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REPLACEABLE NETS AND IMPROPER COLLINEATIONS
V. HAVEL

Abstiract: In this Note there is answered the question
what Ts the mutual connection between the following prorrtiu
of a given net: (1) to be replaceable (in the sense of %.G.
Ostrom) and (ii) to admit an improper collineation onto itself
(in the sense of V,D. Belousov).

Key wordg: Net, affine plane, proper and improper colli-
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§ 1. Pundemental notions, Under an incidence structure
(more precisely, regular incidence structure) we understand
a couple (P,<L), where I is a set and &£ is a non-void set
of some at least two-element subsets of the set P , satisfy-
ing (1) for all a, &r ¢ Py a % & , there exists at most one
¢ ¢ £ such that @, & &« c « A8 a consequence of (i), the in-
cidence structure ( P,d,) satisfies also (1i) for all a , & &
6 £, a % 4, there exists at most one ¢ ¢ P such that cea,b.

Some denotations: Let (P, ) be an incidence structure.
Elements of P , reaspectively of S will be called points, res-
pectively lines. Non-disjoint distinct lines a ,4 have just
one point in commony this point will be called point of
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intersection and will be denoted by a N & .

Two distinct points a , £ lying on the same line are
said to be Joined and the line containing @ and 4 will be
denoted by a u Ar.

We ssy an incidence structure J = (P,£) 1s embedded
into an incidence structure J’' = (P’, %) if P is a subset of
P’ and every line of J 1s a subset of a line of 7 ; someti-
mes we shall use only a shorter formulation ™ 7 is embedded
into ' ",

Now we will formulate some further conditions which may be sa-
tisfied in an incidence structure J = (P,%); (i11) any two
distinct points of J are joined.

(Join condition)

(1v°), resp. (iv). For every line a of Jixe Llx=avxnas=
= P} 4is a partition of a subset (depending ona ) of &P ,
respectively a partition of P .
(Weak, respectively stro arallelity condition)
If an incidence structure 7 = (P ,%) satisfies the weak pa~
rallelity condition then //={(a,#)eLxLla=bvant =0}
is an equivalence relation on & called parallelity relation
or briefly: parallelity.
If an incidence structure J = (P ,¥) satisfies the weak pa~
rallelity condition then

#(L/W)=#HxeLlx=avina=PF}lac L3
will be called the degree of 7,

An incidence structure 7 = (P ,&) satisfying the strong pa-
rallelity condition and having degree = 3 is called a net.
In a net J = (P,¥) 1t holds #a =44 for alla, e L
and this cardinal number is called the order of the net.
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4 net satisfying %hs Join condition 1s called an affine plane,
net J = (P, L)y Y'= (PYY’) be inoldence structures and &
a mepping of 7 into P’ , we shall denote this mapping

6t ® —» P’ algo by 61 J—» 7’ . We say 6 1is join pre-
gerving 1f for eny two distinct joined points a , & of .7 with
distinct images 6 (a) # &(4 )it follows that 6 (a), & (&) are
joined in 7.

I 6 1is bijective and both &, 67 are join preserving then
6 will be called a collineation. A collineation 6 will be

said to be proper if for every a € £ 1t follows {6(x)lxeaje
A 3 otherwise © 1s called improper. A collineation 6':

1+ T—> 2 18 called an sutocollinestion of J . Another de-
notation for a proper collineation, respectively for a proper
autocollineation is igomorphiam, reaspectively automorphism. If
there exists an isomorphism &3 .7 —> 77/ then .7 and -’ ere
seid to be isomorphio.

Anet 2 = (P,£) 1s said to be replaceable if 4.'dg> (the 1-
dentity mapping of P ) is an improper collineation of J} on-
to some net T1° = (P,¥°) with £ £ £ 3 J3° is then e repla-
cing net of Jt .

§ 2, Replaceable nets versus nets admitting improper
autocollineations

Proposition 1, a) If there exists an improper colline-
ation of a net 2 = (P ,£) then J2 is replaceabls,

b) If there exists an improper collineation of an inoci-
dence structure .7 = (9’,%£) onto an incidence structure 7=

= (P L) then idp is en improper collineation of 7 on a
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convenient incidenoe struoture (P, Y’) with £ # <.

Proof. b) Let there exist an improper collineation oe:
t T—>7" . Yo put L= {{oe(x)xeatlae £} and got T°=
= (P,4£°), an inocidence structure which is isomorphic to .7* .
As it 1 seen, £°# L and id,: T— 7" is an improper col-
lineation,

a) Let there exist an improper collineation se: 71— J2°.
Ve put again '= etV Ixeallae £/F and obtain a net ' a
e (P,4°) 1somorphioc with Jt/ , Here £°% L and id,_,,: b Ty (g
is an improper collineation sc that 7. is replaceable. O

Proposition 2. a) A net adaits an improper autocolline-
ation 1f and only if it admits an isomorphic replacing net.

D) An incidence structure 7 = (P,¥f) admits an impro-
per sutooollineation if and only if “‘d!P is an improper ool-
lineation of J onto some incidence structure = (T, &£°) 1s-
omorphiec to .

Proof. a) By proposition 1 b), if the structure J =
s (P,£) admits an improper amtocollineation ¢ then ‘.dd’ is
an improper collineation of .’ onto a convenient incidence
structure 7= (P, £°) where £° is different from &£ and
%¢:J—> 7" 1is an isomorphism. Couversely, if idp is an
improper collineation of a given structure 7 = (P,¥£) onto
some structure 7 = (P,%L’) isomorphic to I then there is
en isomorphism 9¢: 7—>.7"" and this se is at the same time
an improper autocollineation of .77,

b) The argumentation from point &) can be carried over
onto point b) analogously as it was made in the proof of pro-
position 1. OO
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Example. Investigate the net 2 = 1{1,2,3,4,5,6,7,8,9},
*%"'z»"’s»*%»”z:”aa%cz.C,” from Pig. 1. The mapping
1241582 +>6+>9—1, 33, 55, T—>T
is an improper autoocollineation of 7t . Purther, the ne¢ Jt’=
= 61,2,3,4,5,6,7,8,9% o, 0,05, 8, 85,4}, c1,c], 313 trom Mg
2 is a replacing net of 7t and is isomorphic to 7% .

- \
¥ -~ Ie
'A Z J 1
. / ’ /
V4 // J
41,7 5 6 A
A %,4
/" // ’/
/ Y /
, ’ /
by =
a, |1 a2 - 3
y 4 2| < o
-
~Ne - 3

A net will be called Ostrom net of degree o and of dimensi-
on 2 if it is isomorphic with the net Faw\)’ (F",{{(x,‘,xz,w‘—ni:,,

W+ Vg, Xy, kgt ey, %, €F3at, 1z, v, 6 F vifa, Y%, Y:) 4y, 4,6 F3 |
wy,a, € F}
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Theorem 1 (J. Klouda). A net of degree & and of order
(& =1)% adnits an improper sutocollineation if and only if
it is Ostrom net of degree .k and of dimension 2, An isomor-
phic replacing net for f, . (F= GF (% -1)) 18 the net

Fraay = CF Y £ 0y, sexyrary, 5, x, 405156y, %, © Fi lat, a3, v, 6 Fi U

uvilla,, y,,0,,9,) o, 4,e Fila,a, e Fi

with isomorphism v¢: Frg o —> Frg g, (x,,5,%,,%,) 5 (5, %, %0 56, ) .
The set of all improper autocollineations of Fu,_,q) is

{d02e A Aut Frg 43 where Aul Feg_4) 1 the set of all au-
tomorphisms of F . ,, (determined f.e, in [1], Theorem 4 and
in [6]).

Proof: cf., [5]).

§ 3. Some properties of replaceable nets of degree k-
and of order (& - 1 )2

Proposition 3. Let 7t = (3?,%) be a replaceable net of
degree %k and of order m having a replacing net R° = (&, L)
of degree &° and of order m* . Then K=k , M =m , m<£
4(k -1)2 and every line of 7¢° is an incidence struoture
which is embedded into 7t and satisfies the join condition
and weaek parallelity condition. Moreover, every line of J2°
is an affine plane (of order .k -1 ) embedded into J¢ if and
only it m = (& - D2

Proof, Prom # P=m®=m'2 it follows m = m'. The
number of all joined (non-ordered) couples of distinot points
of Bt respectively of ° 1is -;-mzk(m = 41 ) respectively
%m’k’ (m =1 ) 8o that k= f’. A J%° is a replacing net
for Tt there exists a line o’ ¢ £°\ . Pirst we shall show
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that # (@’ na) < k-1 for alla € L£: Suppose #* (a'na) = R
for some @ ¢ £ and take a point A € 2"\ a (which exists
because of #a=#a’ , @ ¥ a' ). How we construct the join-
ing lines of A with each of mentioned .k points (these joining
lines exist since any two distinct points of a line of 72° must
be joined in Jb ). So we get (in J% ) at least % lines through
A intersecting with a , a contradiction, - Now take a point
Bea.
Por every line fr ¢ & through B we have # (a'nb)< k-1and e-
very point of a’\ { B} 1ies on exactly one suoh a line. Conse-
quently m=#a'%shk (-2 +1= (k-12. N Every line
£7e £° determines the set L) =fanllac L, ¥ (anL)=2 $.
This set éﬂz. is non-void: Actually, % £° > 2 and any two dis-
tinoct points of £° must be joined in R as 7' is a replacing
net for 72 . It follows that (2%, "’Ct') is an incidence structure
which is embedded into Jt and satisfies the join condition and
weak parallelity condition. ~

Moreover, a line @ e £° \ &£ is an affine plane (of ord-
er &k -1 ) embedded into J¢ if and only if for every A'c @
there are precisely /& lines from °{£,, going through A’ and
any such line intersects ' in just & -1 points. This occurs
1f and only if #a° = k(k-2)+4=(k-41)2, Purther we will show
that for m = (k -t every line £°c ¥£° 1is an affine plane
of order (& -1 )7' embedded into 72 : Assume on the contrary
that there is a line c ¢ £ n £° . We take a linea’e L°\ &
(the existence of which was stated above), Then & nc = (4 as
incase > nc # @ it would follow # (a’'nc)= k-1 and this
is impossible while the lines a’, ¢ € £° are not parallel in
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7° and as such they have only one point common. Now choose
a line d e £ which goes through a point D ¢ 2° and is not
parallel to ¢ . Then c nd, D must be contained in some
line d’ e £° . By the above argumentation used on c € <,
d'c £ we obtain #(cnd)=Ahk-1.

On the other side ¢ and d° are not parallel lines in %°
and have a one-point intersection, Thus we have obtained a con-
tradiction. [J

Proposition 4. Let 0t = (B ) be a replaceable net of de-
gree & and of order (& -41)% with a replacing net 7t'=
= (£,%£°). Then the following conditions are valid: a) For
any disjoint oo, 3 € &£° there exists ¢ € £ such that
“ne, Bncak 7 (sueh ce & will be called a cross-line
of o, 3 )e All oross-lines of given disjoint o, 3 ¢ £° are
parallel and every line of J parallel with such a cross-line
is either a cross-line too or is disjoint with both o, 3.
b) PFor any two disjoint =, B3 ¢ £° and for every ¢ € & with
enw, cnpB gl it follows o ri e c.

Proof, 8) Let o, 3 be disjoint lines of 72° . Then all
prolopgationg of lines of the affine plane o (i.e., these 1li-
nes of ¢ whioch contain some line of o ) contain altogether
B (-4)(h-A) (M=2)= (K=-D*- (-2
points O\lvtlidi o 80 that these points exhanst I°\ < . Thus
at least one of prolongations must be a cross-line of o, 3. If
@, &r are two non-parallel ocross-lines of given disjoint
«,Bed thenanbrecnfB ,a contradiction, Thus two
distinct cross-lines of given disjoint o, B3 & £° are always

parallel. )
Let there be given disjoint o, 3 & X£* and a point Ac e,
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Choose an arbitrary ¥ ¢ L'\ {x} going through A . Then f3, ¥
are non-parallel lines of 71’ and the points A,fny are
joined in Tt (as they are joined in 72° ). Thus every point

A e « 48 contained in a oross-line of <« , 3 . Similarly, eve-
ry point B € 3 is contained in a cross-line of o, 3 . We
can result: For any given disjoint o<, B3 € £° there exist .
cross-lines of them. These cross-lines belong to the seme pa-
rallelity class of 72 and such lines of this parallelity oclass
which are not cross-lines of o« , 3 are disjoint with bothc,/.

b) Let o, 2 ¢ &£ be not parallel in J2° and let c 6 &£
not contain the point « m (3 . Thus through oc N 3 there go
Just & -1 1ines of the affine plane oc and just & -1 1i-
neg of the affine plane 3 . The prolongations of these lines
ere not parallel with c. Since % (« n[3)=4 there are just
2 (& -1) of such prolongations. As 2(k-1)>K (¢=b > 2) we
have a contradiction to the assumption that .k is the degree of
Jt (and that consequently through oc N (3 there go Just &k 1i-
nes of Jt ).

Theorem 2, A net of degree & and of order (&-4)? is re-
placeable if and only if it is Ostrom net of degree k and of di-
mengion 2. Thus & net of degree & and of order (&k=4)2 is re-
placeable if and only if ié edmits an improper autocollineation.

Proof. If a net is Ostrom net of degree & and of dimen-
sion 2 then it is replaceable, by proposition 1 and by theo-
rem 1, -

If a net of degree & and of order ( & -1)2 is replaceable
thenh proposition 4 permits to apply the argumentation from
the proofs of theorems 2,1 and 2,3 from [5] so that by theo-
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rem 2,4 from (5] the given net must be Ostrom net of degree &
and of dimension 2, O

Proposition 5 (cf. (2], proposition 7.2 on p. 22 2)). Let
T« (P,£) be a net of degree k and of order (k-1)%. Then
M 1s replaceable if and only if the following condition is va-
1id: Ary two distinct joined points of J2 are contained in just
one affine plane of order k-4 embedded into 7% .

Proof. The part b) is obvious because every line of a re-
placing net 1t° of 7% 1s an affine plane of order & -1 embedded
into Jb and any two different points which are joined (simulta-
neously in J2 and in 7%’ )determine just one line in 7% containing
both these points and just one line in n’ containing both these
points.

We go over to part a). Denote by £’ the set of all affine planes
of order k -1 embedded into Jt. We shall show that (P,¥’) is an
incidence structure satisfying the strong parallelity conditions
Obviously any two non-joined points cennot be contained in the
seme £°e¢ £ whereas any two distinct joined points are contain-
ed in just one £°e £ by assumption. Thus (P,¥’) ie an inci-
dence structure.

Fow investigate a point o and an affine plane f3 € £° not
through a, . We assert that there exists just one affine plane

o € £° going through a and being disjoint to (3 . Again
(as in the proof of proposition 4 a)) we shell show that
through any point outeide (3 € &£’ there goes a line of %

- o et ot = 2t 0ttt = ¢

2) The reasoning from 121 (p. 22, i.e, the only reference onto
theorem 2 from T.G.0gtrom s "Ne's with oritical delicioncey®,
Pac.J.Math. 14(1964),1381-1387 and onto theorem 6 from T.G,
Ostrom s "Semi-translation planes", Trans,Amer,Math,Soc, 111
(1964),1-18) geems to be unsatisfactory.
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having & ron-void intersection with (3 : Indeed, the total num-
ber of points lying on prolongations of lines of the plane /3
18 k(R -1)(k-1)(%-2).A5 this mmber is equal to (k- 1)% ~

- (k-12 , we obtain in this way all points of P\ 3.

Let us return to a couple formed by a point & and an af-
fine plane f3& &£° not conteining a. and choose & line £ € &£
going through 4. and having a non-void intersection with /3.

We know that % (& n 3)=k-1 . Every couple of distinct points
@,% with x € & A (3 1s obtained in some ¢, € &£° and the to-
tal number of such oLy is & -1 . Thug through a it goes still
the remaining affine plane o e &£'. We assert thatoc N 3=
Indeed, if on the contrary, o« n 3%  , then there exists just
one common point ¢ of «,3 0 that a =trn(auc)end conse-
quently a ¢ 3 , & contradiction. O
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