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COMPLETELY REGULAR MODIFICATION AND PRODUCTS
Petr SIMON

Abstract: If X is a topological space, demote CR(X) the
completely regular modification of X. The aim of the present
paper is to give an example of two TB—spaces X, Y such that

CR(X > Y) #£CR(X) =< CR(Y).
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Jones machine, TychonofI plank, almost disjoint family.
Classification: Primary 54G20, 54A10
Secondary 5410, 54D15, 54B10

There is a plenty of papers dealing with the commutativi-
ty of products and a suitable functor from the category of to-
pological spaces into itself. To the author ‘s knowledge, the
functor of completely regular modification has been investiga~-
ted from this point of view in [0] and [P). For a topological
space X, denote CR(X), the completely regular modification of
X, the space whose underlying set is the same as that of X, e-
quipped with the topology, the base of which consists of all
cozero subsets of X. It is easy to show that CR(X) has the lar-
gest completely regular topology contained in the topology of
X, Let us remind the best results concerning the commutativity
of CR and products:

Theorem [0l: Let X be Pychonoff. Then the following are

equivalent:
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(1) X 1s locally compact,
(11) for each mpace Y, CR(X=Y) = XxCR(Y).

Theorem [0): Let X be a topological space and suppose that
CR(X) is not locally compact. Then there exists a Hausdorff spa-
ce Y such that CR(Xx Y)$ CR(X) »CR(Y).

According to these two theorems, the picture is pretty clear:
local compactness is the crucial property. Unfortunately, the
proof of the second theorem mentioned above essentially uses the
fact that the space Y is not regular.

We do not know the answer, whether "Hausdorff™ can be re-
placed by “"regular® in the second theorem of S. Oka. Neverthe-
less, we can exhibit the following

Example: There exist regular spaces X and Y such that
CR(X) > CR(Y) #+CR(X < Y).

The idea 1s fairly simple. Let us start with a completely
regular, non-normal space T, let A,BGT be the two closed dims-
Joint sets which cannot be separated. Run the space T through
the Jones machine. You will obtain the regular space X which
contains & point p and & closed set A° isomorphic to A suech that
p end A cannot be functionally separated. This implies that
whenever U 18 a cozero set in X which contains p, then Ur\L.
is infinite, Consequently, the point (p,p) belongs to the olo-
sure of the set {(x,x):xeA,} in the space CR(X)=<CR(X). Im or-
der to show that CR(XxX) differs from CR(X)» CR(X), we need to
find a continuous real-valued function on XxX which veanishes
in (p,p) and equals 1 in each (x,x), xaA,.

Unfortunately, this does not work in general and we ought
to be a bit more cereful when choosing the starting non-normsl

space - in fact, we shall need two such spaces. In spite of
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this, the idea has just been fully described and the rest are

mere technical complications.

A. The modified Tychonoff plank. Let v <% 2"’ be a cardinal
number, let F={E 1o 6 i be an arbitrary family of infini-

te subsets of w.

The modified Tychonoff plank T(% ) is defined as follows:
The underlying set is (v + 1)x (w+ 1) - {(=,w)}, every point
(con) (for ¢ €T, n < w ) is isolated, the neighborhood base
of a point (¥,n) (for n < w ) is the collection
£4(x,m3ui(ec,n): € 6 7 - ChiC 6 [v 1%}, the neighborhood ba-
s8¢ of a point (,w) (for « < 7 ) is the collection
{f(x,)} udi(x,n)iner - PhPelwl““L Sometimes 1t will
be convenient to emphasize by a subscript (o¢ ,n)? that the pair
(%,n) belongs to T(F).

Now, the space T(% ) is completely regular Hausdorff O-di-
mensional. It is normal if and only if | %! 4 @ , because the
sets AS = {tix® and By = ¥ x{w} cannot be separated iff
T> W,

The forthcoming lemma shows one important property of con-
tinuoue functions on T(F).

Por Fs(wl?”, denote '}(3’) ={X 6 [w1¥: |{P e F:
IPAXl = wils @i,

Lemma 1, Let F & [cl®, = |%F]l> @, let 1:(F)—> R
be continuous, ¢ > O. Then

(1) 1t lixe Tilt((c,w))lzetls w, then fnew:
:12((e ,m))| > eile (%), and almost conversely

(11) it {new :|2((w,n)) |z z}e}(?’), then |{oc € T3
(@l >etlew.

Proof. Since f is continuous, then for each n,k ¢ @ the
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set S 'jd“: 7 1]2((x,0)) = 2((v,0)) | z £} 18 countable,
Let S = h\-J"HDSn.k, Z =7 ~-S8. Then for x € Z and n 6 &
2((e¢yn)) = 2((x ,n)).

(1) Denote M ={new :|f((Tv,n))|>¢? . If x 6 Z is
such that |MnZ | = @ , then the continuity of £ implies
12((xc,@))l z inf {{2((cc,n)) i€ R n M= inf {l2((7 ,0))|:
ineP A M} Z€ . Therefore {k € T :|P N Ml= wicixe:
11t ,))] 2 €} U 8. Since both sets on the right-hand side
are at most counteble, M ¢ g} (F), which was to be proved.

(11) Denote N = fnew :|f((w,n))lzel . If ¢ Z is
such that |E, A F|< @ , then If((xt,))| & sup §12((cc,n))]s
ineP - ¥} = sup {I£((x,n))l:ne? - N}{ < € . Thus
{fxev:lit((c,w))]|>elg{xerslF n¥|=wiws.

Since ¥ ¢ }(%), the set{xez:|P, NN| = wlis at most count-
able, hence the set { € T :|f((x,w))| > e} 1s at most coun-
teble, too. O

B. Jones machine, A well-kmown consiruction, the final
form of which is due to P.B. Jones, goes as follows [J): Let T
be a non-normal space, denote A,BGQT the closed, disjoint sets
which cannot be separated. Let Z = (T x @) uip}, where p4Tx @.
The topology on Z is the usual product topology in all points
other than p, the basic neighborhood of p is {p} U(Tx (w- X)),
where k ¢ & . Define an equivalence relation ~s on 2 by
(x,n) ~ (y,m) iff either xeA, y =xandn =2k + 1, m = 2k + 2,
or x&B, y = x and n = 2k, m = 2k + 1. The space J(T) is the
quotient space Z modulo ~s .

The basic properties of J(T) are the following: If T is re-
gular (resp. Hausdorff, resp. T,), then J(T) is, but J(T) is not
completely regular, beceuse the point p cannot be functionally
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separated from the closed set Ax40%.

Por the modified non-normal Tychonoff plank T(Z%), denote
A= {(g,n)in s @t , B=f(x,w): €& x}! and consider the
space J(T(F)) = J(F¥). (If necessary, we shall again denote
the points of J(F ) as Py eand ((oc,n),k)? .) Then the follow-
ing holds.

Lemme 2, Let F g [w]wbo uncountable, let £:J(% )— K

be continuous, f(ps.) = 0, € > 0. Then
fnew : £(((v,n),0) | >ele J(F).

Proof. There is some k 6 @ such that for all x e{p} v
V(NF)x (w= X))/~ , 12(x)) < ©/2, Hence there is some even
32k such that |£(x)| < ©/2 for all x¢ Bx{j}.

Choose d’ > 0, d" < ©/2.j, Since for each xe Bx{ji,
1£(x)\ < €/2, by Lemma 1,(1), the set {n 6 @ : |£(((z,n),3i))|>
> /2y € J(F). Since A x {j} was 1dentified with Ax{j - 1},
the set {n ¢ @ 12(((«,n),3-1))| > /21 belongs to }(ﬁ').too.
Thus {n e @ :12(((,n),3-1)) | = €/2 + I't¢ J(F), by Lemma 1,
(II), the met {ot € ¥ :)2(((ec,@),3-1))] > €/2 + J"§ 1s at most
countable. By the identification, {ct € T : |£(((ec,w),j=2)) ]| >
> 8/2 + &'t 1is countable, too, and the same holds for f« € % :
s 12(((ec ) 3=2)) ) = ©/2 + 2d'¢ . Proceeding further, we ob-
tain finally that {n e @ :|2(((x,n),00)} > %2 + §.0'} € F(3),
which was to be proved, as €/2 + j.I'< &, O

C. How to do it. The forthooming lemma is fully proved in
{s1.

Lemma 3., There is an infinite maximal almost disjoint fa-
aily M s lw)® which admits a disjoint partition M= Fu G
such that (M) = F(F) = J(G).
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Notice that both the collections ¥ , G must be uncount-
able. Suppose the contrary, let & -{Pn:n € wf . Choose a
countably infinite subset g,' € G and enumerate it as {a,:

:n € @§ in such a way that for each G & G’ , the set {n e @
G = Gn} is infinite. Then pick up inductively k 6 G, 'égjo b,
k >k, ;. Now the set K ={k :new} belongs to F(3), for
En? is finite for each P ¢ ¥ , On the other hand, the set
fMAK:M € M and IMAK| =@} is an infinite maximal almost
disjoint family on K, hence it cannot be countable. Thus
Ke}(¥F), K & F(M ), which contradicts the lemma.

The spaces we promised to construct, are X = J(F), ¥ =
= J(Q), where ¥ and G are as in Lemma 3. Let ¥ = 1%, @=
= |G| ; using the notation as before, denote

A = £(((x,n),0) , ((@..n),O)@):n e wk.

First, we shall prove that the point (p?'p@) is a cluster
point of A in CR(X) x CR(Y).

Indeed, choose arbitrarily a cozero set U with P& Ua
€J(%), and a cozero set V with R € V$J(G). By Lemma 2, K =
={new :(/c,n)s.¢ U{e J(F) and L ={new :(@,,n)(’# Vie
s}((}). By Lemma 3, }(3’) = 3(G) = F(M), and clearly
} (M) is a proper ideal on w , thus @ - Kul is infinite,
Clearly, for n6 @ - KulL, (((%,n),0)z , (((z;,n).o)g,)s UxV,
Thus each neighborhood of & point (p,; ,pcr) in CR(X)x CR(Y) meets
A , which was to be proved.

Second, we shall separate the point (ps, ,pg_) from /A in
the space CR(X»nY).

Define a function £:XxY¥— R as follows: £((x,y)) =1
provided that there aren € @ ,x €T + 1 and 36 + 1 such
that x = ((oc,n),o)g, ¥ = (3 ,n),O)g’ , otherwige £((x,y)) = O.
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Clearly, £ 0 A = 1, I((pg. )) = 0, thus it remains to check

’P(*
that £ is continuous.
Pick up (x,y)é Xx Y. Then there are only four non-trivial
casges:
1. x= ((<,w),0)y for & <7,
T = (((.'»,w),o)g for 3 < .
Let U = ix3u {((o,n),1); :nek - G , 1640,18F,
Ve=iyiod((p,n),i), met, - B, 1€40,1i3
Since 7l was assumed to be almost disjoint, (B, - G/& )n
{\((',(s -?.) =¢, thus £ ' UxVs= O,
2, x= ((«£,w),0) for o« < 7,
y=({(3,),0) for B &« 4 ,n < @.
Let U ={xtu {((c,m),i):me -1{ni, 1efo,1t¥,
Va{gto{((4,),0): y < .
Then £ TUxV = O.
3, x= ((,0),0) for x ¥ , n < @
y=((A,»),0) tor B <« .
This case is gymmetrical to the previous one.
4, x = ((ct,n),0) for . &« T , 0 < @,
y=((p,m,0) for B £ ,m < -~
Let U ={xtuv{((d'yn),0): F< v,
Veiytu{((y,m,0): vy < &’-
Then if f(x,y) = 0, which takes place if n=m, we have
fPUxV=0, and if n = m, then £ PUxV =1,

In any case other than these just mentiened, the existence
of neighborhoods U, V with £t UxV= O, is obvious.
Thus £ is a continuous function which separates (p_,p )

T
and A . v

Remark. The spaces we have constructed, are regular. One

- 127 =



can want, moreover, that both X, Y have a base consisting of

interiors of zero sets. It suffices to start with T(¥F) and

T(C‘,,) as before, but then adopt the construction described in

[W) instead of Jones machine.

[B]

[J]

[o]

93]

[s)
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