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COMMENTATIONES MATHEMATICAE yiMIVERSITATIS CAROLINAE 

24,3 (1983) 

REPLACEABLE NETS AND IMPROPER COLLINEATIONS 
V. HAVEL 

Abstract; In this lote there is answered the queetion 
what is the mutual connection between the following propertiee 
of a given nets (1) to he replaceable (in the sense of f*<*# 
Ostrom) and (ii) to admit an improper collineation onto iteelf 
(in the sense of V.D. Beloueov). 

Key wordo: Jet, affine plane, proper and improper oolli-
neation. replaceable net, Ootrom net* 

Classifioationi Primary 5U10 9 5U99 
Seoondary 20.999 

$ 1* Fundamental notions. Under an inoidence, etruoture 

(more precisely, regular incidence etruoture) we underetend 

a couple (#•$£)• where 9 is a set and St ia a non-void eet 

of some at least two-element euboete of the set 3> 9 Batiafy-

ing (1) for all a, $ Jlr e !P 9 a, ±Jtr 9 there existe at moot one 

c e & such that a-, ir «s c • i-0 a consequence of (i)9 the in­

cidence etruoture ((P9S6) satisfies also (li) for all a 9 Jtr e 

6 X 9 ou^Jlr, there exists at most one c c (P such that cea.^, 

Some denotations! Let ((P 9&) be an inoidence etruoture* 

Elements of _P , respectirely of %6 will be called pointe* res­

pectively lines* Hon-die Joint distinct lines a,%Xr have just 

one point in common; this point will be called point of 
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intersection and will be denoted by a n Sr 

Two distinct points cu , £r lying on the same line are 

said to be joined and the line containing a, and $r will be 

denoted by a, u .&*. 

We say an incidence structure -7 » ((P,j£ ) is embedded 

into an incidence structure 3' « (£P',S6') if (P is a subset of 

£P' and every line of 3 is a subset of a line of 3* \ someti­

mes we shall use only a shorter formulation * (P is embedded 

into T *. 

How we will formulate some further conditions which may be sa­

tisfied in an incidence structure .7 « ((P9ZC)% (iii) any two 

distinct points of -7 are joined. 

(Join condition) 

(iv')# resp. (iv). For every line a of Jix € X U « a v * na* 

* p\ is a partition of a subset (depending on a ) of (P 9 

respectively a partition of (P • 

(Weak, respectively strong parallelity condition) 

If an Incidence structure -7 * ((P9&) satisfies the weak pa­

rallelity condition then II* {(a,»€ <#•* &\a<sJtr v a r\8r * 01 

is an equivalence relation on 06 called parallelity relation 

or briefly* parallelity. 

If an incidence structure -7 - (!P9&) satisfies the weak pa­

rallelity condition then 

*{£///)* #tfx€£\x»a,vx no. **0}\a,e £} 

will be oalled the degree of -7 • 

An incidence structure ..7 * (£P»o6) satisfying the strong pa­

rallelity oondition and having degree z 3 is called a net. 

In a net 7 « «P»S&) it holds # a w # . ^ for all a,, £re £ 

and this cardinal number is called the order of the net. 
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k zmt satisfying ^h* join condition i0 called ©a affine plane. 

Let .7 • (3P,JC)t -7'- ((P'tSCO be incidence structures and CT 

a mapping of (P into iP' f we ehall denote thie mapping 

Gt IP —^ £P' ale© by 6** 3—.> 3' , fe eay ff ie Join pre-

gerring if for any two dietinct joined pointe a f Jtr of Sf with 

distinct imagee &(a,) ?*. #66-) it follow0 that 6(a), erCW are 

joined in 3' • 

If # is bijectiTe and both 6*f &"* are join preserring then 

6 will be called a collineation, A ©ollineation S will be 

said to be proper if for eTery a, € X it follows {&(*) Ixeale 

e X | otherwise 0 is called improper, A. collineation 6* i 

s 7 — > (f ie called an autooollineation of Cf , Another de­

notation for a proper collineation, respectively for a proper 

autooollineation ie Isomorphism, respectively automorphism. If 

there exists an isomorphi0m 6t J—.> .9" then ..T and Zf* are 

said to be isomorphio, 

k net % « KP tSt) i0 ©aid to be replaceable if ^d^p (the i-

dentity mapping of (P ) ie an improper collineation of 71 on­

to some net %* » (3>f£T) with &' jz % ; 71* io then a repla­

cing net of % • 

5 --• Replaceable nete Tereruo nete admitting improper 

autooollineatione 

Proposition "U a) If there exiets an improper colline­

ation of a net % » CP9%) then % ie replaceable, 

b) If there exists an improper collineation of an inci­

dence structure J? « (CPfS6) onto an incidence structure ..J"-

» ((P% £') theii ld<p is an improper collineation of jf on a 
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oonTtnitnt inoidtnot otruoturt (#»&*) with £*?*#• 

Proof • b) Lot thtrt txitt an improptr oo Hint at ion 9ti 

%Z^X' # fa pnt .!C*««^-1(«)Ix6ci,}la€^}andg0t f*m 

• (<P$X*)% on inoidtnot atructure which it laomorphic to J7' • 

As it is 0otn9 &0 # £ and M^i .7—->^7" is an improptr eol-

lintation. 

a) Ltt thtrt trLtt an improptr collintation oc: .71—* 3£"* 

ft put again «{#»»{{te fdOlxta*) 1 a,e Sf'J and obtain a not 31" • 

- (#•£•) i0omorphio with 31' • Haro £'*£ and -u^: 31—^Oi* 

it an improptr collintation 00 that % it replaceable D 

Proposition 2# a) A. not admit 0 an improptr auto collint­

ation if and only if it admita an isomorphic rtplacing ntt. 

h) An inoidtnot ttruotttrt -7 - (CPf5C) admita an impro­

ptr autooollineation if and only if idrp is an improptr ool-

lineation of -7 onto aomt inoidtnot ttruotttrt ST** ($) £*) it-

omorphio to ...7» 

Proof* a) By proposition 1 b), if the ttructurt Sf • 

• (3*t£) admita an improptr autooollineation ae than <Ld(p ia 

an improper collintation of Hf onto a oonrtnitnt inoidtnot 

ttrooturo Jf* • {$>,#*) where if it difforent from A and 

90;-7—> 3" it an ioomorphiom. Conrtrttly, if &£<p it an 

improptr oollineation of a giTtn otruoturt ST • ($>,%) onto 

aomt otruoturt ST* • (CP9£*) isomorphic to -7 then there is 

an isomorphism ae; ST—>SSf* and this te lo at the same time 

an improper autooollineation of ST* 

b) The argumentation from point a) can be carried OTtr 

onto point b) analogously aa it wao made in tht proof of pro­

position 1. O 
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Example. Inreatigate the net % - Kl929394 f59697#699}9 

1 i---*4*-->8»--*2*--*6>~*9*--*19 3*-*39 5*-*5# 7*-*7 

i» aa improper autooollineation of 71 . Further, the net Ot** 

- U1.2#3.4#59P97#899% a,;,a'2>a,'3, 9r\%^i/%f <,c2', c£ H f**« »i«-
2 i0 a replacing net of .71 and la iaoiiorphio to 71 . 

* , Є-= 

* . = # M * 

8 

5f 
9 !c„ 

'=£' %.i 

.-~'cв 

ÄSg,.í 

A. net will be called Oatrom net of degree \ , and of dimen0i-

on 2 if it ia ioomorphie with the net rV4-.«o« (F^tt^,*^--*-***^, 
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Theorem 1 (J. Klouda). A net of degree Jk and of order 

( Jk - A )2' admits an improper autoooll ineation i f and only i f 

i t i s Ostrom net of degree A. and of dimension 2 . An isomor­

phic replaoiag net for F(ki) ( F=r GF(Jk-A)) i s the net 

Fr*-<tJ =* CF*> ^ f*i>"Hi*1**,Xz*"-***-^ l x i^2 * F * ' ^ *$'*£ 6 F i u 

u U ( ^ , ^ , 0 ^ , ^ ) ! ^ , q>2 € F i I a , , , ^ € Ff 

with isomorphism at: F f 4 + i ) - > F^ .^ , &.,,*,,, x 3 , x^ **"* fxl'*2>*5> V •. 

The set of a l l improper antooollineations of Vr^-1) *•• 

4&*ae ly\cA>ui: F ^ ^ i where Aa* Fcjfe-'f) *• *-*• • •* ** A l 1 **" 

tomorphisms of V^.^) (determined f . e . in [13 , Theorem 4 and 

in T63). 

Proof: cf. L5J. 

I 3» Some properties of replaceable nets of degree Jk 

and of order (A - A ) a 

Proposition 3* Let 71 - (*.?,££) be a replaceable net of 

degree Jk and of order m, haTing a replacing net %* • (<?*,££*) 

of degree -V and of order *u* . Then Jti m As n fa? • <n, % (n.& 

^ ( A - "1 ) 2 and eTery line of 71" is an incidence structure 

which is embedded into % and satisfies the join oondition 

and weak parallel!ty condition. MoreoTor, eTery line of 7V 

is an aff ine plane (of order A - A ) embedded into % if and 

only if m, & (.Jk ~ A)1 • 

Proof. Prom «#» (P^cn1 « /n,*2 it follows m, » m? • The 

number of all joined (non-ordered) couples of distlnot points 

of % respectiTely of %* is ~ m,2>fe ( nv - 4 ) reapeotirely 

•$m,2A*(m-A ) so that A - V . As 71* is a replaoing net 

for 71 there exists a line a,' c i£# N X . first we sl»ll show 
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that # Ca* A a} £ Jk - A for all a € ̂  : Suppose # (a* A a) z Jk 

for some a e X and take a point A e a* \ a- Cwhich exists 

because of #o--~-#a* , a 7--a* )• How we construct the join­

ing lines of A with each of mentioned <fe points (these joining 

lines exist since any two distinct points of a line of TV must 

be joined in % )• So we get (in 71 ) at least Jk line* through 

A intersecting with a , a contradiction* - How take a point 

B e a' . 

For eTery l ine -frcSC through B we haTe # Ca'njoO^ Jt-'f and e-

Tery point of a* \ { B} l i e s on exactly one such a line* Conse­

quently m,**#QS&Jk (k-2) -H** (Jk-A)1 . 1* ETery l ine 

JL* e £* determines the set S ^ - f a r t i M a c # , # (ccn£) 2: 2 * . 

This set ^ . i s non-Toid: Actually, # £* £ 2. and any two d i s ­

t inct points of £* must be joined in 71 as TV i s a replacing 

net for % • I t follows that (Z*, £-%.) i s an incidence structure 

which i s embedded into 7L and s a t i s f i e s the join condition and 

weak paral le l i ty condition* -

MoreoTer, a l ine cC a 06 • \ A i s an affine plane (of ord­

er M ~ A ) embedded into 71 i f and only i f for eTery A* € cC 

there are precisely Jk l ines from TSf̂ * going through A* and 

any such l ine intersects cC in just Jk - A points* This oocurs 

i f and only i f # a* « Jk CJt-2)-M = C.%- A ) 1
m Further we w i l l ohow 

that for at =s (Jk - 4 ) 1 eTery l ine X* e &m ia an affine plane 

of order ( Jk, - A ) 2 embedded into 7i t Assume on the contrary 

that there i s a l ine c e X A £ * * We take a l i n e a T e S f x # 

(the existence of which was stated aboTe)* Then c£ a c ** 0 as 

in case cC r\ c & 0 i t would follow # CO*A c ) =- Jfc-4 and thie 

io impoosible while the line© aJ} c € £ # *r« not paral le l in 

D Jfe > "ь <•*<> 
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%* and «s fluoh they haTe only one point oonmon. low choose 

a lino cL e X which goes through a point Deo," and is not 

parallel to c • Then c n d, P must bo contained in some 

lino d* € *£* . By the above argumentation used on c € £ > 

oV c #* wo obtain -K- (c n d*) =c A - 1. 

On the other s i do c and dm are not paral le l l i n e s in 71" 

and have a one-point intersect ion. Thus we have obtained a con­

tradiction* a 

Proposition 4* Lot 7c =-(!P,£0 be a replaceable riot of de­

gree M, and of order (A - 4 ) 2 with a replacing net Ok*• 

• (£*#££*)• Then the following conditions are valid: a) For 

any d i s jo int c t , ft € «£* there e x i s t s e c # such that 

ot r\ c, ft r\ c* 4* 0 (such c e oC w i l l bo cal led a cross- l ino 

of oe 9 /3 ) • 411 oroos-linefl of giTon dis jo int oc, /3 e «£* &*• 

paral le l and oTory l ino of 01 paral le l with such a cross- l ino 

i s e i ther a oross- l ine too or i s d is jo int with both oc, ft • 

b) For any two dis jo int ot, ft c Xm and for eTery c e # with 

c n o c , C r\ ft & 0 i t follows 06 n /3 € c . 

Proof* a) Let cC f ft bo disjoint l i n e s of 71* . Than a l l 

prolongations of l inos of the affino plane oc ( i . e . , those l i ­

nos of 71 whioh oontain soae l ine of C<J ) contain altogether 

M, (Jk-4) (Jt ,-4) ( J t - 2 ) m (jfe,-' .)*- Ofe~<f)z 

points out Aide oC so that these points exhaust <P \ <x . Thus 

at l e a s t one of prolongations oust be a cross- l ino of oc, ft • I f 

a>, Jbr are two non-parallel oross- l ines of given disjoint 

«*-, /3 erf* than a n £r s <c n /3 , a contradiction* Thus two 

d i s t inc t oross- l ines of given disjoint oc 9 ft e. •€* are always 

paral le l . 

Let there be given dis jo int ©c, ft € £* and a point A € oc, 
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Choooe an arbitrary 7- ^ $£*ST>C$ going through A • fk*a p , X 

are non-parallel lines of %' and the points A, ft n f are 

joined in % (as they are joined in 7T ). Thus every point 

A €. oc is contained in a cross-line of oc f ft . Similarly, eve­

ry point B € ft is contained in a cross-line of oc, ft .We 

can results For any given disjoint cc? (3 e t£* there exist 

cross-lines of them. These cross-lines belong to the same pa­

rallel! ty class of % and such lines of this parallelity olass 

which are not cross-lines of oc , ft are disjoint with bothoc,^?. 

b) Let oc, ft c &* be not parallel in $1* and let c « ££ 

not contain the point oC n /3 • Thus through oc n /3 there go 

just Jk-4 lines of the affine plane ac and just A - 4 li­

nes of the affine plane ft . The prolongations of these lines 

are not parallel with c • Since 41* (oc r\ft) = A there are just 

2 ( A - 4 } of such prolongations. As 2(Jk-4)>Jk (<***Jk> -2) we 

have a contradiction to the assumption that A is the degree of 

% (and that consequently through oc n ft there go just A li­

nes of 71 ). 

Theorem 2. A net of degree J* and of order (A- A )* is re­

placeable if and only if it is Ostrom net of degree A and of di­

mension 2. Thus a net of degree A and of order (Jk-4)1 is re­

placeable if and only if it admits an improper autocolllneation. 

Proof. If a net is Ostrom net of degree Jk and of dimen­

sion 2 then it is replaceable, by proposition 1 and by theo­

rem 1. -

If a net of degree A and of order ( A - 1 ) 2 is replaceable 

then proposition 4 permits to apply the argumentation from 

the proof0 of theorems 2,1 and 2,3 from I5J so that by theo-

515 



rem 2,4 from 153 the given net must he Oetrora net of degree & 

and of dimension 2. O 

Proposition 5 (cf. 123, proposition 7»2 on p. 22 ' ) • Let 

51 • (^ti) oe a net of degree Jfe and of order (Jk-4 )2» *nen 

% is replaceable if and only if the following condition la va­

lid! Any two distinct joined points of % are contained in just 

one af f ine plane of order Jk - 4 embedded into 71. • 

Proof. The part h) is obviou© because every line of a re­

placing net %' of % is an af f ine plane of order A-i embedded 

into % and any two different points which are joined (oimulta-

neouely in % and in 91* )determine just one line in % containing 

both these points and just one line in %' containing both these 

points. 

We go over to part a). Denote by ££* the set of all afflne planes 

of order k - i embedded into %. We shall show that (<P,£fT) is an 

incidence struoture satisfying the strong parallellty condition* 

Obviously any two non-joined points cannot be contained in the 

same £,*&£* whereae any two distinct joined points are contain­

ed in just one Ve X' by aooumption. Thuo (J5,^) is an inci­

dence structure. 

How investigate a point 0/ and an affine plane ft e c£* not 

through a . We assert that there exists just one afflne plane 

oc 6 oC* going through a and being disjoint to ft . Again 

(as in the proof of proposition 4 a)) we shall 0how that 

through any point outside ft 6 X' there goes a line of % 

2) The reasoning from 12] £p. 22f i,e* ^ e o n l y reference onto 
theorem 2 from T.G.Ostrom s "Net with critical delict or..oyn, 
Pao.J.^ath. 14(1964) ,1381-1387 and onto theorem 6 from T.G. 
Oetrom s "Serai-translation planes", Trans.Amer.Math.Soc. 111 
(1964),1-18) seems to be unsatisfactory. 
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haTing a no n-void in tersec t ion with fj t Indeed f the t o t a l num­

ber of points ly ing on prolongations of l i n e s of the plane ft 

i o Jk(k-/\)(k»4)(k-2).ka thia number i s equal to (k-l)1* -

- (Jk-A)1 , we obtain i n thia way a l l points of (P \ ft • 

l e t us return to a couple formed by a point a and an af-

f ine plane (i G X* not containing a and ohoose a l i n e & €, & 

going through <h and haTing a non-void in tersec t ion with ft • 

We know that # (8y r\ fi)& Jfe.-4 . BTery couple of d i s t i n c t pointo 

a f & with x € ir A ft i s obtained i n some cc^ e X* and the t o ­

t a l number of such oC„ i s Jk - 4 • Thus through a i t goes s t i l l 

the remaining aff lne plane oc e &m. l e assert that oc n ft** 0 i 

Indeed, i f on the contrary, oc r. /3 ^ 0 , then there e x i s t s Just 

one common point c of o67 (I 00 that a = ir n (a u c ) and conse­

quently cu € ft , a contradiction. D 
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