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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26,1 (1985)

NONLINEAR PARABOLIC VARIATIONAL INEQUALITIES
Marco BIROLI

Abgtract: The existence of a weak solution of a nonlinear
parabollc variational inequality (with _quadratic growth in the
spatial gradient) is studied using & Holder oontinui:{ result:

a Meyers estimate and & local uniqueness result are also obtain-
ed in the case of continuous week solutions.

Key words: Nonlinear variationel inequalities, nonlinear
parabolic equations and systems.

Clagsification: 49A29, 35K55

§ 1. Notations

Q is a bounded open set in R® with smooth boundary Q=T ,
NZz3.

Q= (0,7) x &
B(Ryx,) = By(x)) = ix eQ.\x-xo\< R}
Q(Ryz,) = Qplz)) = (t,x) €Qlx-x |< R, \t-t |<R¥ 2 a(t ,x,)
Q" (Ryz,) = Qz(z,) = 4(t,x)eQlx-x I<R, t -B°< t<t}
Qg(Riz,) = i(t,x)6Qlx-x i< R, to-R2< t<t,- 6 OR%},

e (0,1)
¥:Qq—>Rui{-} is a Borel function everywhere defined in Q

Let now ¢ be a positive real number
E(e,2,,¥ ,7) =iz=(t,x) 6 Q7 (1,2,), ¥(tx) Z

This paper was presented on the Internetional Spring School on
Evolution Equations, Dob¥ichovice by Pregue, May 21-25, 1984
(invited paper).
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z su -
P8, 422 00xB(x/243,) ¥

Ae( €5, Y,r) = Ae( €,T) = “Pq(zr“o)l(e 1 Yor)v

where the definition of the capacity used in the paper
is given in § 2.

Gl & 80 ¥o) = Ig (&,7) = Ag(e,r) 63" =¥, where 6y
is the capacity of the parabolic cylinder with r=1 in
1,
For the Sobolev spaces on ) or Q we assume the usual
notations
Let su(t,x) be bounded measursble functions on Q, i,J=1,2,...,N,

such that
N

= 1 &11(t.!) gi %j P lg\z v >0

“V_*:
A:LZ(O,I;KL(SL))—b LZ(O,T;B"1 (Q)) is the operator defined
by
N
CAu,vO= fa 4§=4 aij(t,x)nxj u D‘i v dxdt

GZ 1s the Green function relative to A (or its extension by
-4 to L%O.‘l‘;ﬂ‘ (R¥)) in the case of boundary points
z) with singularity in z
a(; is the regularized Green function defined by the problem
t 3 t 3
-] vy O axat + <aqg,v)- f%_.z) vaxat
G;e 12(0,78' (8%)), GZ (t-2,-) = 0 veD(EF)

®
where we indicate again by A its extemsion to R"H by ~A and

v dxdt denotes the average of v on Q(So 33).

f&(g-,z.)

§ 2. Introduction and results. Recently some attention has
been paid to the parabolic variational inequalities with a non-
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linear term, which is quadratic in the spatial gradient, in ocon-
nection with some problems of optimal stochastic control [2].

In the present paper we will study for these variational inequ~
alities the existence, the uniqueness (global or local) and the
regularity of a solution. In the case of equations, a general
result of existence of a solution has been obtained by L. Boo-
cardo, P, Murat [8]), for variational inequalities some partiel
results, depending essentially on a Holder ocontinuity result
for bounded solutions, has been givem by M. Biroli [4], J. Nau-
mann and M.A, Vivaldi have solved the problem of the quasi-ve-
riational inequality of the stochastic impulse control.

Por nonlinear elliptic variational inequalities with irregular
obstacles a general result on the Holder continuity of the so-
lutions has been proved by J. Prehse, U, Mosco [11]1, and U. Mos~
co [191,(20]; using the methods of these papers, M. Struwe, M.
A. Vivaldi prove the Holder continuity of & bounded solution

of a nonlinear parabolic obstacle problem with an obstacle,
which is Holder continuous in time and one sided Holder conti-
nuous in space variables, and M. Biroli, U, Mosco prove a gene-
ral result in the linear case [22],[71.

Here, using some tricks, given in [227], we extend the result of
(7] to the nonlinear case and we use this new result to prove
the existence of a solution of our variational inequality.

The uniqueness of the solution in the linear case and the local
uniqueness in the nonlinear case are investigated in § 4, gi-
ving a result extending the one proved for elliptic equations
in L14].

Purther regularity of the solution is studied in § 5 proving
the dual 1ne§ualities for our problem, this result appears in
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[16]) and the L..of given here .s tne same as in [16].
We state now the results precisely.
Let E be a compact set, ECP, where P=(t,,t,) xB and

capp(E) = Inf { [ IDw?; weD(P) w=1 in a neighbourhood of E}

We have so defined & Choquet capacity [9], and we can prove that
if a set E is capacitable, then

cap

P
where capy is the usual Newtonian capacity and Et is the section

at time t of E.

Let H(t,x,u,p) be & function measurable in (t,x) 6 Q and continu-

(E) = f:’~ capy (E,) dt,
1

ous for (u,p)€ Rx RY such that .
(2.1) \H(t,x,u,p)| K, + K, |p|?

v(t,x)eQ, lul4c, psnn, where K,, K, depend on C.

A function ueLZ(O.T;H1(.Q.))r\I-°°(IL) is a local solution of the
parabolic obstacle problem relative to A,H,Y if

() uzY gq.e. in Q for the above defined capacity

N
(v) I‘o*‘ fn'{vtcy(v-u) + %2'3"1 aij(t,x) Dxdu D, (gp(v-u)) +

xi
+ H(s,*,u,D0) @ (ve) + 1/2 @ (v-u)?3axat =

z12 19" 2(vauli?, (b)),
2 \le (vu)\\Lz(m()

VveH (0,581 (0))n 120,158 (L) 1¥(Q), vz ¥
and where g e D(Q) with @=0 in (0,7)x AN and ¢ (0,¢)=0

(c) for every constant 4 2 ¥ in supp(@ ) 0 (0,4) x &
1/2 +p2 t
1/2 Vg /% (u-a). \\Lzm)(t).ec Jy [Dgu Dyqu +

+ 1Dul?g + @y (u-a)?] axat
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A function u is a solution of the parabolic obstacle problem re-
lative to A,H, Y if (a),(b) and (c) hold for @e D(Q), while we
congider a null initial value. The Wiener modulus of ¥ is defi-
ned by

@g(r)R) = Int {0 = 04 j: dg(w,@) dp/pZ 1}
We prove the following result:

Theorem 1. Let u be a local solution of our problem and
Z,€ Q; there exists 90 guch that for 6e (O, 6,) we have

&)
°°°Q(r;z°)“£x g M(R)we(r,n) 6, wa(r.R)Aéch(tho) ¥s,
where O4r < 61/2R<R< 61/2110 (R, suitable) and

2 1/2
M(r) = ( j&_(m’zo)lnxu\ axdt) + °"Q(rizo) u.

Moreover if there exists HeH *P(Q), p>N+1, U=0 in (0,T)x%
x 30 v(0) x & T zY g.e, in Q and z € (0,1) = 32 v (0)=

and u is a solution,

°°°Q(r;z°) u<g RP 3 « (0,1), r4R,, R, suitable.

Corollary 1., Let u be & local solution of our problem and
let the assumptions of Th, 1 hold, then

¥, B
°B°Q(r;5°) u€K(R® + och(R“o)‘{)w(r,R) e 4

+ we(r,R)/\oacQ(R‘zo)Y
A point z,¢ Q such that there exists a Be (0,1) with
Mm  wfr,R) = 0 R4 R
is a Wiener point, if
wg(r,R) £K(r/R)¥ « ¢ (0,1) R=&R

o
z, is a Holder Wiener point.
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Corollary 2. Lef u be & Jeca]l solution of our problem; if
5, is & ;g;mz Wiener point, then u is (§1w2 contimuous &t

Corollary 3. Let u be & local solution of our problem; if
u is one sided (Holder) ocontimuous at s,, then u ig (Holder) eon-
$iomous at =

Remerk 1., The result of Th, 1 at time t=0 holds also if we
have as initial date u e B'*9(0), q>¥.

We consider now the problem of the existence of a solution to

our problem. We suppose

(a) every point 5,€ Q is a Viener point or ¥ is ome sided con-
tinuous at s

(b) +there exists a function W as in Th. 1 and

H(t,x,u,p) (u-i) Z =c [p1% = K(lu\® +1) o<»-

Theorem 2. Suppose that ¥ is quasl continuous on the set
Y={¥ > =0} and that there is a meagure m on Y "weaker" than
the capacity. Let ¥ be bounded from above and (a) and (b) hold,
ithen there exists a continuous solution of our problem.

Remark 2., The result of Th, 2 can be extended to the case

of general initisl data end ¥ quasi 1l.s.c. on Y, if in (b)

v, (0)=u .
Theorem 2°. Let ueC(Q) be & locel solution, D, ¥ &

s 190,758 *%(Q)), D ¥ & 19Q), q>2, then D, usIP(Q), p>2.
For the prodlem of the uniqueness or of the local uniqueness of

the solution of our problem we obtain the following result:

Theorem 3. In the linear case (H=f(t,x)) the solution
uec(Q) (if there exists) of our variational imequality is unique.
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Let H be differentiable in (u,p) and such that

|, (4,5,8,8) 1<K (1+ 1p1)
By, (foxump) 1<K (14 |p (t,x)eq, lul<c,

IK,(,x,u,p) |<K (1+ 1p1?).

Consider two local elutions uy, W,& C(Q) of our variational in-

e ity and su se

uysn, in (to-nz.tomz) x IB(Ryx,) u&to-Rzix B(R3x )c Q .
then, if R<R , R, suitable, uy=u, in Q(R;zo) (’o'(to’xg))‘

Remark 3. The result of Th.3 holds also in the case of ge-
neral initial data, Consider now the following two eonditiqns:
(6) ¥ e H'*®(Q) and there exists Vo€ LZ(O,‘!;H;(.D.))nL”(Q)ﬂ
A E(0,HE () with v, 2 ¥ qee. in Q.
(@) Yt"’ AY + H(-,+, ¥,D ¥)<k, k>0, in the sense of measures.

Theorem 4. Let the assumptions (c¢) and (d) hold; then, if
u is 8 solution of our variational inequality, we have

(o] éut+Au+B(- R -,u,Dzu) < (‘Ytﬂl’m(. o "Y'Dx ¥)) V 0<k
in the sense of digtributions on Q, hence, if aneR"m(Q). u
belongs to m22129(Q), 1< q<+ 0 -

Remark 4. The result of Th. 4 holds also for general ini-
tial data, of course for the last part of the result a regulari-
ty assumption on the initial data is necessary.

§ 3. Sketch of the proof of Theorem 1., The main tool in
the proof of Th. 1 is a Poincaré s type inequality involving on-

ly the spatial gradient, which is given for local solutioms of
our variational inequalities.

Lesxma 1, There exists a comstant @ such that
az¥(t,x) -5 in (to.soﬁ,tomz)*ncs,an;xo)

-29 -



and
ft,,-ea’-
t,- 63R?

2 -1 t,-0R? 2 2
£C(R°d (e,R) ft:-Gekz fB‘R;xo)mxu\ axdt + £°).

-3)2 £
fBl%R;%) (u-d)° axat

We observe at first that we consider here bounded solutions of
our variationcl inequality.

We consider at first the case of interior points.

Let Z = (X,t) € Q(R/432,) and consider 7 = 7 (x) such that

m e D(RY), m =1 in B(R/83%), 7 = O for x & B(R/4;E)
0 £ 41 in B(R/43%)
1D | & cr~!
and ¥= T(t) such that
TeDR), t=1for tz% - 36R%, T= 0 for t4T - 50 R,
04v<1 in (% - 56R%, T - 30R8%),
In = | <c(or®)™,
Choosing in the variational inequality v=d, where 4 z ¥ in
(3-608%, ) xB(R/HD) emd 9= 2 77 oF sink ((w-0)%), ,
((=0)2) )y + ((-0)?)g = (u-0)?,
((u=2)2)g, (% - B%) = (u-a)2 (3-8?),
we obtain, after some computations,

e o Jocoti X 6% axat + lu-al2(3) <
t-9 3%

4£C, exp(-C, 8~1) @=38/4 g, lu-al? +
1 2 : p(il-sonz.i)xncn/ui)
~(1438/4) ~(H+2) [E-36R 2
+Cy0 R I.soRd ‘ra(a/4;‘£7 lu-al® axat .

Teking now the supremum for % eQ(® '/2Ryz ) we obtain:

Lemms 2. Let 4z ¥ in (t-60R%, t +B%/4)xB(R/23x,),
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9e (0,1/64) the following relation holds

to O 2 . 2
D dxdt + Su u-alc4
[or-08 fB‘*’”"’*» % 2] pom’/zmzo)l

<K, exp(-k,8°1) @~IW/4 8uPq my 5,) lu-al? +
t-209R2

=(143K8/4)p=(N+2) [ % »
" 50 ¥ Jt 6OR% fb(:vakxs b a-al® axat .

Choosing now 4 = q+ % , 3 as in the lemma 1, using the lemma 1
and taking into account the estimates on the Green function L1],
we obtain the following relation

z
\D.ul? ¢ ° axdt + (osc u)?
f@:(e'&R;Z,) x ae'2r;z,)

2 -1
K4K5(9) (oacQ(Rwo)u) + (Kg(8) g (e,R))™ .
t,-9R? z
° 2,70 2
ft,-a‘ fug;xo)\nxul G ° axdt + x.,(o) €<,
where
K5(6) = exp (-K, 8~h 6'3N/4,
Kg(8) = Kg exp (-KgH™") o-(1+8/4)
K7(g) - x‘\O 9-317/4'
Taking into account that KS(Q), Kc(B) —>0as @ —> O we ob-
tain the following relation

2 % 2
/,Mz)\D ul® ¢ dxdt-l»(oscq( 172, u)

'r@.‘&e )

(1 +Ky,(8)J (&,R)) D u\26°dxdt+

-1
oz
(oscq(m y w3 + K,(0) €2,

where @ < 8 9 suitable.
Using the same methods in the elliptic case [11], we obtain

°S°Q(rgzo) u4K(M(R) exp (- f} f:"" (¢,8) s~ 'as) + %)

-3 -



where r £ @1/2g, K depends on & and
2 1/2
M(R) = ( fe.‘(R;zo) I Dul® axat) + °S°Q(R;z°) u.

Choosing now ¢ = @ (r,R), we have th;: result of Th. 1,

The result of Coroll. 1 follows by an iteration method teking in-
to acocount the result of Lemma 2 1191,[20].

Coroll. 2.3 are easy consequences of Coroll. 1.

The proof of the Holder ocontinuity at boundary points can be gi-
ven by the same methods if we replace in the test function d by W,

§ 4. Existence result. The proof of the existence result is

divided into several steps.

(1) We consider at first the linear problem and we prove the ex-
istence of a solution by penalization using the same methods as
in [17]3.

We observe that in this case the sequence of the solutions of the
penalized problems converges in Lz(Q); then only one solution is
characterized as limit of the sequence of the solutions of the
penalized problems.

In the following we conasider always such a solution in the line-
ar case, Consider now two solutions of the linear problem; using
the penalization we have easily

2 t 2
1/2 \lu1(t)-u2(t)l\L2m)+ fo \\Dx(u1(s)-u2(s))llL2(mdg £
£1/2 nu1(o>.u2<o))uizm+ 7 [ (29=2) (wyuy) axag-

-

(2) Consider now the case in which the nonlinear term H(t,x,u,p.
is bounded; in such & case the existence of a solution is proved
by Schauder ‘s fixed point theorem, using the Holder continuity

result proved in § 3.
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(3) 1In the general case we denote
%(t,x,u,p) = H(t,x,u,p) (1 + n"B(t,x,u,p))'1

We observe that Hn(t,x,u,p) is bounded and we indicate by u, the
solution given in (2).

We prove eas in [15] that the sequence u, is uniformly bounded;
then, from the result on the Holder continuity of the solutions
proved in § 3, the sequence u, is also bounded in C*(Q), x €
€ (0,1).

From the above we can suppose that u, converges to u in c(Q).

We have

1/2 \\un(t)-um(t)llem) + fotfnwx‘%‘“m”z dxds <

£ .{,t [y, alesx,un,Dou))-By (s,x,10,,D,u,)) (uy-uy) dxds.
We observe that the sequence Hn(""“n'nx%) is bounded in 'L1 Q)

(u, being bounded in L?(0,T3H)(0))) then u  converges in

. LZ(O,T;H;(.Q.)) to u. Consider now the sequence En(.,.,%,nxun);
this sequence is equi-integrable and converges pointwise to
H(+,+,u,D;u), Then it converges in 1'(Q) o H(. »esu,Dou).

Summing up, we have
u, converges to u in ¢(Q) and in LZ(O,‘I;H;(_O.))
Hh(' "’un’Dxun) converges to H(.,+,u,Du) in ! Q).

Then we can easily prove that u is & solution of our variational

inequality.

§ 5. A Meyers type result (Th. 2°). The proof can be ob-
tained by standard methods ([127 for the elliptic case, [21] for

narabolic case with small nonlinearities) us:fng the variational
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inequality with veup (up is the average of u in the parabolic
oylinder Qp) and 9 es a cut off function relative to Q.

§ 6. Uniqueness and local uniqueness results. Consider
at first the linear case (H=f does not depend on u, p). We ob-

serve thet if u is a solution of owr variational inequality
uy + Au - te u*(Q)

(M*(Q) is the space of positive meesures on Q), then we have

(6.1)  <uy + Au, @(v-u)? Jy t (v=u) axat

o z
M(Q),c"(Q)
(€%(Q) is the space of the functioms in C(Q) with compact sup-
port in Q) where g € c%(Q) and veC(Q), v< ¥.

Now let u; and u, be solutions of our variational inequelity
in C(Q) and denote wau,-u,,
Let ¢, 6C°%(Q) such that

fp =1 10 Q) (qn ={zeQ, dist(z, 3Q)>n'1§),

9p = 0 inQ-q,,

-1

ID gul, IDy@ |l €K, 07

Using (6.1) with v = 27'(u;+u,), ¢= @, and passing to the

limit as n — + o , we have

1/2 Ny (D)=u, (M2, = 172 llu, (0)=u, (N2, .
u, ( uz()Lz(,(l) / u,()ua()Lzm)'r

+ j'& 10 w\? axat <o,
from where uy = Use
We consider now the nonlinear case; our aim is to prove a re-
sult on local uniqueness analogous to the one given in [14]

for elliptic equetions., Let uq and u, be solutions of our ve-

riational inequality, which are continuous in Q and wau,-u,,
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It is eagily seen from the variational inequality that
(ug)y + Auge M(Q) i=1,2,
Let Qp(z ) be & parsbolic cylinder such that ws0 in (to—Ra,to-l-Rz)x
2
xBR(IO) and in Sto-R I BR(xo).
Denote by o(R) the supremum between the oscillations of u, and
u, in QR(’o) end by ip the characteristic function of QR(zo);

by the same methods used in [14] p. 234 for the elliptic equation

we have

(6.2) f“k%’ IDwl? axat <Ky fqoczy (4 1D12%) + 1D, 12) w2 axat

Using now the seme methods of the lemma 1.3 [14] p. 231 we obtain

(6.3) f“a"%’ (1+ 10,102 w2 axat £Ky0(R) [o ¢, \Dw1? axat +

MEN
+ {wy, (uy-u, (2 )~0(R))Z w

where the duality in the last term is between Mb(QR(zo)) +

+ 12(4,~R2, 4 +8% BV (Bp(x,))) and C(Qplz,)) uL?(t -R2, b +R%;

H) (Bp(x,))).

Consider the last term in (6.3), using in the variational inequ-

ality relative to u, the test function ((1-(ui-ui(z°)-o(R)))2u1+

+(u1-ui(zo)-o(R))2u2)iR + (1<ig)u; end in the variational inequ-

ality relative to u, test function ((1-(u1-u1(zo)-o(n))2)u2 +

+ ‘“1-‘11(’0’-“3”2“1’13 + (1-1p)u, we obtain

(68 Lmy, (gmmy (zg)-o (W) £ 172 foc og(z | Dyu,| 2)w? dxdt
+ K50(R) JIQ e D w\® axat .

Then from (6.3),(6.4) we have

2
(6.5) So_(zy P01+ 1Du1\?) @xat<x,0(R) fa a IDw|? axat

Prom (6.2),(6.5) we have
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2 2
(6.6) fQR(zo)lDz'\ dxdt <Kgo(R) fak(%) (Dyw|® dxdt .

We recall that u; and u, are supposed to be continuous; then
there exists R, such that for R<R  we have o(R) < K; and in such

a case we have from (6.6) w=0.

§ 7. Dual ineguelities. The proof of the dusal inequauties
uses a method which is an adaptation of the one used for the el-
liptic case in [10] (regularization of the nonlinear term H).
Let H (%,x,u,p) be such that
(7.1) Hy(t,x,u,p) — O+ u(t,x,u,p)

a.e, in (t,x), VreR, VpGRn,

(7.2) VB (t,x,u,0)| 4 c <K, + K, Ip?

a.e. in (t,x), lul<c, VpeRN,

(7.3)  1H,(t,x,u,p)-H (x,t,u",p I &K lu-u’] + K ip-p°l

a.e. in (t,x), lul, lu’l<c, p,p e RV,

We observe that u is also a solution of the variational inequa-
lity

(7.4)  <{vy,v=ud+ g (u,v-u) - 1/2 llv(O)\\iZ(m z (f,v-u?
Vv e1?(0, 1 (D)) nE (0, K (A)) ALo(Q), vZ ¥
uel?(0,E (R))NLP(R), uz ¥,

and the solution of the variational inequality (7.4) is unique
131,131, 1101, (a,(u,9)= Chu,v> + [, (Hy(-,e,u,Dp0) + A pu)v axdt),
where J\m is large enough for the strict monotonicity of am),

t, = Hm(- ' ae,Dxu)-H(- ,-,u,Dxu) - Amu.

Let now
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Tlﬂ - Yt + AY + %('p"Y’DxY)o

We consider the auxiliary variational inequality

(7.5)  <vy,v-2)+ a,(z,v-2) - 1/2 \\v(o)lliz z

z (fmv Tm, v-z?
Vv e12(0,EL () A B (0,15 (2))AL9(Q) ,
uZvau-l

ze LZ(O,T;H:,(_O.))A LO(0), u2zZu=-1.

By the methods of [3],[13]1 we can prove that (7.5) has a unique
solution. '

Using the penalized problems and a regularization of f, and
£, AT,, we can prove (by methods substantially analogous to the
one used in [10] for the elliptic case) that

u<g,
Then we have us=sg,

From our variational inequality we have

(7.6) uy + Au + H(e,+,u,Du)Z0 .

Prom variational inequality (7.5) we have

(7.7) ug + A+ B (o,eu,Du) + A u £
é.(Hm('.-,u,Dxu)-H(-,'.u,Dxu) + du) v

(Yt +AY + H(-, ¥ ,D ¥) + A_Y)
which, being u =z ¥ |, implies
(7.8) ug + Au + H(.,+,u,Du) £

OV(Yt + AY + H(.J;’Y’DZY) + 6-),
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where 6, = H(.,-,u,Du)-H (-,-,u,Du)-H(.,., ¥,D  ¥)+

"'%('p" Y’wa’) .

Passing to the limit as m — + o in (7.8) and taking into account
(7.6) we have the result.

R}

[2]

£3)
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