddings of F i into G ( e x p l i ­

c i t l y : f€ .V i i f f f:X i—»V(G) i s one-to-one and * f ( x ) f f ( y ) j e 

£ E (G)<?=>4x f y i€B(F i ) ) . 

Put V(H) . V 1 u V 2 u V 3 and * f f j t ' | cB(H) i f f tcl±9 f € Vj 

(i=f-;J) and the mapping f u f ' i s an embedding of P. . into G» 

Clearly H contains a tr iangle i f and only i f G contains an 

induced subgraph isomorphic to P. 

3: Concluding remarks 

3 . 1 : Instead of Strassen algorithm [2] we oould use any 

of i t s refinements. 

The current best performance a2t495364 ±g ^ ^ ^ copper­

smith and Winograd, see C11. 

3 .2 : Apart from the problem of find ing a combinatorial a l ­

gorithm (see the introduction) the following question may be of 

interests 

Does there e x i s t a graph F with k ver t i ce s for which the 
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decision problem 

"does 0 contain F as an induced subgraph** 

is easier than the corresponding problem for the complete graph 

v 
Of course the non-induced subgraph problem i s e a s i e r ( e . g . 

fo r f o r e s t s ) . 
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