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ON THE REGULARITY OF THE WEAK SOLUTION OF CAUCHY
PROBLEM FOR NONLINEAR PARABOLIC SYSTEMS VIA
LIOUVILLE PROPERTY
O. JOHN, J. STARA

Dedicated to the memory of Svatopluk FUCIK

Abgtract: It is proved that Liouville property of initi-
al value problem for parabolic quasilinear system - i.e. the
fact that every bounded weak solution of the system with fro-

zen coefficients and with zero initial data in Rf*1 is zero -

implies the cOr regularity of all bounded weak solutions
of initial value problem up to the t=0 part of the boundary.
Moreover, 1f each bounded weak solution of a parabolic system

is C°** _regular, then Liouville property holds. Similar re-
sults for interior parabolic regularity were proved in (121,
for elliptic systems in (53,[6],(7),(81,0(9],[101,[111,

Key words: Quasilinear parabolic system, initial wvalue
problem, regularity up to the boundary, parabolic Liouville
property.

Classification: 35K55

Introduction. It is well known that the bounded weak so-
lution of a quasilinear parabolic system need not be Holder-
continuous. In {121 there was proved that HSlder—oontinuity
of a solution in the interior of the domain is guaranteed if
for the system in question certain Liouville type theorem (see
Definition 4) holds.

We shall prove here that Holder-continuity up to the part
of the boundary contained in the hyperplane t=0 is a consequ-

ence of a similar Liouville type theorem for solutions on
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halfspace with constant initial data (see Definition 5) under
the assumption that the initial data are sufficiently smooth.

There is a counterexample due to M. Struwe (see [4]) sho-
wing that a bounded weak solution starting from the smooth ini-
tial data can develop a singularity. However, in this counter-
example the parabolic system does not satisfy the conditions
imposed here because of the quadratic dependence of the right
hand side on the gradient of the solution.

We are deeply indebted to M. Struwe for fruitful discus-

sions.

I. Notations and definitions. Let Q. he & domain in RZT,

Denote for a T € (0, 00>
* o {z=(t,x) e RT*D, ¢ 6(0,7),x € 03,
M = $z=(0,x) ¢ R"*®, x e O3,
Q" = {z=(t,x) & R'*; (-t,x)€Q"}

Qe=Q'v fuq.
By 1,(Q), WE(Q), €99 </2(q) will be denoted the corres-
ponding Lebesgue and Sobolev speces and the spaces of Holder-

continuous functions.

Let the nonlinear parabolic system in the form

i
Qu | (ai fzsm2 a“ ) = =£ia) + &),

1,j=1,000ym; o€, (3 =l,,..,n
be given. For the sake of simplicity we rewrite it in the mat-
rix form

(1) ug = div, (A(z3u)Dou) = -£(z)+div g(z).

- 446 -



First, we introduce the concept of the weak solution of
both the system (1) and of the Cauchy problem for this system.
(Functions A.f,g,uo are supposed to be defined on the corres-

ponding sets.)

0,1
Definition 1. The function uewz:loo(Q)n Ly (Q) is said
to be a weak solution of the system (1) in Q if

(2) Veec(Q: fa lug, - A(z3u)D D @laz =fa_cr‘, +gD g laz.

Definition 2. The function u€W3’] (Q*u M)NL,(Q") is

called a weak solution of the Cauchy problem for the system (1)
in Q* with the initial value u, if

3) VYoge c® ("), supp 9cQ+u r
fa+[uqt - A(z3w) DD, ) dz = [, (1 + gyl dz -

- fp uo(x)(y(o,x) ax

In what follows, the functions A,f,g,u, satisfy the condi-
tions
(4) A(z3p) is continuous on (Q*u ) x R™;
(5) (A(z3p) §,§)>0 for all (z;p)c (Q'u ) x R", € % 03
(6) tel Y*u r) with s>n/2 + 13
(¢))] gely 1oc(Q+u ) with g>n + 23

(8) u €W (V‘)r\Lw(P) with r>n.

s,loc

r,loc

Now, the properties (Li),(Lb) of the Liouville type are
defined. They concern the behaviour of a weak solution of (1)
in the whole space Rito (resp. of a weak solution of the Cau-
chy problem for (1) in \Rl+n) in case f=0, g=0, u =0 and A be-
ing frozen in an arbitrary point z e Q" (resp. z e ).

Definition 3 (ILi). We shall say that the system (1) has

Liouville property (Li) if the following assertion holds:
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Let %, be a generic point of Q+ and let the function u be

a weak solution of the system

(9 ug - div (A(z 3u) Dpu) = 0

m1 +n

on . Then u is constant.

Definition 4 (Lb). We shall say that the system (1) has
Liouville property (Lb) if the following assertion holds:

Let z, be an arbitrary point of M . Let u be & weak solu-
tion of the Csuchy problem for the system (9) in R)'D with the
initial value u°-0. Then u is zero.

We should like to prove that each system (1) satisfying
both (Li) and (ILb) is regular in the following way:

Definition 5 (Re). Let u be a weak solution of the Cauchy
problem for (1) with the initial value u, satisfying (8). Then
there exists ¢ G (0,1) such that uecQ2Y2r4q* y 1),

Remark, Cauchy problem for (1), being regular in the sen-
se of Definition 5, is regular with the maximal exponent cor-
responding to the regularity of u, and right hand side. It can
be proved in the following way:

The function usc‘{;‘fz"" substituted to A(z3u) in (1) en-
ables us to treat it as a linear system with Holder-continuous
coefficients., Applying Schauder estimates we obtain that the
maximal coefficient o, of holderianity of the solution u is
determined by the quality of £, g and u,.

II, Main theorem

Theorem. Let the system (1) have the properties (Li) and
(Lb). Then it has the property (Re).
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Bketch of the proof. We extend the coefficients and the
right hand side funotions of (1) to the whole cylinder Q. Af-
ter that the weak molution u of the Cauohy problem for (1) in
Q" can be shifted and prolonged in a suitable manner to the
weak solution w of the extended system on the whele @ . The (Li)

and (Lb) imply that w is in 0{::/2'“‘(0) with an « €(0,1). Thus

the assertion of the Theorem follows immediately.

Proof. Let u be & weak solution of the Cauchy problem for
(1) with the initial condition u . Put

(10) v(z) = u(z) - uo(x).

Substituting to (3) we check immediately that v satisfies
the integral identity
(1 ¥oec®@Q), smp gctul

f@.‘f['?t - A(zyv+u )D, v D ¢l dz = fa;‘,[fg; +GD ¢l dz,
where
(12) G(z) = g(z) - A(z3v(z) + u (x)) Dou (x).
Denote for z, = (t,,x ) € R, R>0

(13)  Q(z,,R) = {z = (4,03t e(t, - RB%,t ), \x-x | <Rl =

2
= (t, - R%,%)) x B(xo,R).
In the next lemma we show that the function G has the qua-
1lity needed in what follows.

Lemma 1, Let the assumptions (4) - (8) hold. Then for each
b>0, M>0 there exists C >0 such that for eech Q(zo,R) cecqtur
with z € Q*, rR< 1, aist (Q(zR), 2Q*\ r)> b and for each
veLw(Q"'), Wyl <NMitis
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-(n+A) f 12
1 R \q ds 40
( 4) a(zo,R) (’)
where
(15) A= uin{2lq- (a2)], & (r-m}>o.
To prove it, we use the assumptions (4) - (8) and Holder
inequality.
Now, we extend the system (1) to the whole domsin Q. Put
(16) A (z3p) = { A(sypruy (x)), seQ’,
A((0yx)yptu (x)), 5€Q7,
f‘(z) = {f(l). l€Q+.
0 » Z€EQ,
G (s) = {G(z). zeqQ’,
0 % GQ-o
It can be easily verified that
(17) A (z3p) is continuous on Q x RrR®,
(18) (A (z3p) §,§)>0 for a1l (z3p)6Q x R™, £ +0,
(19) fo‘La,loc(Q) with the same s as for ?,
(20)  the assertion of Lemma 1 remains valid for the function
G. and Q(so,n) cc Q.

We formulate the next obvious result as
Lemma 2, The function

21) vo() = {

v(z) on Q*

0 on Q

is a weak solution of the system

(22) wy - div (A, va) =- 2y + div G,
on Q.

Denote further
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1
(23) P2g0R -(Ao(zo.n) j;‘zmk)h(') a,

(24) faawmlh(z)‘zdz = 872 fo, vy 100e)]%as,

Definition 6. Let w be a weak solution of (21) in Q. A
point z,€ Q 1s said to be & regular point of w if

(25) &o fq(zmmlw(z) - "o 2 12 az = 0.

Lemma 3. Each point of Q is & regular point of the weak
solution v, of the system (22).

Proof. Let z, = (t ,x )6 Q be fixed, Q(s,,R)ccC Q. To pre-
ve that zZ, is regular we substitute first
(26) T = (4=t )RZ, X = (x-x, )R, Z = (2,X),

vR(T,X) = v (t,+R?T, x +RX).

For an arbitrary constant vector H ¢ R™ we get

.2

2 - -
@D o, Ve = (7); gl 15y o)l vel® - Hifes

- 2
-fmmlvnm H|? az,

(The first inequality in (27) is due to the fa8ct that the funo-

tional

I(H) \w(z) - BI? az

- ﬁ).(z,,,m
attains its minimum on R™ in the point H = "oo")

Thus, z, is a regular point of v, if ther® existis a sequ-

ence {vR} (R,—> 0 + a8 n —> 0 ) such that
n

(28) g > P in I(al0,1)),
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(29) p is a constant vector function.

To prove (28) and (29) we go back to the system (22), sub-
stituting there for %, x, v, from (26) and using the notation
2
(30) Ap(z) = A.(tom ,x°+m;vR(Z))
22(2) = £ (% +TRZ,x +IR),
Gg(2) = G (%, +1R%,x +IR),
we see that vp(Z) weakly solves the system

(31) (')! - di'x(‘n(z)nx W) = - fR + d.‘l.vx GR on (Q)R'

wheore (Q)R is the image of Q in the mapping (26).
R>0 going to zero, the set (Q)R expands to the whole spa-
ce R1+n. Thus, choosing K>0, we obtain that

(32) 3 R(K) >0:Q(0,K) c c (Q)y for all R<R(K).
It follows that each vy (R<R(K)) is the solution of the
system

(33)  Vge 0 (a(0,K)
2
fqm,m['R?T - AR(2)Drvp Dy @l & = oo [R2p@ + R GpDrglaz

The class of systems (33) can be interpreted as a class of
linear parabolic systems with bounded measurable coefficients

{AR‘IRR(K)’ Becaise of the estimate

(34) “ VR |\ Lw(Q(O,K)) é “ Ve 'l Lw(Q)

and the continuity of Le(z,p) we can deduce that the ooeffici-
ents Ag, R<R(K), are equibounded and that all the systems of
the class have the same constant 7§ of ellipticity.

To prove that {VR}R<R(K) is a compact set in L,(Q(0,K/2))
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we take use of the Caccioppoli type estimate (see {11, (3,1)).
Taking account of the possibility to estimate L,-nomm of DYvp
by means of the IL,-norm of vy itself (see e.go [31, Lemma 2,1)
over the larger domain, we get finelly

(35) lwgh? £o(1+ “'n“zx.z(q(o.x)))’ R <R(K).

w3/2+1(q(0,k/2))

From (34) and (35) follows

(36) Hvol2 £ o(K), R<R(K).
B w7200 qo,k/20) = O

Because of the compactness of the imbedding of ';/2,1

L, it follows from (36) that we can choose the sequense ’{vk} =
= {vnl;& »g 1im Ry = 0, for which

inte

37 {vk’; converges to & function p in L,(Q(0,K/2)),
Dyvy —Dgp in Ly(Q(0,K/2)),
vy —> P almost everywhere in Q(0,K/2).
By means of the diagonal method we get the subsequence of

{v,} (keeping the same notation for it) such that for each boun-
ded domain Dc R'*® 1t 1g

(38) vy —> P and Dyv, —-Dyp in L2(D),

Vi, —> P 8lmost everywhere on R! +n,

(in particular peL,( R1+n)).

Assumptions (6) - (8) and Lemma 1 give

(39) B2 £, —>0and R, G, —>0 in L, (D).

( ?, = fp eand for the definition of f; see (30); similarly for
X
Gyee)
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Let now @ be a fixed function of C%( R1+P) with & com~-
pact support. We can rewrite (33) as

(40) [ (ol ¥y Pp-dy (2IDg 7Dy @) A2 = fraoa [R3T, ¢ 4R, G Dy #1 e

Acocording to (39), the right hand side of (40) tends to
zero. Thanks vo the uniform boundedness of the set {Ak} on
supp @ and the almost everywhere convergence

“1) 1im Ak(Z) - A.(zo,p(Z)).

O

we get that the vector function p solves the equation

(42) fl..,,,,[pqa.!-A,(zo;p)Dxp DypldZ =0, Vg e cO(R"D)
supp ¢ 1is compact.
If z,€ Q7, then (25) with w = v is triviel and 3z, 18 2
regular point of Voo
It z € Qt, then (42) means that the veotor function p is
the weak solution of the system

(43) Py - v (A(z 3P + u (x,))Dyp) = O

in R, According to (Li), p is a constant vector function
and thus z, is regular, too.

1f, finelly, x, & " , then (42) gives that the p is a
weak solution of the Cauchy problem with zero initisl value for
the system (43). So p =0 on \Rl+n, according to (Lb). From the
trivial fact that p=0 on Rl'm » We have again thet z, is &
regular point of the solution v, of (22) and the proof of Lem~
ma 3 is completed.

As it was proved in [11,[2],[3], if for a weak solution

of (22) all points of Q are regular, then v & Cg_;dodz"(Q)

+
and thenks to the assumptions on u,, uec‘{(;;‘/z'"‘(Q v,
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Remark, Let us mention now the "almos’ necessity" of Li-
ouville oomndition:

Let 2 6 T, let the gystem
(44) uy - divx(L(so,u) Dxn) =0
have the property (Re). Let u be a weak solution of the Cauchy
probles for (44) on R1*® with zero initial dats, Let 3 be an
arbitrary point of Rl'm. We sbhall prove that (Re) implies that
u(s) = u(0) = 0,

Let Q+ be a set desoribed in Sec. I which is, in addition,
convex, bounded and such that the points O end z are contained
in QF. Using(Re) we get the existence of a constant C such that
for every solution v of (44) with zero initial data the estima-
te

(45) “" “co’u;/z.a‘(a;-) go(lvll L”(Rl+n))

nolds.
Putting up(T,X) = u(!Rz.IR) we get a sequence of solutions
of (44) with zero initial data and the same bound for llupl; .

-~
Thus for all R Z1 the norms

I Ug L g09%/2 ,d.(a'#)

are equibounded. Let RZ1, z=(t,x) = (TR®,IR). Then (T,X)€ Q.
and
lu(z) = u(0)l = lug(T,X) = ug(0)| = o(IX1%+ | 2¥2) =
- o R™¥(1xI% + 1£1%2),

Letting R —>» 00 we obtain u(z) = u(0).

So we proved that the condition (Re) for the system (44)
yields (Lb) in the point z . Similar assertion can be proved
in the interior point Zge

v
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