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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,1(1983)

FUNCT!ONAL TIGHTNESS, Q-SPACES AND 7-EMBEDDINGS
A. V. ARHANGEL'SKII

Abstractt A mapping f£:X—> Y is called strictly < -con-
tinuous 1f for every set Ac X such that |A| £ v there exists
& continuous mapping g:X—> Y such that fgx) = g(x) for all
xe A, The weak functional tightness ¢, (X) of X is countable

if every strictly so-continuous real-valued function on X
is continuous., A particular case of Theorem 4: tm(x) is
countable if and only if the space cp(X) of all continuous

real-valued functions on X in the topology of pointwise con-
vergence is realcompact. Lt follows that if C_(X) and C(Y)

are homeomorphic and tm(x) is countable then tm(Y) is also
countable, Other corollaries and related results are obtained.

Key words: Tightness, functional tightness, realcom t-
ness, pointwise convergence, ¢ -continuity, strict v -conti-

nuity, type G, , type G, , density.
Classification: 54A25, 54C40, 54D60

Notations and terminology. In this article the symbols
X, Y, Z denote topological spaces, © , A denote infinite
icardinals, czx(A) (or A) is the closure of a set A in a spa-
ce X, | Al is the cardinality of the set A, d(X) = min {|Al:
:AcX and A = X} is the density of the space X, (3X denotes
the 8ech-stone compactification of a completely regular Haus-
dorff space X. The restriction of a mapping £:X—> Y to Ac X
is denoted by f‘ A A mapping £:X—> Y is called 7 -continu-
ous if for every set Ac X such that |Al 2 v the mapping
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f] xA— X is continuous. A space is called functionally clo-
sed (or realcompaet or a -space) if it is homeomorphic to a
closed subspace of the space RT where R is the usual space
of real numbers and v is a cardinal, The space of all conti-
nuous real-valued functions on X with the topology of point-
wise convergence is denoted by cp(x). All spaces under con-
sideration are assumed to be completely regular and Hausdorff.
Bicompact spaces are called compact spaces.

The tightness t(X) of a space X is the smallest infinite
cardinal ¢ such that the following condition is satisfied:
1f xeX, AcX and xe X, then there exists a set Bc A for which
IBl< ¢ and xeB.

1. Punctional tightness

Definition 1 ([1]). The functional tightness to(x) of a
space X is the smallest infinite cardinal number 7 such that

every 7 -continuous real-valued function on X is continuous.

Definition 2. The weak tightness te(x) of a aspace X is
the smallest infinite cardinal number © such that the follow-
ing condition is satisfied: if a set AcX is not closed in X,
then there exist a point xeX\A, a set BcA and a set CcX
such that x¢B, BcC and ICl 2 T .

Pro&sitioh l. PFor every space X we have the following:
(a) £ (X)£t (X)5 (D) £,(X)£#(X); (c) £, (X)<£d(X).

Proof, The last two assertions are odbvious.

(d) We put @ = tc(x). Let £ be any ~x~continuous real-
valued function on X and let P be a subset of X, We have to
show that £(F)c f(P,. For the set A = §xecT:f(x) e F(P)} we
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have the following: PCACP = A, If A = P then we are done,
Suppose that AP, Then XA#A, Since t,(X) = v , there exist
x<X\A, BcA and CcX such that x€B, BcT and [Cl& T . Ta-
ke any open set U in R such that f(B)c U and put C, ={ceC:
:2(c)e UY, C; = C\C,. Suppose that ©cT,. Then since f is

¢ -continuous and lcll < v ,one has f(b)e :’(Tl). But f(cl)ﬂ
NU = ¢ and U is open in R, Hence f(b)¢ U, From £(B)c U it
follows that b¢B. Thus T, NB = P. Since BcC = C UT, we ha-
ve BcT  end xeBcC . Since £ is 7 -continuous, from xea';
and 1C| £ © 1t follows that f(x)e f(C_ ). But £(C,)c U. The-
refore £(x)ec U. By regularity of R, £(B) = N{T:U is open in
R and Uo £(B)j. It follows that £2(x) € T(B)c £(A). Now, by de-
tinition of the set A, f(A)c f(P). Hence f(x)e I(P). Note
that xeX = P, Applying agein the definition of A we conclude
that x€ A which is in contradiction with the choice of x, Thus
A= i’_.which means that the function f is continuous and that.
t,(X) < v

Corollary 1. For every space X, to(x)éd(x).

Example 1. The weak tightness (and the functional tight-
ness) does not always coincide with the tightness,
Indeed, the tightness of the space R® is equal to ¢ =
= 279, At the same time, R® is separable (see [4], ch. 2,0
c c
380) and hence to(R ) = tc(R ) = K.

Example 2, Let T( @) ={c0scC £ col} be the space of
all ordinal numbers not exceeding the first uncountable or-
dinal number in the order topology. Put f(o¢) = O for all
o < @, and £( wl) = 1, The function £:7( wl)——-ra thus de-~
fined is obviously M -continuous and not continuous. It fol-

lows that the functional tightness of the space T( w\l) is
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oqual to ;. Hence t (T(c)y)) = ;. The space T( &) is
homeomorphic to a closed subspace of the separable space R®,
We have:

t(T( @) = &, > 5y = 1, (R®)
and

1 (10 ) = > Ky = t.(R).

This means that neither the functional tightness, nor
the weak tightness are monotonic with respect to closed sub-
spaces, This is in a sharp contrast with the behaviour of
tightness which is monotonic with respect to arbitrary subspa-
ces,

It may seem that the concepts of 7t -~-continuity and of
functional tightness express a certain idea in the most appro-
priate way., However, it is possible to modify these two con-

cepts in a rather curious and quite useful way.

Definition 3. A mapping £:X—> Y will be called strict-
ly 7 -continuous if for every set Ac X such that |A| < ¢ the-
re exists a continuous mepping g:X—> Y such that g IA = f[ A
1.6, f(x) = g(x) for all xcA,

Definition 4., The weak functional tightness (or mini-
tightness) tm(x) of a space X is the smallest infinite cardi-
nal number 7 such that every strictly <t -continuous real-va-
lued function on X is continuous,

Clearly, every strictly t -continuous function is ¢ ~con-

tinuous. Hence the definitions 1 and 4 imply the following as-

sertion.

Proposition 2. For any space X, tm(X),éto(X).
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In connection with the non-monotonicity of the functio-
nal tightness observed in the example 2, the following result

is of interest.

Theorem 1. The following conditions are equivalent to
each other for arbitrary space X:

(o) $(¥Y)£ v  for every YcX;

(®) t, (V=< for every Yc X;

(e) #(X)< 7.

Proot, Clearly, from (¢) follows (b) and from (db) fol-
lows (a). Let us derive (c) from (a).

Take any AC X. We shall show that the set P = U { B:BcA
end |Bl £ =} is closed in X. Agsume the contrary, fix ye A\ P
and put ¥ = PU{yj. We are going to verify that the function
£:Y —> R defined by: f(x) = O for every x<cP and f(y) = 1, -
is strictly ~ -continuous, Let Cc Y and |Cl < T . Put co =
= CNP. From lco\_é_ v and C cP it follows easily (see for
example [4), ch. 2,)6106) that y¢ C_. Thus there exists a con-
tinuous real-valued function g on Y such that g(y) = 1 and
g(x) = 0 for &1l xeC . Obviously g = glc which implies that
the function f is sirictly < -continuous. But t (¥) <t . Hen
ce the function f is continuous - which is in contradictiom

with ye P, £(y) = 1 and £(P) = 10},

In the case of compact Hausdorff spaces Theorem 1 can be

considerably strengthened,

Proposition 3. Let £:X—> Y be a factor mapping and
£(X) = Y, Then:
(a) t,(¥) £t (X);
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(b)) 4,(Y) < 4 (X).

Proof. Let g be & ¢ ~continuous (strictly ~ -continu-
ous) function on Y. Then h = gof is 7 -continuous (corres-
pendingly, strictly < -continuous) . function on X, Letting
T - to(x) (correspondingly, © = tm(x)) we conclude in both
cases that h is contimmous.From h = gof and the fact that
? is a factor mapping, it fellows that g is continuous. Hen-
ce to(Y) LT = to(X) (correspondingly, LD = tm(x)).

We shall need also the following

Proposition 4. Let X be an infinite set, < - a well-
ordering on X such thet | {ye X:y<x3| = |X| for some xeX
and let X be given the topology generated by this well-order-
ing. Then tm(x) = | X| (moreover, to(x) =X

Proof. Clearly, t (X)<|X|. Put X, ={yeXy<x? for
x€X and let v = | X|, By our assumptions the set P = {xeX:
: lxxl = v} is not empty. Let a = min »,

Case I, ~ is regular. Put falx) = 0 for x<a and
£,(x) = 1 for a<x. It is easy to verify that the function
f,:X — R is strictly A-continuous for every A < 7 (as
cf () = ¢ ) and that £, 1s not continuous (indeed, &€ fl;.
£2(X,) = {0% and f(a) = 1). Hence ‘Z‘,< t,(X) for every A < v,
l.e. v & t,(X).

Case 2. 7 is not isolated, For any A < T there ex-
ists be X such that lxbl = h"’ (where ﬂ,+ 18 the first car-
dinal greater than A ) and lxx[ £ A for each x<b, Put
fb(x) = 0 for x<b and fb(x) = 1 for x2b. Obviously the
function fb :X—> R is strictly A -continuous and not conti-
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nuous., Hence A < t,(X) i.e. v < % (X).

Theorem 2., For every compact Hausdorff space X the fol-
lowing two conditions are equivalent:
(a) t(X) = =,

(b) #,(¥) =  for each closed subspace Y of the spa-
ce X,

Proof. Let us deduce (a) from (b), Assume that t(X)> 7.
As X is compact, there exists then a free sequence {xoc:
i<t} in X of the length xt (gee [1] or [d;], ch, III,
142), It was shown in [6] that the closed subspace P =< Xt
tX< v +§ of the space X can be mapped continuously onto the
space T( v¥) = { ¢ : ¢ = ©*}. This mapping is automatically
perfect. Then by Proposition 3 t (F)2 t,(T( 2%)) and by Pro-
position 4 tm(T( z*)) = ¥, Since F is closed in X,
tm(F) < 7 ., Hence we have:

Tz t(F)= £ (2 Th) = ¥,

- & contradiction.

Remark 1. Theorems 1 and 2 can be reformulated in the
following manner:

(a) #(X) = sup {$,(¥):Yc X} for every X;

(b) t(X) = sup {t (F):PcX and F is closed in X}, for
every compact Hausdorff space X,

Problem 1 (unsolved)., Pind a space for which weak func-

tional tightness and functional tightness are not equal.

In connection with this problem the following result is
of some interest.

Theorem 3. Let ¥ be a normal spaée and 7 - an infinite
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cardinsl. Then:

(a) every 7 -continuous real-valued function f on X
is strictly =« -continuous, and

(v) tm(X) = to(x).

Proof. Obviously, (a) implies (b). Let us prove (a).
Let AcX and [Al = ¥ . By Corollary 1, t (K)<d(A)</Al< .
The function f|y is T -continuous on the space A, Hence iy
is continuous on A, As X is normal, there exists a continuous
function g:X—> R such that gh- = i’lI. Then fh = gIA. Thus
we have proved that the function f is strictly 7 -continuous.

Remark 2. This argument shows that if tm(x) 4 ¢ and e~
very closed subspace F of X such that d(F) <« v i1s C-~embedded
in X, then to(x) = tm(x).

2.v-embeddings, the Beyitt pumber and m, -spaces, We shall
say that a set A is of type G, in X if there exists a family

~ of open sets in X such that Ny = A and Iyl < ¢ . A sub-
set ACX is said to be 7 -embedded in X, if for each xe X\ A

there exists a set Pc X of type G’t in X such that xe Pc X\A,

Proposition 5. If XcYcZ where X is 7 -embedded in Y
and Y is 7 -embedded in 2 then X is 7 -embedded in Z,

The proof is obvious.

Proposition 6. If a space X is T -embedded in some com-
pact Hausdorff extension bX of X, then X is also T -embedded
in X -~ the aooh-stdnc'ommﬂﬁ.oation of the space X,

For the proof #t is sufficient to recall that BX can
be mapped continuously onto bX in such a way that
£~1(bX\X) = BX\X.
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Definition 5. Put q(X) = min { ¥ > K X is 7 -embed-
ded in 3X}. We call the cardinal q(X) the Hewitt number of
the spece X,

It is well known (for example, see [4], ch. IV, 682)
that the inequality q(X) = ®, just means that X is a Q-spa-
ce in the sense of E, Hewitt (is realcompact in other termi-
nology).

Proposition 7. If XCY and X is closed in Y, then
q(X) £ q(Y).

This assertion can be easily deduced from Proposition 6,

We recall that a network of a space X (in a space X) is
any family S of subsets of X such that every open subset U of
X can be represented as the union of some subfamily of the
family S (this concept was introduced in (8),(9)).

The following generalization of the concept of network
plays a role in the argument to follow,

Definition 6., A family P of sets is called network of
a family Q of sets, if every AcQ is the union of a subfamily
of the family % i.e. if for each Ue Q and each xe U thers
exist Ve & such that xeVcU, ’

Thus e network of a space is just a networx cf the topo-
logy of this space, VWe remind that a subset Fc X 1o callec

canonical closed subset of the space X if F = U for some oypen

set U in X,

Definition 7. A space X is called an m __ -egpace if th~

4
family of all sets of type G, in X is a network of the fami-
1y of &ll canonicel closed subsets of X,

Clearly, X is an m, -space if ¥ = | X|. Hence the follow-
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ing definition makes sense,

Definition 8. Put m(X) = min{ v = KX 1s an m_, -spa-
ce}. We call the cardinal m(X) modality of X. If m(X) =< ®

we shall say that X is a moscow speace.

Remark 3. By the upper xo-moditicution of the space X
we understand the space for which the family of all sets of
type Gy (i.e. of type G“o) in X serves as a base, Obvious-
ly, X is a moscow space if and only if the closure of every
open set in X is open with respect to the upper xo-modifica-
tion of X.

Example 3. If in the space X every canonical c.los ed sub-
set is of type Gy then X is a moscow space. Hence the space
RA of all mappings of a set A in R (in the topology of point-
wise convergence - i.e., in the topology of product) is a mos-
cow space, If L is any real linear space, then the space 1’
of all reslylinear functionals on L in the topology of point-
wise convergence is also a moscow space., Indeed, L’ is (cano-
nically) homeomorphic to the space RA where A is any Hamel's
basis of L, Observe that among moscow spaces, there are all
dyadic compacts and all perfectly se¢-normal spaces in the sen-
se of SEepin [5]. It follows (see [51) that the product of any
family of metric spaces is a moscow space. Besides, cp(x) is
always a moscow space (as m = RX or by perfect ¢-norma-
ity of C (X)),

The next assertion generalizes a result of A.Ch, Chigo~-

gidze i33.

Proposition 8. Let XcY, q(X) = v , X = Y and m(Y)< ¥.
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Then X is 7 -embedded in Y,

Proof. Let B be any compact Hauadorff space such that
Yc B, There exists a continuous mapping f: 3 X —> B such that
£(x) = x for every xe X (see [4], ch, IV,Nol8). Let ya Y\ X,
As X = Y and the compact space (R X) is closed in the Haus-
dorff space B, we have: £(3 X)>Y. Hence lt"l(y)l > 1.

Case I, Let lf'l(y)l =1, i.e. f'l(y) = {z}, for some
4 epx. Since f'l(X) = X and y¢x, we olztain: 2z € BX\ X, The
condition q(X) € ¢ permits us to fix a family ¥ of open sets
in 3X such that Ny ={z} and Il < 2 . Then t*X(y)c Ny
which implies that y € NA , where A= {B\f(A3X\U):Ue 3,
Al < lyl £ v and each set Ve A 4is open in B,

Clearly, NA = B\ U{2(BX\U):U € o} = B\ £( U{3 X\ U:
e y3)CB\L(X) = B\X, as £(X) = X and (Ny)INX = P. We
put P = (NA)NY. Then ye PcY\ X and the set P is of type
G, in Y,

Case II, If If']‘(y)lz q. Fix z,,z5€ t'l(y), 2.14: Zye Ta-
ke neighborhoods Oz’_, 0z, of the points Zys 2, in 3X such
that qzﬁx(oﬁ)n Clﬂx(OzZ) = @ end let Vi - Osiﬂ X, Pi =
= CLy(Vy), 1 = 1,2,

Clearly z,€ clﬂ x(V4). Since f is continuous and £(V,) =
=V, 5= f(zi), i=1,2, we have: ye?lnrz.

Also, Plﬁ PZHXC csz(oﬁ)n Clﬂx(Ozz) = @, which mee&ns
that rln ch Y\X,

Teke an open set ':l in Y such that \vinx = Vi, 1 =1,2
From X = Y it follows that P; = CLy(W,), hence F; is a cano-
nical closed set in Y, By m(Y) £ « there exists a family 773
of open sets in Y such that y € Ny, c Fy and ‘Ti‘ = T,

- 115 -



1 = 1,2, Then for 3'= ¥, U 7, we have: Iyl <7 and
y Gn'[‘C(ﬂ'X‘l)ﬂ(n')’a)c’lfu‘zc!\x-

3. resultis: r [} i

sitl . If t‘(x)é « then cp(x) is o -emdedded

in Rx.

Proof. Let geRX\C,(X), Prom t,(X) & ¢ 1t follows
that there exists e set ACX such that |A| < ¢~ and g[y*2|,
for every fe cp(x). We consider the restriction mapping

ar R—> RA, - 1.0, ar(n) = h|, for a1l heRE, The set Y =
= ar(C,(X)) is <-embedded in the space RA since [Al £ © (all
one-point sets in R are of type G ). Prom () = g|, ¢ ¥
1t follows that there exists a set P of type G, in R* such
that :rr(g)sl'oc x‘\!. Then the set P = ﬂr'l(Po) is of type
G, in B' and ge PcRX\ O (X).

Eroposition 10. If C(X) is « -embedded in RS, then
t,(X)e w.

Proof. Let g be a strictly v -continuous function on X
and P e set of type G, in R* such that g€ P, Evidently one
can find & set Ac X such that |[Al &« ¢ and ge{!eRx:I,A =
= g'_,}c Te Since g is sirictly < -continuous there exisia
}\ecp(?.) surn that h!A = g!A' Then he P, Thus Pncp(x)*z
for every set F of iype G, in RX such ihat g€ P, Becanse
cp(r.) in T -embedied in KX we heve gecp(x) - i.e. the func-

tisn g i3 contimisua. HYence tm(x) P N

Theovem 4, For any space X, tm(x) = q(Cp(x)).

Proof. Put w= t (X). By Proposition 9, Cp(x) is 7=
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embedded in Rx. As the space RX 1s realcompact [4), RE is
#y-embedded in ((RX). It follows (by Proposition 5) that
0 (X) 1s 7-embedded in B(RX). This implies, by Propositi-
on 6 that cp(x) is w -embedded in ﬂ(cp(x)). Hence
wC (X)) £ = 1.e. a(C (X)) 4 t(X). Put A= q(Cy(X)). Ve
have: m(Rx) = K< A and 6;(_1—) = Rx. By Proposition 8,
C,(X) is A-embedded in RX, We now apply Proposition 10 and
arrive at the conclusion: t (X) € A . Thus tm(x).éq(cp(x))
and, finally, q(cp(I)) = t.(X).

Corollary 2. The weak functional tightness of the spa-
ce X is qountable if end only if the space cp(x) is realoom-

pect,

Corollary 3., If the spacescp(x) and Cp(Y) are homeo-
morphic then % (X) = t (Y). ‘

Corollary 4. If a space X is normal then to(x) =
= q(cp(x)).

This follows from Theorems 3 and 4, A particular case
of Theorem 4 is the following assertion: the functional
tightness of a normal space X is counteble if and only if
the space cp(x) is realcompact. This assertion is a combi-
nation of some results of A.V. Arhangel ‘skii and A.Ch. Chi-
gogidze published in [2, 4] and [3].

Corollary 5. If X and Y are normel spaces and cp(x)
is homeomorphic to GP(Y) then to(x) = t.(Y),

Problem 2., Let cp(x) and OP(I) be homeomorphic. Is it
true then that t(X) = t(Y)? Is this true under the additiona

assumption that the 'spaces X and Y are normal?
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Corollary 6. It is always true that q(X)< tm(cp(x)).

Proof. By Theorem 4, t,(C (X)) = q(Cp(CP(I)))- But X is
homeomorphic to a closed subspace of the space cp(cp(xn (mee
[7]). Hence (by Proposition 7)

q(X) < Q(Cp(cp(l) N= tm(cp(x))-

Corollary 7. If the weak functional tightness of Cp(X)

is countable then X is realcompact.

After the concepts and results contained in this article
were exposed in my course on the topology of function spaces
at the Moscow University and in enswer to my question V.V, Ug-
penskij has shown that to(Cp(X))é q(X) for every space X (see
[10])). From this beautiful result and Corollary 6 it follows
that always tm(cp(x)) = q(X). Thus we have

Corollary 8. Let cp(x) and cp(Y) be homeomorphic. Then
q(X) = q(Y). In particular, if X is realcompact, then Y is re-

alcompact.

4. The case of mappings into any space

It is easy to prove the following assertions (compare

with [4], ch. IV,Nol28).

Proposition 11, Let X =TI{X_ soc € A}and ¥ = TT{Y:
to¢c € A% be topological products, xmc Yoc for all oCc € A
and let 7 be an infinite cardinal, Then:

a) if Ix is w-embedded in Y . for each oc € A then X
is 4 -embedded in Y;

b) it q(x‘x) < o for all oc € A then (X) = T .

Proposition 12. If every =<-continuous (strictly 7z-

continuous) reel-valued function on X is continuous then each
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 -continuous (strictly « -continuous) mapping £ of the spa-

ce X into arbitrary space Y ia continuous.

For the proof it suffices to represent Y as a subspace
of the space RY and to consider the compositions of the map-

ping £ with projections RY—-> R.

With the help of Proposition 12 we easily get the follow-
ing generalization of Proposition 9:

Proposition 13. If tm(x) =< v then CP(X,Y) is 2 -embed-
ded in Yx.

Here, as usually, Cp(X,Y) denotes the space of all conti-
nuous mappings of X into Y endowed with the topology of point-
wise convergence.

From Propositions 13, 11, 5 and 6 we get the following

result:

Theorem 5., If t (X)< * and q(Y)< T then
Q(cp(xuy)) = T .

Theorems 4 and 5 imply

Corollary 9. For any X and Y, Q(Cp(X.Y))ému {4q(Y),
q\cp(x))} .

Corollary 10. If tm(x) < w, and Y is realcempact then
cp(x,!) is realcompact.

Corollary 11, If Y and Cp(X) are realcompact then
cp(x,!) is also realcompact.
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