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ENTROPY REGULARIZATION OF THE TRANSONIC POTENTIAL
FLOW PROBLEM
Miloslav FEISTAUER, Jan MANDEL, Jindfich NECAS

Dedicated to the memory of Svatopluk FUCIK

Abstract: A bound omn the velocity of the flow and an en-

tropy condition define a compact subset S of '1 '2, in whioch a

weak solution of a variational inequality is sought. This ine-

quality replaces the continulty equation and it has solutions

ﬁchiaolv; ;he transonic flow problem provided they lie in the
erior of S.
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1. Introduction. This paper is a further development of
the epproach of Feistauer and Nedas [4), where a weak solution

to the transonic potential flow problem is found as a limit of
a generic sequence under some a posteriori assumptions on it
involving the entropy condition. Por more details and further
references, see that paper, Glowinski and Pironneau (7], and
Glowinski (61,

Let QL be & bounded, simply connected domein in R], N=2
or 3, ith a Lipschitz boundary 3fl . The irrotational, stea~
dy, adiabatic, end isentropic flow of a non-viscous, compres-

sible fluid in Q is modelled by the continmuity equation
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(1.1) - av (p(lvul®) vuw) = 04n Q,

where u is the flow potential, Yu is the velocity, and f" is
the density of the fluid given by

3 2
- vl 2
(1.2) @8 = ©,(0 - 2 ? S)M » 04 8-4:2 p

()
The constants (1 8, are the density and the speed of sound,
respectively, at zero velocity, and 1 < 2¢ < 2 is the adiaba~-

tic constant ( 9¢ = 1.4 for air).

2
2a
BEquation (1.1) is elliptic for lvul®< °1 and hyper-
. 2a§ ®€+
bolic for lvul<> T The flow is subsonic in the former ca-
®+

se and supersonic in the latter case. The boundary between the

subsonic and supersonic regions is not known in advance. More-

over, there are in general discontinuities of paresmeters of the
flow on this boundary, the so-called shocks. Physical flows sa~
tisfy the entropy condition:

(1.3) There cannot be an increase of the velocity in the di-
* rection of the flow through a shock.

Let 90 = I, u\"auff with [, and [, open in 3Q eand
the surface measure My , () = 0. Consider the boundary condi-

tions

(104) u =0 on |"1,
(105) gD 331;' = g on r‘aa

It ['14-¢, define
v -{u$l1'2(n):u =0 on l"1'§

and for simplicity of notation let g = O on l"1.
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It "y = §, define

v =fuenw'r?(0): [au dx = 0}

and assume

ds = O,
La®

We consider two formulations of the entropy condition.
The natural form, derived in [4], is

(1.6) [ e'Clvul®) ivul® cuynaxan [ nax Vhed, (),

where

D,(0) ={he D(Q):h2z0 in 03
The simplified form, used in (6, 7], is
(1.7) -fpvuvhax<d fnax Yhe D, (D)
Here M>0 is some constant. Define

Spat ={ueV: u satisties (1.6) and
6a°

1 +2

v ul24 8y < a.e. in Q3%

Sgim =fueV: u patisfies (1.7) and
2e
\e u\2£52< °1 a.e, in 0%
-

Here 8, and 8, are some cons tants.

Put 2
1 lowl
(1.8) W =% fn( fo @(t) at) ax.
Then the Gateaux differentisl of § is

D (u,h) = B(uzu,h),

where

(1.9 Bmwvw = [ eUvul®)y vy wax
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The problem (1,1) with the boundary conditions (1.4) and (1.5)

has now the weak formulation
(1.10) uevy; B(uzu,v) = fans vdas VveV

and we look for physically meaningful solutions which should
lis in the set Sna.t or Ssim according to the form of the entro-

py condition., So, consider the following regularized problems:

1,11, Problem. Minimize & (u) -fans u dS over S ..

1,12, Problem. Find a solution of the variational inequ-
ality

UE Sy Bluzu,v - u) z faa g(v-u)ds V¥YveSg .

It will be proved that these regularized problems have al-
weys solutions. A solution w of (1.11) or (1.12) is & solution

of the transonic flow problem (1.10) if
Yve¥3e>0VYte(0,g): u+ tve s,

~
where S, = S . or S, = Sgime Tespectively, and V is a dense
subset of V,

2, Auxiliary propositions. Compactness results which fol-

low are based on Theorem 1 of Murat [10), We present direct
proofs here.

2.1, Lemma. Let SL be a bounded domain in RY with & Lip-
schitz boundary and let G, — G weakly in (W'+2(0.))* . Let
G,(n)Z 0 for all h & D (). Then G —> G strongly in
(W'P(Q)) for each P> 2.

Proof. Let .Q.1¢: 5-1 c L ve a subdomain of L . There ex~
ists ye ﬁ)_._(.ﬂ.) such that ¥(x) = 1 on Q4. For h ¢ D(Q)
with supp h C .Q.1 we have
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- I‘h“L‘”(Q,)V £h< l\hlle(m"fv

hence

(2.2) e (V26 (y) i h!L’”(Q)e (2 Unll Q"
Detine u , ue W +2(Q) by
favupohax =0, [ vuyhdr=0) ¥hen ).,

Let q >N, Since the imbedding Wl'%ﬂ,)c €(Q,) is compact, it
follows from interior estimates by Agmon, Douglis, and Niren-
berg (1] and from (2.,2) that for every subdomain Q,cO,c Q,,

fu ¥ is compact in W'*9 (Q,), T+ 1.1, so the interpolati-
n 2 q' a

on inequality

1 ] 1-©
. o7 —q7
( fo, tnlPan? < fnllm\%x)’f( fa, 1% an)?
with 1-7 = -ée- + L -'9 gives that the same is true in all
P q

wB(Q,), 1<F<2. Let heW *P(n). Then

fnv(un-u) vhdx = fnzv(un—u)vhdx+

o

xz\n.f (un-u)vh dx
and we have

5

v(u, -u vh axl £ ( gz\nzlv (u, - wl? ax)

\ 'E?.\Qz
4 %.1
(fmnl\v ni? ax)P 12 NQ 1 P,
Since 11N Q,) can be made arbitrarily small, we obtain

G, —> ¢ strongly in (W)'P(Q))* .

This is another proof of Theorem 1 in Murat [10], cf. also
the remark by Brezis [ 3] to that paper. Note that we did not
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use the assumption that L. has a Lipachitz boundary up to now.

Por he W 'P(Q), p>2, put

1

b =h' + 1%, where ah' =0 1n 2 am %6 W) 12(Q).

By Meyers [9], there exists p;> 2 such that the mappings
h Hhi, i = 1,2, are continuous from wT(Q) to itmelf if
2érép1. Without loss of generality assume that p<p,. Since
the imbedding W'~F *P(22)c w'/2+2(30 ) is compact, 1t holds
that the set {n': lnll W1'p(ﬂ-)6 1} is compact, and, consequent-
1y,

sup I(e, - &)l — o.
A 41 1
o w"‘“(.ﬂ.)‘

Since G, —> G strongly in ('l’p(ﬂ.))* , we get the result, O

Lemma 2.1 is a direct extension of Theorem 6 in Murat

[10], where the stronger positivity condition
G,(h)z0 ¥ h e e(N), hZo0,
has been assumed.

We are now in the position to prove the fundamental pro-
perties of the sets Snat and Ssim' Let us begin with the sim-

pler case,

2.3. Theorem. The set S, is convex and compact (in the
w '2(11) norm).

Proof, Clearly S is bounded, convex, and closed. Let

sim
u,6 Ssim and without loss of generality

u,—> u weekly in W''2(Q).

Define G , Ge (w‘ 2(0))* by

- 436 -



Go(0) = [ vuw ohax+ M [ hax
G(h)-fnvuvhdx+l![0_hdx-

We have G, —> G weakly in (W'#?(Q2))* and G,(R)Z 0 for all
h e &,(2), o from Lemma 2.1,
G, —> G strongly in (W' (2))*.
Now
);_v(un-u)vmn—u) ax
- (Gn - G)(un - u)—> 0,
hence u —> u strongly in w2(g)., o
2.4, Theorem, The set S . is compact (in the w2(q)
norm).

Proof. Clearly snat is bounded and closed. Let une Smt
and without loss of gemerality

w,—~> u weakly in w2a).

Detine G_c (W' *2(0))* by

e, = u[n h ax - fn So'(lvun\z) lvunlzvunv h ax.
We can suppose G,—> G weakly in (w'2(0))* ., since Gn(h)?.'o
for all h € &,(Q), Lemma 2,1 implies

G,—> G strongly in (W *®(Q))* .

Now

- j;l go'(\Vun\z) lew1? ou, v, - w ax

+ f go’(qu\a) \vu\2 vu v(u -u) ax

o
def
- fn P (x) ax

- 437 -



-Gn(un-u) -Mfa(un—\l)

+ [Q @' (lvu\a)lvulavuv(un- u) — 0,

Because \v%las 8y, it holds ivul?s 8, (the set of v such
that \v v\2£ 84 is convex and closed, hence weakly closed) and
we get from

2
63.0
1 +%

8y <
that
(2.5) -~ Og® g2 g(g-§)+
+ e’ Ig gg -850

for all € ,§ such that I§ 1228, 1§18, £+§ . Con-
sequently, Fn(x)zo and we can suppose that Fn(x) —» 0 in
Z2c Q2 withlQ\NZ|=0and vu,, vu defined in Z, We cleim
that

v un(x) —» v u(x) V xeZ.

Take x¢ Z. There exists a subsequence such that yu_ —> § o

n,
If § + v u(x), we get by (2.5) a contradiction with Fn(x)—->

—> 0. Hence u,—> u strongly in w20y, 0O

In the sequel, we shall use the following generalization
of the secant modulus inequality taken from Mandel [ 81, which
for « = 1/2 and B(usu,h) = D § (u,h) was proved by Nelas and
Hlavdéek [12]1 and by Fudik, Kratochvil, and Nedas [51 in the

cage of equations (K = H).

2.6, Lemma. Let H be a Hilbert space, K a closed convex
subset of H, § a functional on H with the Gateaux differen-

tial D § (u,h), and B(uj.,.) & symmetric, bounded, H-elliptic
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bilinear form on H for each ue H and such that with some con-

stant £

(2.7) «Blugu-vyau=-v) 2P (v) - $(u) =D ¢ (u,v - u)
Y u, vek.
Let e H*, W (u) = H(u) - £(u).
If w is defined for a given u€K as the solution cf the
variational inequality
weKy D Q(uy v-w) +Blug w=u, v-w
Zf(v-w) VY vek,

(2.8)

then it holds

Y(u) - ¥(wz(1 =) Blu u =w, u - w,

Proof. 4dd (2.7) with v = w and (2.8) with v = u, 0O

3. Solution of regularized problems. With the theorems of
the preceding section at our disposition, the proofs of our main

results are quite straightforward.
3.1. Theorem. The problem 1.11 has a solution.

Proof. The functional @ is continuous and the set Spat

is compact. 0O
3.2, Theorem. The problem 1,12 has & solution.

Proof. The bilinear forms B(uj.,.) defined by (1.9) are
uniformly bounded and uniformly V-elliptic for all uesSg, .
Hence the variational inequality

(3.3) we Seim;B(u;w,v - W) = j;n g(v - w)dS V¥ ve ssim

has & unique solution for any ue Sg,  and the mapping u +>w(u)

m
is continuous. Since solving the problem 1.12 is equivalent to
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the fixed point problem u = w(u) and ssim is convex and compact,

the Schauder fixed point theorem applies. [

As in [4), a very natural approach is to find & solution
to the problem 1,12 as & limit of the sequence u, , = w(uh),
where the mapping u +—> w(u) is defined by (3.3). This is the

secant modulus method for variational inequalities [8, 12].

3.4. Theorem. Let u €S, arbitrary and u,,q = wlu).
Then u,,q - u, —> O strongly in w'12(Q) end any infinite sub-
sequence of {un"s contains a subsequence convergent strongly in
W 2(Q). The 1imit of any convergent subsequence is & solution

of the problem 1,12,

Proof, With § and B defined by (1.8) and (1.9), respec-
tively, we have (2.7) with <= 1/2 (see [4]), and Lemma 2.6
with £(u) = fmg u dS yields

(3.5 oluyq ~u W3 € ¥(u) - ¥(u,)—>0

using uniform V-ellipticity of the bilinear forms B(un;.,.) and

the fact that ¥= ¢ - £ is bounded from below on Sgype Compact-

ness of S yields immediately the existence of convergent sub-

sim
sequences, From the continuity of the mapping u +—>w(u) and from
(3.5), the 1limit u of any convergent subsequence of {un'i satis-

fies u = w(u), 0O

Note that using the particuler properties of the problem
at hand, we proved in Theorem 3.4 the existence of solutions
of the problem 1,12 without recourse to the Schauder theorem.
Anyway, existence of solutions of 1.12 also follows from the
simple fact that any minimizer of & (u) - fan_ gu & in Sy
is & solution of 1,12, We choose the fixed point approach, be-

- 440 -



cause it leads naturally to the secant modulus method, which is

a promising numerical method.

4, Extensions. All propositions and proofs remain valid

when the entropy condition (1.7) is replaced by its abatract
form

- E(u,h)< M(h) ¥ h ¢ D (2),
where B is a V-elliptic bounded bilinear form and le(ll’z(ﬂ.))"‘.

Symmetry and V-ellipticity of the forms B(uj.,.) is in fact
not needed in Theorem 3,2, It is sufficient that B(uj3.,.) be u-
niformly bounded and have the continuity property

VveV: B(u;v,.) —> B(uyv,.) in v¥ it w,— u in V.

The proof follows by an application of the Scheuder theorem
to the continuous mepping u +—>w(u) defined by

we Sgim® (w,v - 'i)vz(u,v - ‘l)v - B(uyu,v = W)

+ Lw_g(v -W) 4 Y veS, .

Theorem 3.4 remains valid for more gemeral problems as long
as the assumptions of Lemma 2,6 are satisfied with some o< < 1

and D ® (u,h) = B(uju,h). For conditions implying (2.7), see
Mendel [61,

The compactness of the sets Sum and snat makes it possibd-
le to use the concept of discrete compactness (see Anselone and
Angorge [21), which yields strong convergence of subsequences
of molutions of suitable finite dimensional approximate prob-
lems to a solution of the regularized problem., This will be
studied in following papers.
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