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A NOTE ON ISOMORPHIC VARIETIES
Jaroslav JEZEK

Abstract: We shall characterize all the pairs (4, ) of
similarity types such that the variety of all /A -algebras is
isomorphic {(as a category) to some variety of [ -algebras.
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McKenzie [1] proved that for any finite type 4 , the va-
riety of all A -algebras is isomorphic to a variety of (2,1)-
algebras {(algebras with one binary and one unary operation);
he asks if the variety of all (2,1)-algebras is isomorphic to
some variety of (2)-algebras (i.e. groupoids). The aim of the
present paper is to give a negative answer to this question
and, more generally, to characterize all the pairs (A4, ) of
types such that the variety of all A -algebras is isomorphic
to some variety of [ -algebras.

By a type we mean a set of operation symbols; every ope~
ration symbol F is associated with a non-negative integer, de-
noted by np and called the arity of F. Let J be a type. A 4 -
algebra A is determined by a non-empty set (the underlying set
of A, denoted also by A) and by an assignment of an np-ary ope-

ration on the set A to any symbol F ¢ 4 ; this operation will
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be denoted by FA'

Let V, W be two varieties and X > X* be a functor from
the category V into the category W. Following [1], we say that
X+> X* is an isomorphic functor from V to W if every algebra
from W is isomorphic to A¥ for some Ac V, and if X +> X* indu-
ces a bijection of hom(A,B) onto hom(A¥,B*) for every A,Be V.
(It is easy to see that if A,B€ V then A = B iff A¥<=2 B¥,) We
say that two varieties V, W are isomorphic if there exists an

isomorphic functor from V to W.

Lemma 1. Let V, W be two varieties and X > K* be an iso-

morphic functor from V to W, Then:

{1) If AcV then A is one-element iff A* is one-element.

(2) 1t « is a V-morphism then o is injective iff oc™ is in-
Jjective.

(3) It « is a V-morphism then <« is surjective iff oc* is sur-
Jjective,

Proof. A is one-element iff for any B&€ V there is exactly
one morphism in hom(B,A). o« is injective iff it is a monomor-
phism, o is surjective iff the following is true for all V-
morphisms (3, 2 ¢ if oc = o3 and if -y is injective then 7~
is an isomorphism.

Lemma 2. Let V, W be two varieties and X > X* be an iso-
morphic functor from V to W. Let k>1 be an integer; let P be
a V-free algebra of rank k and suppose that P* is a W-free al-
gebra of rank 1; let XyveserXy be free generators of P and let
x be a free generator of P¥ , For every ac V we can define a
one-to~-one mapping LA of A* onto Ak in this way: if ae A* then

Lyla) = (o (xl),...,oc(xk)) where o« is the unique morphism
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from hom(P,A) with «*(x) = a. If 3¢ hom(A,B) in V, a€A¥*
and L‘(a) = (al.....ak) then LB( p*(a)) = (ﬁ(al.....ﬂ(ak)).

Proof. Evidently, it is possible to define a mapping L
k

A
as above. Conversely, define a mapping aerf Ak

of A* into A
into A* as follows: if a),...,a8,6 Ak. put fae‘(al.....ak) =

= «*(x) where « is the unique morphism from hom(P,A) with
oc(xl) Z 8y500n oc(xk) = a . Evidently, the mappings %, L,

and L, %, are both identical, so that ‘a is bijective and

%, is its inverse, Let f ¢ hom(A,B), ac A* and L‘(l) =

= (8;,¢s.08 ). There is a unique < ¢ hom(P,A), with x*(x) =

= a; we have a; = ec(xl).....ak = oc(xy). Now 3¢ € hom(P,B),
(B )* (x) = 3*(a) and s0 L(B*(a)) = (Bt (x;,c0e,Boiix,))=
= (Blay)se.e, Blay))e.

Let V, W be two varieties. By an equivalence between V, W
we mean an isomorphic functor from V to W commuting with the
underlying set functors. (Then this functor induces a bijecti-

on between V, W.)

Lemma 3. Let V, W be two varieties and X > X* be an imo-
morphic functor from V to W. Let P be a V-free algebra of ranmk
1 and suppose that P* is a W-free algebra of rank 1, too. Then

V, W are equivalent.

Proof., It follows easily from Lemma 2.

Corollary. Let V, W be two varieties of idempotent algeb-
bras, If V, W are isomorphic then they are equivalent.

Proof., It follows from Lemma 3 and assertion (1) of Lem-

ma 1.
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Lomma 4, Let A4, " be two types, let V be the variety
°f all A -algebras and let W be some variety of [" -algebras;
let X > X* be an isomorphic functor from V to W, Then there
are an integer k2 1 and an algebra P¢ V such that P is a V-free

algebra of rank k and P* is a W-free algebra of rank 1.

Proof. Evidently, there is an algebra P&V such that P*
is a W-free algebra of rank l. Let us call an algebra Ac ¥
s-projective in W if for any surjective morphism o in W and
any morphism (3 € hom(A,B), where B is the end of o , there ex-
ists a morphism 7 in W with 3= oy . Every W-free algebra
is s-projective in W. Hence P* is s-projective in W and so P
is s-projective in V. However, in V every s-projective algebra
is V-free (as it is easy to see). Hence P is V-free of rank k
for some cardinal number k. Suppose k=0. Then for every acV,
hom(P,A) contains exactly one morphism; but then hom(P*,B) con-
tains exactly one morphism for every Be W, which is evidently
impossible. Hence k2 1. Suppose that k is infinite. Then P is
the coproduct (in V) of « copies of P, so that P* is the co-
product (in W) of @ copies of P* ; thus P¥ is a W-free algebra

of rank @ . However, this is impossible.

In the following Lemmas 5,6,7,8,9 and 10 let 4 , [" be two
types, let V be the variety of all A -algebras and W be some
variety of " -algebras; let X —>X* be an isomorphic functor
from V to W; let k=1 be an integer i PV be an algebra such
that P is a V-free algebra of rank " P* is a W-free algebra
of rank 1, We shall fix f“ree genurators XjresesXy of P and a
free generator x of P* ., For every AcV def1 as in Lemma 2;

write L instead of Lar Fu .aer, let us f a e algebra Q
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with an infinite countable set of free generators {x; j? )
»

£i<@, 1£j%k}. The free generators x of Q will be cal-

i,j
led variables and the elements of Q - terms. Define morphisms
&L, ,tP—> Q by <. (x;) = x, .. Then Q is a coproduct (in V) of
i it i3

< copies of P, with canonical morphimms ot (1£€i< ),
Consequently, Q* is a coproduct (in W) of < copies of P*,with
canonical morphisms c(."'i o Put y; = cC“i (x); then Q* is a W-free
algebra with free generators YyeY¥geeee and we have L(yi) =

1] [k])

= (xi,l"”'xi,k)’ For every F € ™ denote by (F ~ ,...,F

the k-tuple u(FQ,((yl.n-.ynF’)-

Lemma 5., Let Ic{1,2,...3 and let acQ* be an element be-
longing to the subalgebra of Q* generated by {yi;ie I3. Put
L(a) = (al.....ak). Then every variable contained in some of

the terms a,,...,a, belongs to {ix iie I, 14§ £k3,
1 k i,J

Proof. There is an endomorphism ¢ of Q such that
€¥(y;) = y; for all ic I and g*(y;) = y;,, for all i¢I. We
have ¢* (a) = a and so e(al) = Bjheens e(ak) = a, by Lemma 2;
hence ¢ (z) = z for any variable z contained in some of the

i) T R,

that i¢ I; hence e(xi'j) = xi,J implies ie I.

terms Bjreeer8ye We have f-;(xi for all i, j such

Lemma 6. If T contains a nullary symbol then 4 contains

a nullary symbol,

Proof. It follows from Lemma 5,

Lemma 7. Let M be a subset of Q such that every variable

EIJ“”' Flk) belong to M for any swm-

belongs to M, the terms F
bol F e " and e(M)S M for any endomorphism € of Q mapping

all variables into M, Then M=Q,
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Proof. Denote by D the set of all ue @* such that ir
L(u) = (u;,ec0,uy) then u;,...,u ¢ M, Since Liyy) = (‘1,1'“
ceesXy k) and M contains all variables, we have {Yj:Ygse+.3S Do

»
Let us prove that D is a subalgebra of Q* . Let FG " and d;,...
oon.d & De Put o gpn”(dl..'.'dnp). L(di) = ‘di,l,'.'di.k) and
Lie) = (e;,c..,0,); wo have d; i€ M. Denote by € the endomor-
”

phiam of Q with €*(y;) = drreees er (ynp) = an and s*:?i) =
= yj for i> ng. By Lemma 2 we have ¢ "i,j) = di,j for i ng
and e(’i.J) =% 5 for i>ng. We have e."(FQ*(yl.....yn )) =

= Q’(dl.oo'.dnp) = @ and so ¢ "Ll]) = Clgo-o’ e(F[x]) = eko
By the properties of M, {el.....ek}QI and 80 ec D. We have pro-
ved that D is a subalgebra of Q* containing the generators and

so D = Q* . Hence for every ue Q™ we have L(u)slk; but then

M=qQ,

Lemma 8. Let F € " be unary; let ac §* be such that
L,(FQ,,,(a)) is a sequence of pairwise different variables. Then

L{a) is a sequence of pairwise different variables.

Proof. Put L(FQ,(a)) = (z350..,2,) and t{a) = (al....
eess @) Lot € be an endomorphism of Q with 8*()’1) = a, S0
that e(xl.l) = @jsecey e(xl.k) = ay. We have e*(FQ,(yl)) =
= FQ#(u) and so g(F'1Y) = Zyveons e (FIK
FLI] Flk]

) = z,. From this it

is a sequence of pairwise different
l,[1]

follows that

seves
variables; by Lemma 5, { yeo.,FLEIR ={x1 1o eaXy k}‘ Since
’ »

Q(F[n...., € (P[kl) are pairwise different variables, the sa-

me must be true for Q(xl.l),..., e(xl'k). i.e. for ajecs,ay .

Lemma 9. Let kZ 2, Then there is a symbol Fe I of arity

8 & [kl

Z 2 such that F sece, F are pairwise different variables.
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Proof. There is an element a6 Q* with . (a) = (x),1000e
""‘k,l)' By Lemma 5, a does not belong to the subalgebra of
Q¥ generated by y;, for any i. From this it follows that there
are a symbol FET of some arity nZ 2, elements 8)reccrd & Q*
md unary syabole H',...,H™ (m20) such that a = Hy, «vs
...Hg,FQ,(al,.. *28,). Put b =Fo,(a,... ,a,). By Lemne 8, L (b) is
a sequence of pairwise different variables. There is an endo-
morphism € of Q with b = f'*“'o*"l""'yn”‘ hence
€ (F[ﬂ"”' E“'[k]) is a sequence of pairwise different vari-

ables, so that PL1) . P[‘k] are pairwise different variables.

Lemma 10. There is a mapping A : 4 —> " with the fol-
lowing three properties:
(1) ng4 kngg)for all G € 4 .
(2) If G,e.sG s A are pairwise different and A (G)) = ... =
= X(Gy) then m<k,
(3) If kZ2 then the set ™\ A(A) contains an at least bina-
ry symbol,

Proof. Let G € 4 . Suppose that there is no symbol He I"
such that G(zl....,znc)e{H[u,..., H[k]} for Gome- pairwise dif-
ferent variables zl,...,znc. Then the set M of terms which are
not of the form G(zl,....znc) with zl,....znc pairwise diffe-
rent variables satisfies evidently the assumptions of Lemma 7,
so that M=Q by Lemma 7, evidently a contradiction. This shows
that for every G € A4 we can choose some A (G) € " such that

G(Zgseeerz ) e {ﬁ.(G)u]..... ﬁ(G)[U} for some pairwise dif-

n

ferent variables z;,...,z; . (1) follows from Lemma 5, (2) is
G

evident and (3) follows from Lemma 8.
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Theorem 1. Let 4 , ™ be two types and let k>1 be an

integer. The following two conditions (I),(II) are equivalent:
(I) There exists an isomorphic functor X +> X* from the vari-
oty of all A -algebras to some variety of [" -algebras such that
for some PcV, P is a V-free algebra of rank k and P* is a W-
free algebra of rank 1.
(II) There exists a mapping A: 4 —> ™  such that the fol-
lowing four conditions are satisfied:

(1) ng€kn, ) for all G ¢ a.

(2) If G,...,G, € 4 are pairwise different and A(G)) =
=..= A(G.) then m<k,

(3) If k=2 then the set " \ A(4) contains an at least
binary symbole.

(4) If " contains a nullary symbol then 4 contains a

nullary symbol,

Proof. The direct implication follows from Lemmas10 and
6. Now let (II) be satisfied. Denote by ¥ the variety of all
A -algebras. If k=1 then 2 is injective and n;<nj, ) for all
G 64 ; this, together with (4), implies that V is equivalent
to a variety of [" -algebras. Let kZ 2. By (3) there exists an
at least binary symbol S¢ M\ A (4 ), and evidently it is enough
to consider the case when S is binary. For every Fe I fix a
finite sequence MR consisting of all pairwise different sym-
bols G € 4 with F = A(G). If " contains nullary symbols, fix
a nullary symbol H € 4 . For every A -algebra A define a I -
algebra A* with the underlying set AX as follows:

sA*“‘l"“'ak)' (bysecesby)) = (bpoajseceray );
if F eP\{S} is a symbol of arity nz1 and g = (6%,...,6®),
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put
=

FA*“alguoo.ﬁk)n (.k-fl"""zk)""’“nk-ktl"”"nk))

= (Gi(alo....anc VowresGylageeeciay Joaeia);
1 m

if F el is nullary and “plGl,...,@), put
1 m
Fpem (G, 000 ,GRHy, s Hy).

For every / -morphism o :A —> B define a I" -morphism oc* :A*—>
—> B* by o(.*(al.....ak) = (ec(al)..... oc(ak)). It is not dif-
ficult to prove that the class W of ["-algebras isomorphic to
A* for some AcV is a variety and that X —> X* is an isomorph-
ic functor from V to W such that the V-free algebra of rank k
corresponds to the W-free algebra of rank 1. We shall not give
here a detailed proof of this fact, since it is analogous to

that of Theorem 1.1 of [1],

Theorem 2. Llet 4 , ™ be two types. For every integer
iz 0 put d; =Card{F ed ;nFZi} and g; = Card {F e I ;npzﬂ.
The variety V of all 4 -algebras is isomorphic to some variety
of P-algebraa iff the following seven conditions are satisfied:
(1) If d, is infinite then d < g, .

(2) Ig d, is infinite then d,<g,.

(3) Min(di:izo)élin(gi;iz 0).

(4) 1f g = 0 then d;%g; for all i.

(5) If g, =1 then either d;£g; for all i or d; = 0.

(6) If g, =1 then doé 1.

(7) 1f ™ contains a nullary symbol then 4 contains a nulla-

ry symbol.

Proof. By Lemma 4, the isomorphism of V to some variety
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of T -algebras is equivalent to the existence of an integer
k>1 satisfying the condition (I) of Theorem 1 and thus to

the existence of k and A satisfying the condition (II) of
Theorem 1. It is not difficult to re-formulate this conditi-~

on in terms of the cardinal numbers d; and g;.
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