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ON BOUNDED SOLUTIONS OF A LINEAR DIFFERENTIAL
EQUATION WITH A NONLINEAR PERTURBATION
Bogdan RZEPECKI

Abstract: Let E be a Banach space. Suppose that £310,00)x
»BE—>E patisfies the Carathéodory conditions and some regu-
larity ocondition expressed in terms of the measure of noncom-
pactness <« . We prove the existence of bounded solutions of
the differential equation y'= A(t)y + f(t,g) under the assump-
tion that the linear equation {'- A(t)y + b(t) has at least
one bounded solution for each b belonging to a function Banach
space Bo.

Key words: Differential equations in Banach spaces, func-
tion spaces, admissibility, measure of noncompactness. !

Classification: 34G20, 34A34, 34Ci11,

1. Introduction., Throughout this paper, J denotes the
half-line tZ0, E a Banach space with the norm K+l , and
£ (E) the algebra of continuous linear operators from E into
1tsel? with the induced standard norm .1 .

Consider the nonlinear differential equation
(+) () = A(t)y(t) + £(t,y(%)),
where te€J, A(t) € £(E), and £ 18 an E-valued function defined
on JxE.

We are interested in the study of bounded solutions of
(+) when f satisfies the Carathéodory conditions and some re-
gularity Ambrosetti-Szufla type condition (of. [1],[11]) ex-

pressed in terms of the measure of noncompactness <C .
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The method used here is based on the concept of "admissi-
bility" due to Massera and Schaffer [8]. With (+) above we
shall associate the nonhomogeneous linear equation
(x) y'(t) = A(t)y(t) + D(t)

under the assumption that has at least one bounded solution for

each function b belonging to a function Banach space Bo.

2, Notation and preliminaries. Let o~ denote the Kuratow-
gki ‘s measure of noncompactness in E. (The measure oc(X) of a
nonempty bounded subset X of E is defined as the infimum of all
€ > 0 such that there exists a finite covering of X by sets of
diameter < ¢ .) For properties of the Kuratowski function o ,
see e.g. [3]1 - (61,(10].

Further, we will use the standard notations. The closure
of a set X, its diameter and its closed convex hull be denoted,
respectively, by X, diem X and conv X. If X and Y are subsets
of E and t, s are real numbers, them tX + sY i1s the set of all
tx + sy such that x€X and ye Y. Por a set U of mappings defi-
ned on X we write U(t) = {@(t): ¢ € V}; ¢ I[X] will denote
the image of X under @ . Moreover, we use some of the notati-
on, definitions, and results from the book of Massera-Schaffer
(8] and the paper of Boudourides [21.

Let us denote:

by L(J,E) - the vector space of strongly measurable functi-
ons from J into E, Bochner integrable in every finite subinter-
val I of J, with the topology of the convergence in the meen,
on every such Ij

by B(J,R) - & Banach space, provided with the nomm

el B(R )* ©f Teal-valued meesursble functions on J such that
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(1) B(J,[R) is stronger than L(J,R) (mee [8], p. 35), (2)
B(J,R) contains all essentially bounded functions with comp-
act support, and (3) if ueB(J,R) and v is a real-valued mea-
surable function on J with v\ 41ul, then v¢B(J,R) and

y4
v “B(‘R) = “ul\B(R);

by B, - the Banach space of all strongly measurable funoc-
tions u:J—> E such that Aull ¢ B(J, R) provided with the norm
lu “B(E) = A0l ) B(R)?

by C 0 = the Banach space of bounded continuous functions
from J to E, with the usual supremum nom.

Let B¥(J, R) be the associate space to B(J,RR) i.e.,
B*(J,R) is the Banach space of all real-valued measurable func-
tions u on J such that
Null B¥(R) = BuP -{J:T | v(8)u(s)lds: veB(J,R),

We denote by B¥(J,E) the Banach space of all strongly measurab-
le functions u:J—» E such that ju R e B¥(J,R) provided with
the norm fu “B*(E) =1 Wul nn*(R).

We introduce the following definitions:

Definition 1. The pair (B,,C,) is called admissible (of.

[8], p. 127), if for every beB, there exists at least one boun-
ded solution of (x) on J.
Definition 2., Given any subinterval I of J, we denote by
%4 1 the characteristic function of I. The space B(J,R) is
called lean (cf. (8], p. 485 [12], p. 386), if for any nonne-
gative function be B(J, R)

t>00
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Our result will be proved via the fixed-point theorem gi-
ven below.

Denote by C(J,E) the family of all continuous functions
from J to E. The set C(J,E) will be considered as a vector spe~
ce endowed with the topology of uniform convergence on compact
subsets of J.

We use the following fixed-point theorem (cf. [ 9], Theorem
2):

Let % be a nonempty closed convex subset of C(J,E). Let
be a funoction which assigns to each nonempty subset X of ¥ a
nonnegative real number $ (X) with the following properties:

1°  §(Xy) ¢ $(X,) whenever XiC X,;

2° H(xuiyl) = () tory e %

3° & (%onv X) = $(X);

4° 1f 3 (X) = 0 then X is compact.

Suppose that T is a continuous mepping of ¥ into itself and
& (71X)) < § (X) for an arbitrary nonempty set X ¢ ¥ ach
that & (X)> 0. Under these hypotheses, T hes a fixed point in %,

3. Result. Pirst of all, we assume that AeL(J, £(E)), the
pair (Bo,co) is admissible, and B(J,IR) is lean.

Let Eo denote the set of all points of E which are values
for ¢ -‘0 of bounded solutions of the differential equation y'=

= A(t)y. Suppose that Eo is closed and has & closed complement,
i.e. there exisis a closed subspace E; of E such that E is the

direct sum of Bo and E1.

Let P be the projection of E onto E , and let U:J —> $f(B)
be the solution of the equation U'= A(%t)U with the initial con-
dition U(0) = I (the identity mapping). For any t ¢J we define
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a function G(t,-) € L(J,£L(B)) vy

U()PU" ' (8) for 04 s<t,

a(t,n) -{
(t.8 - U(t)(T - P)U'1(a) for s> t.

Let G(t,)e B¥(J, L (E)) and U G(t,.)N\ B*(&(E))s K for any teJ.

Moreover, let us put: (Fu)(t) = £(t,u(t)) for uec(J,B).

Theorem. Suppose f is a function which satisfies Itho fol-
lowing conditions:

(1) Por each x¢ E the mapping t > £(t,x) is measurable,
and for each t¢ J the mapping x > £(t,x) is continuous.

(2) W2(t,x) | & A (%) for (t,x)¢ J=E, where A ¢ B(J,R).

(3) P is continuous as a map of any bounded subset of
C(J,B) into the space B .

Let g and h be functions of J into itself such that
g2&B(J,R) with sup {fa ) G(t,s)] g(s)ds: teJ} &1, and h is
nondecreasing with h(0) = 0 and h(t) <t for t>0. Assume in ad-
dition that for any ¢ > 0, t>0 and & bounded subset X of E
there exists a closed subset Q of [ O,t] such that
mes ({0,t1\ Q)< © and

o (2IIxX))& sup g(8): seI}h (o (X))
for each closed subset I of Q.

Then for x,€ Eo with a sufficiently small norm there existis

a bounded solution y of (+) on J such that Py(0) = t 308

Proof. By Theorem 4.1 of [ 7], there exists M>0 such that

every bounded solution of y° = A(t)y satisfies the estimate
By(td)n & uly(odl

for t& J. Now, choose a positive numbes
T>KWANg gy and assume that x 6 B witnix Il £

e V(x -x 1A BR))
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Denote by % the set of all ueC(J,E) such that lu(t)ll<r

on J and
t t
fulty) = u(ty) | & x |);‘|A<.)|a.l+ [ 2 (oasl
4 1

for t,,%t, in J. Define a mapping T as follows: for u é %,
(Tu)(t) = U(t)x, + [ G(ty0) (Pu)(8)as.
J
Letu ¢ ¥ . Por te€J, by the Holder inequality ([8],
Theorem 22,M), we obtain

It (Bl < Rz U+ [ 1ats,0 ) 1| (Fu)(e) las 4

< M U0)x, I + fJ 16(t,8) 1 A(s)as £
sullxoll +xn7»nB(R)4 r.

By Theorem 2 of [{2] the function Tu is a bounded solution
of the differential equation y' = A(t)y + (Fu)(t). Hence
I (Tu) (£9) = (Tu)(t) | <

<] Naa (T (o) + (o) Has <
1

t t
2 2
éy.lj;1lA(s)lda\ * \fﬁnum\
on J, and therefore Tu ¢ % .
For u,ve ¥ and teJ,

H(Tu)(t) - (VBN £

£ [{V6(t,8) ) 1 (Pu)(8) - (Fv)(s) |k ds £K Il Fu - Fv llg (5.

From this we conclude that T is continuous as a map of ¥ in-
to 1itself.
Put
®(V) = sup $o0 (V(E)): teJ}

for a nonempty subset V of ¥ . It is not hard to see that
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the function ¢ has the properties 1° - 4° 1isted in Section
2., To apply our fixed-point theorem it remains to be shown that
® (TLV1) < & (V) whenever ¢ (V)>o.
Agsume V is a nonempty subset of £ . Fix t>0 and € > O.
Since B(J,R) is lean, K “"‘[a,m) ‘KHB(IR)< & for some a:= t.
Let d'= J'(&)>0 be a number such that

[y 16¢te) 1 A(o)es < &

for each measurable D c [ 0,a)] with mes (D) < d° . By the Luzin

theorem there exists a closed subset Z; of [0,a]1 with

mes ([0,al\ Z1) < d°/2 and the function g is continuous on Z,.
Let X, = U{V(s): 0£84al. By our comparisn condition,

there exists & closed subset Z, of [0,a] such that

mes ([0,8)]\Z,) < J/2 and

0 (fII %X 1) < sup {g(s): = 6I+h(cc (X))

for each closed subset I of Z2.

Define: D = DyuUD,, 2 = [0,a)\D, where D; = [O,a.]\Zi

2!
(1 = 1,2), We have

&« {fn G(t,8)(Fu)(s)ds: uev}) <
< diem ( {ED G(t,8) (Fu)(s)ds: ueV}) £
< 2.5up {1l jD G(t,s8)(Fu)(s)dsl:uevl £
£2 . j;, 1G(t,8) 1 A(s)dsc2e
and
(4 f: G(t,8) (Fu)(s)ds: ueVl) &
<2 . j:’I G(t,8) B A(s)d8 22K WX py o) Allp(gy<2 e -
Let
¢y = sup {&(s): se2}, c, = sup {1G(t,8)b:sezl.

Since Z is compact, for any given €' > O there exists an >0
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such that |s'1 - 31"‘<'rl with s;,s;' € Lo,t1lnz, lsé - 5514
< m with 85,8)' € [4,81nZ and |s' - 8"l < m,  with 8',
s" € 2 implies ;o (X ) D G(t,8y ) - G(t,8y D I<e’ (3 =1,2)
and o, (X ) lg(s®) - gs™)l < ¢e'.

Let I, = [ti_1,ti]\D (1 =1.2,...,m), where

0= t°<t <...<t1 = t<...<tm =a

1
with iti -ty 4 | < 7 . We shall prove below that

o VLe(E,e)f [I;xX]: s8el ) &
< sup{bG(t,s8) I seIi} ¢ (LTI, =X 1),

In fact, for £,>0 there exist a number Mo~ O &nd sets
Wj’ J=1,25e00,n, such that

m
f[Iix XO] :=’;3’\__.}4 Wj, diam WJ < e, t &'.C(I[Iix Xo])

and

16(t,6') - 6(¢,6")bemupflixll: xeflI;xX1% < &

tor 6', 6"e I, with l6'- e\ <7,+ Divide the interval
I; into r parts dq< d2< "'<dr+1 in such & way that

\dk+1 - dk‘ <M, (k = 1,2,0..,r). Furthermore, let us denote
by xjk (J =1,2,000o03 k = 1,2,...,r) the set of all x6E such
that there exists a point wei'l;j with { x - G(t,dk)w I < 2.

Let "E‘ = G(‘c,ao)zo, where 8,€ [dq,dq+11 and z € Wp. Then

g - 6t,a )z, 1l £ BG(%,3,) - G(t,a )Mzl < &

hence g € qu. Consequently,

"y LA
U {604, 2I =X 86Ty} € Wy )0y Xy

It \Lx?- G(t’dk)'y < e, (@ =1,2) with x; € xjk and

wfe Wj, then

hxy - N etz - a(t,a)wml + ha(t,q)w - G(t,q)m) 0l +
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+ Ne(t,a)wm, - x, I <
<2g,  + sup f1G(t,9)) ¢ sin}.diam (Ij) <
<2e, + [, + < (£II;<X 1)) sup{lG(t,8) b: seI b,

Therefore,

& (U{G(t,8)[I,x XJ: scIi§)£2 e, + [eo +
+ L (2[I;xX 1) esup {1 G(t,s) ) : sel}

and our claim is proved.

Applying the integrel meen velue theorem, we get
< (4 fz G(t,s) (Fu)(8)ds: ue V) <
£ (. F mes(I;) @ (ULG(t,0)tII;xX ] seI})) £
£ 2

N
3

4 mes (Ii)oc,(U{G(t,s)f[Iix bR Y seI}) £

< &, mes (I)1a(t, 6,)1 g( ¥;)n(x(X,)),

where 6’1, T4 are points in I; such that

¢

N
@

1G(t, 6i)| = sup {0 G(t,8)): seIi} and

g(Ty) = sup{g(s): scI3.

Now, from the above, we obtain

<4 +

o (PLVI(£)) & o ( { [} G(t,8)(Fu)(s)da: uc Vi) +
+ {fz G(t,8)(Pu)(s)ds: ueVy) +

+ &({f:G(t,a)(Pu)(a)dsg ue V) <
<te +n(w(x)) T, L (A6 (00 b ele +

+ cq 1G(%,8) - 6(t, 6,08 + o,la(s) - &( vy )])as.

Suppose o¢(X,)>0. From the sbove, it follows that
& (TLVI(t)) <

mv ]
2T fli(le(t,i);é(i) + Sy mw X )as <



<4 + n(x(X)) [ 16(4,8) 1 g(s)ds + 2¢' < mes (2).

Since V is almost equicontinuous and bounded, we can epply
Lemma 2.2 of Ambrosetti [11 to get

(X)) = sup {x(V(s)): 04s%a}< O (V).

Therefore

< (TIV1(#))<4e + R(H(V)) fz 1G(t,8) L g(s)ds + 2¢€' - mes (2Z),

and we obtain o (TLV1(t))£h(® (V). It (X)) = O, then
& (PLV1($))20 = h(0) < n( H(V)). This proves

£ (TV1I(t)) £ h(H(V)) for each teJ;
hence P (TLV1)2h(P(V)).

The set X is a cloged and convex subset of C(J,E). Thus
all assumptions of our fixed-point theorem are satisfied; T has

a fixed point in % which ends the proof.

Remark, Our result may be applied to the important case,

when Bo is any Orlicz space I.9 generated by a convex ¢ -func-
tion such thet lim @(u)/u = 0 and 1lim @ (W)/u = oo »
w->0 M > o
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