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A CONSTRUCTION OF BRUCK LOOPS
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Abstract: A new construction of Bruck loops is presented.
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Let p be an 0dd prime number. A possgible analogue of 3-e~
lementary commutative Moufang loops (which are closely related
with distributive Steiner quasigroups alias Hall triple systems)
could be the class of p-elementary Bruck loops. Commutative Mou-
fang loops are usually constructed by means of triadditive map-
pings (see e.g. [11,[2),[5) and [8]) eand one can ask whether a
similer method will work for Bruck loops, too. This short note

is meant ag & modest contribution to the question.

1. Introduction. By & (left) Bruck loop we mean & loop sa-
tisfying the identities (x.yx)z = x(y.xz) and (xy)~' = x"'y~',
so that a Bruck loop is & (left) Bol loop in which the mapping
x-—+>x71 is an automorphism (some properties end constructions
of Bruck loops ere collected in [3],[4],[6) and [7]). As proved
in [6]1, Bol loops, and hence Bruck loops, are monoassociative

end we can consider the variety dbp of p-elementary Bruck loops
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(a Bruck loop G belongs to this variety iff every non-trivial
monogenic subloop of G is & p-element group). Then 5?3 is Just
the variety of 3-elementary Commutative Moufang loops and the
varieties SBP are in a close comnnection with the varieties of
p-elementary left distributive left symmetric quasigroups (see
7h.

A ternary ring G(+,T) is an abelian group G(+) together
with & triadditive mapping T of G> into G. Consider the follow-
ing equations for ternary rings:

(1) =®(®(x,y,2z)u,v) = T(u,T(x,y,2),v) = T(u,v,T(x,y,2)) = O3
(2) ©(x,y,2) = T(x,2,¥)3

(3) T(x,y,¥) = T(y,¥,%)3

(4) T(x,y,2z) = T(y,2,x)3

(5) 32(x,y,2z) = 37(y,%,x).

1.1, Lemma, Let G = G(+,T) be & ternary ring.

(1) If G satisfies (4) then G satisfies (3) and (5).

(11) If G satisfies (2) asnd (3) then G satisfies (5).

(iii) If G satisfies (2) and (3) and the group G(+) con-
tains no element of order 3 then G satisfies (4).

Proof. Suppose that G satisfies both (2) end (3). We ha-
ve T(x,y,z) + ™(x,z,¥y) = (y,z,x) + ™(z,y,x) by (3), and hence
27(x,¥,2) = T(y,z,x) + T(z,y,x) by (2). Similarly, T(x,y,z) +
*(y,x,2) = 27(z,y,x) and 3T(x,y,2z) = T(y,z,x) + T(z,y,x) +
*(x,y,2) = T(y,x,2z) + T(x,y,2z) + T(z,y,x) = 3T(z,y,x).

2. A construction. Throughout this section, let G(+,T)

be & ternary ring satisfying the identities (1) and (2). We de-
fine & new binary operation (multiplication) on the underlying
get G by xy = x + y + T(x,y,x+y) for all x,ye G. In this way,
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we obtain a groupoid G.

2,1, Lemma, (i) x0 = Ox = x and x(~x) = (~-x)x = O for e-

very xc G, (ii) (-x).xy =y and (-x)(-y) = -xy for all x,yc @
Proof, Obvious.

2,2, Lemma., (x.yx)z = x(y.xz) for all x,y,z€G.

Proof, We have x.yx = 2x + y + 21(x,x,x) + 3T(x,X,y) +
T(x,7,¥) + T(F,7,X) + T(¥,X,X), (XyX)z =2Xx + y + 5 +
21(x,x,x) + 3T(x,x,¥) + T(x,7,7) *+ 2,y,¥:X) + P(y,x,X) +
27(x,2,2) + T(y,2,2) + M(y,y,2) + 4P(x,x,2) + 2T(x,¥s2) +

2TM(y,x,2), JeXxz = X + ¥ + 2 + T(x,x,2) + T(x,2,2) +

-+

+ + + +

®(y,y,x) + T(y,x,x) + T(y,x,2) + T(y,y,2) + T(y,x,2) +

+

T(y,z,2) and x(y.xz) = 2x + y + z + 4T(x,x,2) + 2T(x,%,2) +
*(y,y,x) + M(y,x,x) + ™(y,¥y,z) + B(x,7,y) + 3%(x,x,y) +
*(y,2,2) + 2P(x,x,x) + 2T(x,y,z) + 22(y,x,2) by (1) and (2).

+

+

2.3. Lemma. G is a loop.

Proof. By 2.1, G 1s a left quasigroup with a neutral e-

lement and it suffices to show that G is a right quasigroup.
If ba = ca for some a,b,c€G then d = b = ¢ = T(c,a,a8+c) -

- *(b,a,a+b), T(c,a,a+c) = T(b-d,a,b-d+a) = T(b,a,a+b) by (1),
and so b = ¢, Finally, (b-a+T(a~b,a,b))a = b for all a,be&G.

2.4. Proposition. G is a Bruck loop.

Proof, The result is an immediate consequence of the pre-

ceding lemmas.

2,5. Lemma, Xy.z - X.yz = T(y,z,x) - T(x,y,2z) for all
X,¥,%€ Go

Proof, Easy.

2.6, Proposition. (i) The loop G is centrally nilpotent
of class at most 2,
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(11) G is a Moufang loop iff the ternary ring satisfies
(3.

(i11) G is a group iff the ternary ring satisfies (4).

Proof. (i) An easy observation.

(i1) Use 2.5 and the fact that a (left) Bol loop is a
Moufang loop 1ff it is right alternative,

(i11) Use 2.5.

Put w(0) = 0 and w(n) = , £, 1(1-1) = (a=1)n(z+1)/3 for
every positive integer n.

2.7. Lemma, x° = nx + w(n)?(x,x,x) for all x€G and all
non-negative integers n.

Proof. By induction on n.

2.8, Proposition. Let p#3 be a prime and suppose that
the group G(+) is p-elementary. Then the loop G is p-elementa-

IYe
Proof. An easy consequence of 2.7.

3. Exemple. Let p be & prime and G(+) = Z3, Z, being the
p-element field of integers modulo p. Define a new binary ope-
ration x on G by xXy = (x;+y, ,x2+y2,x3+y3+x1y2(x2+y2)). Then
G(x) is a Bruck loop and it i1s not a Moufeng loop. Moreover,
if p#+3 then G(% ) 1is p-elementary.
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