
Commentationes Mathematicae Universitatis Carolinae

Rudolf Švarc
The solution of a Fučík's conjecture

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 3, 483--517

Persistent URL: http://dml.cz/dmlcz/106322

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106322
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNiVERSITATIS CAROUNAE 

25(3) 1984 

THE SOLUTION OF A FUCIK'S CONJECTURE 
Rudolf 3VARC 

Dedicated to the memory of Svatopluk FUČÍK 

Abstracts In his book E3] FucSik had formulated an open problem 
on~iRe""equations with jumping nonlinearity• Roughly speaking, 
having in mind the special kind of the nonlinear!ty, there could 
be some nontrivial relations between the Leray-Schauder degree 
and the number of solutions to such equations. By a method of 
geometrical visualization of )R% this article shows that it is 
not the case* 

^5. l -2 iSS2 i .£ i2SJ i25 i 47H15 55M25 

5£Z-52E .i5i jumping nonlinearity, Brouwer degree, existence 

of solutions 

i5.t£2.tH2£.!2B 

Let H be a Hilbert space with a cone C of "non-negative" 

elements, i.e#/for each u ^ H there exist 

LX * trлx 

Let the mappings u t • u* 

U \ • vT 
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be continuous. Let S> i M — • V\ be a linear completely 

continuous selfadrjoint operator , , Let x and c*~ be two real 

parameters. We define the operators S>x i H -*- V\ as follows* 

*^ c 

An operator of this type is said to be an operator with 

jumping nonlinearity. First results concerning this type of 

operators were probably obtained by Ambrosetti and Prodi in Clt23 • 

Some other papers concerning this subject are quoted in the 

references to this article. A list of references can be found 

in t3l also. 

The operator S>A being positively homogeneous 

( S> C^-w^ • 'k-'Ŝ  \x\ f one can easily prove the 

££ .S2ESi25i L e* ^ be a ball centred in 0 £ VA • Let the 

Leray-Schauder degree of $> ^ v*. A . the point 0 and the ball 

be defined. 

Then the equation 

<-> ^ u - * 

has at least ^ ^ ^ x ^ v ^ v ^ » solutions for each 4 €- V\ # 

In £31 FuSik haA formulated the following 

222i£2iB£e.i Le"fc ^ be a ball centered in 0 €. H . Let the 

Leray-Schauder degree of S>v ̂  M̂.r. \ , the point 0 and the 

ball ?-> 
>yx 

4 >\^-v \ 1 

Then there exists some \ €. H such that the equation (±) has 

no solution. 
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This conjecture doesn t hold and we shall construct a counter­

example. 

We shall construct a counterexample to the FuSfk s conjecture 

in the four-dimensional euclidean space IR • In order to achieve 

this goal, we need some geometrical intuition concerning the 

four-dimensional euclidean space. Fortunately we have good 

experiences with the four-dimensional space-time9 because we all 

live in it. These experiences only need to be translated into 

the geometrical terms and assertions concerning the IR . 

For the sake of better understanding the corresponding 

construction, at first we shall investigate the relations between 
3 

Er and the three-dimensional wplane-time". Then we shall proceed 

by analogy in the more interesting case of IR* and the spaoe-time. 

Let us have the cartesian coordinates ( 0**^ x .'t) in the 

three-dimensional euclidean space. Let o be the plane perpendi­

cular to the i-axist which intersects it in the point 0 s vO^O^t) . 

Let the axes x. > *z be the perpendicular projections of 

the axes *,, and V.-. into the plane * . Let VA be any 

geometrical object in the space. Let Ut be its section by the 

plane ^ . 

Let *S be a plane with the cartesian coordinates ( 0 ^ ^ ) 

In the time t we can map G (with the coordinates ( 0 , x„ x^"^ 

and {X ) isometrically onto ^ so that the axis ^ is mapped 

onto the axis %A , x, onto %, • \ *• z 

Mapping this way in each moment -L the corresponding plane 

^ onto o , we get in P some moving object, which will be 
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in the time ^- conformable to the section U . 

So we can visualize any geometrical object in the space as 

a moving object in the plane. It s worth of mentioning 

explicitly, how can be interpreted the point, the straight-line, 

the half-line and the plane in IB by means of two-dimensional 

moving pictures* 

Let us choose some point in R . Then all but one plane 

perpendicular to the t-axis are disjoint with the point. 

That #s why the plane V will be "void" in any time *t , only 

in one moment we shall see there one distinguished point# A straight 

-line may be either perpendicular to the -L-axis or not. If not, 

then every t-section is a plane with a distinguished point* So 

in the plane 'P' we shall see one moving point. Because this 

point corresponds to a straight-line, it will move with a constant 

velocity (in special cases this velocity can be 0 ). If the 

straight-line is perpendicular to the "V—axis, all but one 

t -sections are void, the remaining section contains all the line. 

So the plane *? will be void in all but one time moments, in one 

moment we shall see some straight-line in it. As for the haIf-line, 

the situation in 'P" will be similar. If it is not perpendioular 

to the "t-axis, then we shall see in P either a point moving 

with a constant velocity until it disappears in some time moment, 

then ^ remains void. Or P*" will be void for an infinite time, 

but in some moment there appears a point moving with a constant 

velocity, which can't disappear any more. 

To a plane in !R̂  corresponds in general in T* a straight-line 

moving with constant velocity through ^ • Probably the reader 

visualizes the moving pictures in "o* as black objects in 

a white plane. The visualization of such a type is necessary in the 

486 



oase of a plane perpendicular to the t-axis. Such a plane can he 

represented in Q as followst 9 is white in all but one momenta, 

in one moment it is black. 

By analogy one can visualize geometrical objects inCR* as 

moving geometrical objects in\R • E.g.fto a three-dimensional 

hyperplane in IR there corresponds in general a plane in JR f 

moving itself with a constant velocity. Another examplet Two » 

two-dimensional planes in \R have in general one common point. 

This fact can be visualized as followst To a plane in CR 

corresponds a moving straight-line in IE . To two planes inffr 

correspond in general two moving straight-lines in general 

setting, i.e., they are not parallel and they have not the same 

velocity. Thus they intersect in just one point in just one 

moment. 

Of course, we can represent geometrical objects in IR as mo­

ving objects in lRn~1 by this way, but we shall need this re­

presentation only in the cases n » 3 and n « 4. 

2t^E2H!!2£-52SiE22^2.£.S-!feE 

Because we shall work in euclidean spaces we don't need 

the concept of the Leray-Schauder degree of a map. As concerns 

the Brouwer degree, we have to make some comments about its 

application to the special type of problems, we are dealing with* 

The Brouwer degree of a continuous mapping F t t> —•» ^ 

with respect to the (non-void open bounded) set 1> c *< 

with the boundary ^ b and a point •? ^ R -FC3tS) will be 

denoted as 

*ҷ(ғ í xîЛ -
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J (.£ U.V) means the Jacob! determinant of F m •* 

Definition! ^ e.5^~F(Jo)^N\ is said to be a regular value of 

F iff there exists ^ C ^ O ^ W 0 whenever ^C*) * -r 

JrG.& -FCStT) is said to be a singular value of F if it is 

not a regular value of ̂  • 

Remark: In the definition of regular values of F one usually 

supposes that F is t , so ̂ vJO^T) always exists. Unfortunately, 

the operators with jumping nonlinearity are continuous, but not 

C in general. That is why the above definition suits better 

for our aims. 

It is a well-known fact that 

o) H^*^"^*TK^^ 
whenever Ffe Q.H b > C ̂  a n d ^efcT " * <^>£) is 

a regular value of *" • For F V T ) = ;U w e ^ave <i-zo C t ^ ̂ ) = O . 

ket li^^O^) be a ball with radius r centred in 0 . 

Let 

(2> & •. * r — t*r 
be defined by the equation 

(3) $> u - - u + * X S > v \ + - v j . » 2 > u r . 
*\<?" ^ 

.A\j£-v L* >0 does not exist in general» if 
*\r* 

** 0 ^ Л : 

where 
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Let T* he the system of all subsets of the set 

y t - {..2.*....,*} • 
fhe hyperplanes o^ divided

11
 into Z components ^

H
\ ̂ ^ \ 

defined as follows: 

o^ can be divided into the subsets 

K ц - £ x f e R ľ l ^ > 0 ř o г i Ł N ^ . ^ O f o r л . e ^ - U ^ 

g L м - ^ G ^ U . - O , *.. Ł 0 for ţ Є H ^ f л . 

^ o tor i6-

Q> is evidently linear on the closure of any component V»
M 

and 

Thus 

<**** £i. %* * n ~ * *or every >- ̂  

and the Lebesque r\-dimensional measure 

for every jL N • But then 

<•> - * Sv^u *•-,*)- ~ VcP.<v^> • ° . 
too* 

Lemma _ 1. Let J(j$> (K^) * 0 • Then there exists 

V ^ ^ V ^ P A ^ ' 
Proof is trivial, one only needs to recall that S>x <*-- *8 linear 

on the closure of any component K « As a consequence of 

Lemma 1. and (4) we have 
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LemmaM2« The set of singular values of $> has zero Lebesque 

measure* 

So for almost all -tCSi. we can define 

by (1)» In the singular values we can define < W ^ A \ M \ ^ W 

using the continuity of the Brouwer degree on K - ^ ^ ^ i O ) ) , 

In particular <W ̂ * ^ vt) ̂ r \.P)) is defined this way, whenever 

®f ^ ^ ^ r ^ • Having in mind the positive ho­

mogeneity of S) , we see that «W vS^ v0 ̂  vjS^ is 

independent of r • 

Further, •£ being a regular value of S>^ and 0 ̂ - S>A ̂ ^ V V:07) 

the values tf are also regular for all "t > 0 small enough. 

Thus we get for any regular value T 

" tZv .4S;^U^CN^^ *T ̂ x'^ ̂  " 

_ JUw, 2 _ , *.r J(tS> Uk)) 

,^-u^S-V.^o^0)*t ^ V U ^ 

Є.S.-' < ^ *
 л

\ ^ 

From now on we are interested only in the degree of 

x
 k
 ti.r. J, 0 and a ball centred in 0 and we shall use 

a shorter notation,namely ACJL ) • In this notation we have: 
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(5) A(£x ̂  - . 2 — , x *Vv M^^UV} 
*irV u i ^ U") ^ ^ 

for any regular value -r of S>x * 

Conventions 

The vectors considered in the sequel will be tacitly supposed 

to be regular* If it would not be this case, we could always. 

take a regular value of S> kl near enough to the singular one 

in the question* 

Remark^ All we have done till now, we could do with any 

neighbourhood of 0 instead of ̂ .(JO^ • In particular, Instead 

of S^Ao) we could consider the unit ball in the non-euclidean 

(6) 

i*e*^the set 

\\u\l =2- w. \ 
4 ť - 1 K \ 

$>,. . being linear on K , H c P and Vl^ C\ o)"&» lying 
*yC" H *\ ** ^ 

in a hyperplane in lRn, the set 

lies also in a hyperplane in IRn* Prom the point of view of 

geometrical visualization we can take advantage of this fact* In the 

sequel we shall work with TJ> rather than 5.^0^ • because 

S>. v B ? 0 can be better visualized then 2> ^. V,"-tr(,0)\ 

In particular, all pictures are to be understood in the norm (6)t 

i.e.^as the images of ̂ B>. • Also, instead of 'Q>̂ >. (or Q ^ ^ I O ) ) 

we shall use only the symbol 3 • 
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1) in the norm (6) is not a smooth surface* nevertheless 

it can be oriented as shown for n»2 on the picture 1A* 

The vector of the outer normal n^ in a point X f e 9 (with 

all coordinates different from aero) can be chosen so that it 

belongs to the same VC^ClP* C N e " ^ ) as the point X * This 

way the outer normal is defined in almost all points of c) • 

Remark*, "£> can be smoothened on a small neighbourhood of the 

points some coordinates of which are zero* Choosing an appropriate 

orientation on this regularization of 3 , we get on e) the 

just defined orientation by taking the limit* 

On a neighbourhood of X in~d we can choose a local system of 

coordinates ^ X .1 £ ... £ \̂ in such a way* that the system 

of coordinates ^ i C i- *itn-A * 0 in ̂  i8 oriented positively. 

& maps the system ^X .lA...., ̂ . 4 ) on a system 

( ^v\\\* f cM^v\-4 *̂ Tnis system is regular whenever X ±g 

a regular value of £* * • Now we can choose the normal ^xv*° 

£> \&) in X so that the system ^ A ^ - i l v ^ ^ ,") is 

oriented positively (see picture 1B)* Let n •=.$>. r̂> \ • 

Then j ^ U ^ > U " ' ^ ^ S L ^ * " 
positive orientation* \ ^ \ ; ^ ^ \ X ) ) + t) because X1 is supposed 

to be a regular value of ̂  1̂  . ) 

Thus 

«^ ^ ^ C * ) ) - * \* W i * v ) 

(*,,•) denoting the inner product* But Y « tLV̂  *cr , ^ L > 0 

and <5* is parall 

contains X • Thus 

and <5* is parallel with that part VC^ <-\ 3 of ̂  which 
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Y being parallel with \ j & f t y « - * ^ £ ^ ^ ^ ^ | 

i . e . , U»x' ("Wv̂ O and 

(T) v^v .^S.,. U ' f i - * ^ ^ ' ^ • 

Let -p be a regular value o! S.. .Let us take the half-line 

On the picture 2B this half-line intersects S^ W ) in the 

points *\ \^2.N*\ wi*h preimagee ^ H ^ ^ on the picture 

2A# From the picture and (7) 

How for each u €. ̂  and -k -> ̂  

for u -f 0 # Now, from (5) we can deduce the equation 

and using also (7) we get 

in particular, 

but )(»-t£ » t > 0 means that Xc\-> • So we have finally 
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la the case of picture 2 we have 

In general we have the following rule for computing 

d ^ X J+\ * Pirst we choose a suitable half-line *» starting in 0 # 

Then we construct the set of all intersection points 

^M. v L*^x 2̂ ... ̂ J - ̂  ft S.̂  ̂ (_c>") # Theil w e M v e to g ^ 

the signs of ̂ K \ nH'^ for i_ -*^2 r . . . t V • 

Further we shall denote c> ^ -^ Kf±- ̂ ) • 

Remark^ Regularizing ^ and -iA .,_ » we get certain regularization 
-.-•_____,_. v ^^ 

9 of ^ • Then the orientation of the whole © is defined 

by choosing *xi in a single point X of t) , Taking a limit, 

we get an orientation of a) 9 which is of the type defined ebove# 

Thus if we are interested only in \dvSs. c**~ ** a nd not in 

<A C ^ JM., ) » w e do no* *-eed *° c a r e about ID • We only have 

to choose r* i in a point X e Q and 3 will be oriented* 

If we take the orientation opposite to that one induced by ^-> j_c 

from c) , the formula (8) gives — c ^ v ^ -u.) instead of <-^S_x ) -

Prom now on we shall suppose that 

(9) ^OcNi*^W.= 0})c.̂  y 

where P is a hyperplane in _Rn • Let ©* be a hyperplane 

parallel with 9 and passing through 0 # Por computing <*\^> ^S) 

according to the above-written rule, we can take T lying in © . 
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Then * " " * . %* pc-^4 and the points V\. n e in o) n ^ • I»e* **4i be 

ular projection of n » in o the perpendicular projection of r\ > in p* . Then 

and (see (8)) 

V - x'e-aV^ N * 

Clearly ^ \ is a normal vector to '3 f\ o4 in © . 

( a^ is the unit vector in the direction of the axis X_ )• 

fe shall distinguish two cases: 

p ) /\ and /\ lie in opposite half-spaces, defined by ^ • 

Let, e.g., o lie in the half-space ™ 9 • 

With the help of a rotation of the coordinates in Wtn the 

axis u can be made perpendicular to J> • Thenar* ̂  is 

F CS>*) , where V s \T^ RT"' , FtO) = O , F 1S 

positively homogeneous and "linear on quadrants" ( "2> 

is the boundary of the unit ball in{Rn~1)# So *? is of the 

same type as S , in particular, a formula analogous 

to (8) and (10) holds for F. 

In the preimage t̂ . of the point M . we can define 

a positively oriented system of coordinates ( V\, 

£ *\ such that the axes I. £ , lie in P^ , 

that N ? . . has the direction of the vector M- r\ and 
\fc> Y\ - I A. 

£ . the direction of OVA: . (This is possible for 

>r\*^3 } if vs^Z everything is easier.) Now all the axes K * 
\- ŷ -A are oriented into the half-space r\* and all 

the other axes lie in * . That is why either all the 
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f I I 
systems V.M. € ... F % *\ have the same orientation as the 

corresponding systems CV\^ | . ^ . . . , ^ 3 ^ . ^ ) in ^ or 

all have the opposite orientation to the corresponding 

systems* So up to the sign d.v̂ 2>v S\ is equal to 

Av\^). In the situation drawn in picture 3 { Y \ * 2 [ ) w e c a n 

compute Av̂ » ^up to the sign from the picture 4, whenever 

we know in which component of 9 , defined by the points 

& A f Xi f lies the point 0 # In the situation on the 

pictures 5A, reap* 5B W » S") we can compute d V̂ -..̂  ̂  ) 

up to the sign from the pictures 6A9 resp* 6B9 of course 

we must know, in which one of the components of P lies 0 . 

^ and A ~-ie i n the same half-space defined by Q 

(see picture 8 ) # With the exception of not interesting 

cases,a n ^ is a pair of nomothetic objects similar to (9)« 

Let us denote these objects as IA and U , VA being that 

one which is contracted with the growing *^ into the 

point Av (see section 1), VA being the other one# 

The points n . can be divided into two subsets. #ne subset 

containing those ones lying on \^ f the other subset that 

ones lying on W • 

Making a rotation of coordinates, IA can be considered 

as \ \c> ) , U as F Cc> ) . ( F and V* are certain 

maps tRn~1 —•- Kn~1 with the properties of P defined 

in the part 1 Further we can choose these maps so that 

r A v * * 
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then we get of course 

do <ns»x ^ = A<^VV<HV->, . 

Lemma^3. Let VA >j G. S.^ (̂ -P) (•£ is a regular value of 

§> "\ . Let 

V ^ u . = ^ v ^ f o P L , l ^ . . . ^ - ^ 

Then ^ 

(13) ^ ^ c ^ u y w v y ^C?-X^u^. 

Proofs Let u e ^ , ve VC^ , V^ ̂  <s_ P ^ ^ ^ ^ ^ U ^ 

On Kw. resp. K the operator §> coincides with 
*ҷ *—r- -

R i ; \ ( ^ 
some 

regular linear operator Sx , resp. ̂-* A-- U • 

\c*\ * \\" v *-

The matrices of these two linear operators differ ony in the 
>r\ -th column and 

J <,S> UY> = C.U-V <^
v 

( H ) 

For VA. and v we have the linear equations 

<< u - * . S-. .. v - 4 -
^ l ^ \ ,̂ 

According to the Fгobenius theorem 

(Г) u - ^
&

V ^ • \í 
(15) u n ' x . <• l ^rч 

AsV S., 
ìŕ-,^ 

Vi, v ^ . ^ 
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.̂ LIA- ft -o> v. are the determinants of the matrices which 

we get from the matrices 2>x V4. substituting the n-th column 

by T . But ^-^ î . are different only in the r\ -th column, 

so after this substitution the two matrices will coincide. Thus, 

we have 

<J*-V- 0 ^ X .. V> = <-*K s.. 

and 

according to (12) and (15). Now according to (14) we get (13). 

On LA and VA the orientation is defined by means of the 

projections *\ « of the vectors *V» into S • ^ a n Q ^ 

are homothetic, so to each point of VA corresponds just one point 

of VA t further the vectors r\ , and *> , in corresponding 

points A , T are parallel. 

Prom lemma 3 follows that these two vectors have always 

opposite orientations: 

The points X » \ define a straight-line Q # Let us 

choose a point ^ &• 9 not in the interval X \ • Let us make 

a shift of the system of coordinates in order to get the origin 

into the point v^ • That means? we have to subtract the vector 

O Q ^ K from all the columns of the matrices F , r 

and also from all the columns of the matrix -o (in the case of the 

matrix o we consider O C j as a vector in\Rn), This way 

we get certain maps rL v o \ Q>,f>
A- • * n *ne n e w 

coordinate system neither the geometrical form nor the orientation 

of /c) is subjected to a change. (The orientation of ^ is now 

induced from ?> by means of 5 H ^ x r ^
i n s t e a d o £ ^ >v ̂  •> T h u s» 

the orientation of U * resp. V T remains the same, too. 
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U ' ' 
Choo sing now T in the direction of the half-line v^X * ̂  v 

\ 
lemma 3 applied to S^ fc gives the assertion. 

Remark: Excluding the cases, in which the centre of the homothety 

of ^ and LK lies on N̂ P. VA (we have made this assumption 

tacitly in the foregoing considerations), we can choose just this 

centre for v̂  , because this centre never lies in A I . 

\A divides o into certain components ^ v -. vi into 

components ^-^ • (Between &*- ̂  and ̂ -^ there is a one-to-one 

correspondence because of the homothety*) 
-V 

To each of the components ^ . ^ there corresponds an 

integer c ^ such that civ̂ " ) equals cA^ , if O lies 

in s*.,̂  • Defining similar integers o . ^ for '9-^ , we get 

according to the previous reasoning the equation 

<£. - - A ЬГN 

Thus we can formulate the following rule for computing 

We choose some orientation of U, and we find the integers 

o ^ corresponding to the components SS-^ . To the components 

L̂~" correspond the integers - c ^
 #
 If Q e . ^ o ^ d » 

we have according to (11) either 

(16) d ( A . ^ - A.,.. -<-«,, 

In the case vs = 2> , if VA , VA are as in the picture 7A 

(see picture 8), we take the picture 9 at •first. In the hyperplane 
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<̂  there is U » orienting it properly, the integers Q ^ 

will be as in the picture. In the hyperplane P there is ^ , 

to the components -̂ -̂  of ^ correspond the integers - d ^ • 
w ' 

Covering o with 0 and computing the sums of the corresponding 

integers for each component of © ~ 'c) we get the picture 10, 

from which we can read ĉ vfV̂  .j up to the sign, if we know., in 
\ylf 

which of its components lies VJ # 

If U U have the form of the picture 7B, see pictures 

11 and 12 which have been obtained just the same way from 7B as 9 

and 10 have been obtained from 7A# 

Remark^ The most interesting feature of the picture 12 is the 

presence of the integer -2 in it, i.e., for n«*b there are 

operators with lc\(,S>̂  ^ \ = 2. . 

Remark^ Let us mention once more the assumption (9).f 

4#_TheJ3urJectiyit^^ 

Let us continue in the investigation of the last example 

in the preceding section. What is the two-dimensional visualization 

according to the section 1? At first we have a void plane. In 

a certain moment there turns up the picture 7B# This picture 

immediately splits into two copies of itself. Each of these 

copies then begins to contract and shift uniformly to a point. 

In some other moment one of these copies disappears in the cor­

responding point and then we have only one copy of the picture 7B 

in the plane# This remaining copy continues in contracting and 

shifting, at last it disappears in the corresponding point, too. 

Then the plane remains void. 

Further, in the time 0 in the plane will be one point 

more (it corresponds to the origin of the coordinate system ). 
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So in this moment we shall see something like the picture 12 

(without the integers but with one more point). What does it mean, 

that the equation (it) has no solution? In the usual setting it 

means that there is a half-line going from the origin which 

does not intersect c> . 

Thus, in the plane visualization (in general) either 

in the time 0 there turns up the image of the origin which 

does not disappear any more, but moves with a constant velocity 

into infinity. Or, vice-versa, there is a point coming with 

a constant velocity from infinity into the origin, in some 

moment it falls into the origin and disappears for ever. 

In neither of the two cases the moving point passes across 

the moving lines drawn in the picture 12 . 

The components of the picture 12 with the integer O represent 

the cases in which (±) has no solution for some right-hand side. 

Really, let us imagine the development of the picture with reversely 

oriented time axis. In the time 0 we shall have just the picture 

12 with one more point in a. Q-component. We can choose such 

a velocity for this point, that it won't touch any of the lines 

of the picture in any time between 0 and the moment, when VX 

and W coincide. But then it cannot touch these lines either, 

because after this moment the plane will be completely void except 

of that one poirt. (Thus we have constructed a half-line not 

intersecting c) .) 

This cannot happen in any other component. If, e.g., the 

image of the origin falls into the component with -2. , it cannot 

get out of ir without passing across some of the moving lines, 

because all the component contracts into one point and our moving 

point will be necessarily "caught". 

- 501 



The difference between these two examples is caused by the 

fact, that all the 0-components in the picture KZ. are 

coverings of some component of 7B by itself, all the other 

components are coverings of some component of 7B by another 

component of 7B. 

Now we want to find an operator S>. , such that 
Atrx" 

Av^> ^ ~ 0 a*-d (k) has some solution for any 

right-hand side T # We want to use the results of the preceding 

sections, thus we will seek it among the operators fulfilling 

the assumption (9). It has no sense to seek it among the operators 

considered in the part 1 of the section 3. If there were an 

operator corresponding to this part of section 3 in the dimension 

r\ , there would exist an operator with the same properties in 

the dimension r. - \ ^ too. 
4 -v ] \ 

So let q gt^ ^-^ O , ^ be as in the part 2 of 

the section 3« 
i +* 

Let O €. -*Lm p, £C m We require (see (16)) that 0 = <k^ - (A^ 

i.e.; 

according to the section 4 it must be 

Thus we look in the dimension v-\- { for such an operator 
* r>-A 4 ^x 

$> for which ^ - S>^ K& ) has two 

different components with the same corresponding integers. 

We can't find a counterexample in the dimension 3, because 

it is clear, that P^ - S^ N .. K.^ ) has one of the 

forms in the pictures 7A, 7B. In neither case it has two different 
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components with the same integers c\^ • But it is just as clear 

now that a counterexample exists for *\ * *i . Namely, the picture 

15 shows that it is possible to construct on operator 

such that ^ — 2*^ ^\d)h&3 two components with the same d^ • 

We only have to cover, e.g., the component with 1 on the left-hand 

side of the picture 12 with such a component on the right-hand 

side. One only needs to know that these two components are 

really disjoint in Ir (see picture 13» they are drawn there). 

It does not follow at once from the fact that their two-dimensional 

sections in the picture 12 are disjointf E.g», all the 

O-components in the picture 12 are parts of the section of the 

single component of ^ - 5>v .. v/Tcy with cL = O 
4 ^ r -

Remark: £> corresponds to V- from the section 3« 

Remark^ By the same reasoning as above we can show that for r\* H-

there exists S> with \ i i^ v v )\
 m ^ • 

An attentive reader has probably noticed that we haven't reached 

our goal yet. In fact, till now we have proved only the existence 

of an operator with required properties in a more general class of 

operators than defined in the beginning. Namely, it s the class 

of operators of the type 

(17) ;v * w . 
f\ and J> being two linear operators.(Let us notice that 

the i-th column of the matrix r\ is the image of a. , the 

i-th column of ^ is the image of -Q.. .) 

But 
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KJ + "B.V.- - -i- ̂  4-̂ TAIA* ̂  i- C * - ^ V + -v 

Prom the construction of the counterexamples one sees at once 

that they form an open set in the class of operators (17). So 

taking another example if necessary, we can suppose that A - ^ 

is a regular matrix. Then, making a regular change of coordinates 

in the space R , the operator (17) can be transformed into the form 

which is T ^ r X - B ^ (r\-V-B>V\ in our notation. 

A regular transformation of coordinates can only change the sign 

of ci(J-̂ v .^^ (it does not matter) and does not concern the 

solvability of (±). 

One can also show that the matrices J\ ̂  in (18) can be 

chosen so that \ ^ ~ ^ Cr\*S*) is symmetric. 

Remark^ We could continue with the covering construction 

into higher dimensions. Of course, it would be technically more 

difficult. Nevertheless it's almost clear now that we can 

construct examples with \c\\S>v ) \ as big as we please. 
\C**" 

Also we could construct examples with ck\$->. .. ) * V) and as many 

solutions for every right-hand side, as we please. One only 

musb take Y\ big enough. 

6t_0ne_Counterexam£le 

We can take >« | ^>_ » - \ and 

\ a(s 
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(19) S>= | - \ - t 
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Rej&rkt, The matrix & has a double eigenvalue. But the 

counterexamples to the FuSik's conjecture form an open setf 

thus there exist matrices without multiple eigenvalues which also 

give counterexamples £cr some ^ and xk- • 

Remarkt If we knew the above-written matrix -2» and the numbers X 

and t̂w , the proof; that it gives a counterexample to the FuSik's 

oonjecturet could be done much shorter* But, according to my opinion, 

the method used in the construction of the example gives a better 

understanding of it (see the concluding remarks to section 5)» 

Problem! The inverse matrix to S, in (19) is 

&-*. 

3* 
гч 

28 
2.Ц-

2.8 
21-

*fr 

28 
2* 

3-v 
2** * 3 

28 
2^ 

28 5І. 
1% 4 

JL. 
.1 

ц- Ł 

Thus all its entries are positive* It would be interesting to know 

whether this fact is Important for the construction of the counter­

example or not* 
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*л 

<\í 
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ГЃ-Г 

3 

CÛ 
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<и 

ű> 
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on 

(ӣ 



cû 

č 
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<0 
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0 

\ 

0 

\ 

0 

-\ 

0 

-\ 

0 0 
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> - — 

\ 
ч ° 
xч/ -ì/ 

i °/Ч> ч ° 

^ Ч 4 

4 

<2 
514 -



Ю 

515 



References 

[1] Ambrosetti A., Prodi G., On the inversion of some mappings 

with singularities between Banaoh spaces, Annali Mat • Pura 

Appl. 93, 1973, pp.231-246 

[2] Prodi G., Ambrosetti A., Analisi non lineare, I. quaderno, 

Pisa 1973 

[3] FuSfk S., Solvability of nonlinear equations and B?P, Raidel-

Dordrecht and Soc. of Czechoslovak Mathematicians and 

Physicists - Prague, 1980 

[4] Ambrosetti A#, Mancini G., Existence and multiplicity results 

for nonlinear elliptic problems with linear part at 

resonancesThe case of simple eigenvalue, J.Biff.Equations 

28, 1978, pp. 220-245 

£5] Manes A., Michelettl A.f Un'estensione della teoria 

variazionale degli antovalori per operatori ellitici del 

secondo ordine, Boll.Unione Mat. Ital. 7, 1973, pp. 285-301 

I6j Dancer E.N., On a nonlinear elliptic boundary value problem, 

Bull. Austral.Math.Soc. 12, 1975, pp.399-405 

[7] Berger M.S., Podolak E.t*0n the solvability of a nonlinear 

Dirichlet problem, Indiana Univ. Math. J. 24, 1975, 

pp. 837-846 

[8J Podolak E., On the range of operator equations with an 

asymptotically nonlinear term, Indiana Univ. Math.J. 25, 

1976, pp. 1127-1137 

516 -



[9] Podolak E # f On asymptotic nonlinearities. J.Diff#Equ. 26t 

1977, pp.69-79 

[10] Figueiredo de D#G#t Gossez J.-P#t Perturbation non linéaire 

d'un problème elliptique linéaire près de sa première valeur 

propre, Comptes Rendus Acad. Sci# Paris 284t 1977, pp#l63-l66 

[il] Fu5£k S#f Milota J.t Linear and nonlinear variational inequa­

lities on half-spaces, Comra.Math.Unir. Carol. 169 1975, pp. 

663-682 

KAM MFF UK, Malostranské n. 2/25t 

Prague 1t 

C z e cho siovakia 

(Oblátům 11.7. 1984) 

517 


		webmaster@dml.cz
	2012-04-28T10:28:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




