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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,1 (1982)

E-RINGS AND DIFFERENTIAL POLYNOMIALS OVER
UNIVERSAL FIELDS
Jan TRLIFA)

Abstract: We give a complete description of left noethe-
rian left antisingular E-rings. We show that there is no left
noetherian E-ring with a zero left socle, but the ring of dif-
ferential polynomials of one variable over any universal field
of characteristic zero has the Ext-property for finitely gene-
rated modules.
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Let R be an associative ring with identity and let R-mod
be the category of unitary left R-modules. Recall that a ring
R is said to be an E-ring (or, equivalently, to have the Ext-
property) iff Ext/M,N/ i O for all M nonorojective and N nonin-
Jective R-modules.

In this note we continue the study of E-rings started in
the paper i8l. We get a structure theorem for left noetherian
left nonsingular E-rings (see 1.8). We also show that it may
happen that a ring R is not an E-ring, but it has the Ext-pro-
perty for M, N finitely generated R-modules. Namely, there is
no left noetherian E-ring with a zero left socle (see 1.6),
but the ring of differential polynomials of one variable over
any universal field of characteristic zero has the Ext-proper-

ty for finitely generated modules (see 2.1, resp. 2.2).
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We shall use the notation as follows. For an R-module N
let E/N/ be the injective hull orf N. If X is a subset of N,
then Ann/X/ denotes the left annihilator of X in the ring R.
A left ideal of R is said to be a left annihilator ideal if
I = Ann/X/ for some XS<R.,

Let r be a preradical in R-mod. Then (Tr denotes the
class of all r-torsion modules. further r is said to be a ra-
dical if r(W/r(M)) = O for all M e R-mod and r is said to be
stable if every injective R-module splits in r. As usual,;L ,
Soc and & denote the Jacobson radical, the left socle and
the left singular preradical respectively. The prime radical
of a ring R is denoted by rad/R/ and the direct sum of the
rings S and T by SHT.

Further concepts and notation can be found e.g. in [1]

and [21].

l. Left nonsingulgr E-rings

l.1. Proposition. Let R be a left noetherian left here-
ditary E-ring with one representative of simple R-modules.

Then R is completely reducible.

Proof. Suppose R is not completely reducible. Since
R/}(R) is a simple ring, R is Morita equivalent to S = eRe,
where e is a primitive idempotent in R. Clearly S is an in-
tegral domain, Soc/S/ = 0 and there is a flat nonprojective
S-module 4.

Let D be the left quotient division ring of S, J be a s mple
S-module and P be a proper S-submodule of D containing S. If
Soc {(D/P) = 0, then Ext (J,P) =Q and S is not an E-ring, a
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contradiction. Hence Soc (D/P)340. Now define S-bimodules B,
C by B=D/S and C = S.

Using [ 3, chapter 6, theorem 3.5 al we get
Ext (A,Ext/B,C/)=2Ext (Tor/B,4/,C) = O,

Thus the S-module N = Ext/B,C/ is injective. On the other hand,
if g is a nonzero S~homomorphizm from B to D, then Soc (Im g)+
+0. But D = E/S/, a contradiction. Hence N = Hom/B,B/ and the
functor Hom/B® -~,B/ is exact. Since the S~module B is an in-
jective cogenerator, the functor B& - is exact. Therefore

B is s flat right S-module and hence it is torsionfree, a con-

tradiction.

l.2. Lemmg. Let R be a left noetherian E-ring which is

not left hereditary and which is irreducible as R-module. Let
M be a maximal left annihilator ideal. Then each propesr left

ideal I contains an element x such that M = Ann/x/.

Proof. Obviously M = Ann/y/ for some y€ R and R/Ry is
not projective. Hence Ext (R/Ry,I)+ O and consequently
Hom/Ry,I/+ 0. The rest is clear.

1l.3. Proposition. Let R be a left noetherian E-ring with
one representative of simple R-modules such that R is not left

hereditary. Then Soc/R/# O.

Proof. Suppose Soc/R/ = 0. Similarly as in the proposi-
tion 1.1, R is Morite equivalent to a ring S, whence S is an
irreducible S-module. Fyrther, by [8, lemma 2.61 X£(S) = 0.
Let Q = Q/S/ be the maximal left quotient ring of the ring S.
By [7, § 4.5), Q = E/S/ and Q is a ring direct sum of simple
completely reducible rings Ql""’Qm' Suppose mZ 2 and put

- 161 -



I, = SnQ. Using 1.2we get /I;+...+I /I, = 0 and £/S/#0,
a contradiction. Consequently Q = Mn/D/ for a natural number
nz2 and a division ring D.
Further, using [8, lemma 2.4], it is easy to see that every
regular element of S is invertible and hence ch/S/ = S, whe-
re QcI/S/ is the classical left quotient ring of S. Thus the
nilpotency index k of rad/S/ is at least 2. Let s be a nonze-
ro element of rad/S/X”l. Then there is an invertible matrix
qe Q such that t = q.s.q L is the Jordan canonical form of the
matrix s. In particular, tiJ = 0 for all i=l,...,n, j=l,...,n,
J+ 141 and t, = L.

Now, define an E-ring T by T = q.S.q . Clearly Q =
= T/ = M /D/. Let e be the element of Q with e;; =1 and
€3 = 0 otherwise. Put C = Qe., Clearly C is a canonical right
D-module.

The rest of the proof is based on the following two lemmas:

l.4. Lemma. C is an irreducible injective T-module. If
a and b are nonzero elements of C such that Ann/a/< Ann/b/,
then there is a nonzero element d¢ D such that b = a.d .

Proof. The first assertion is obvious. If Ann/a/< Ann/b/
then there is a nonzero T-endomorphism f of C such that af = b.
Since Q = E/T/, we have ef = e.d for a nonzero de D. Hence
ef = eg for some Q-endomorphism g of C. Let h = £ - g. If h0,
then C/Ker h ¢ Qi and by L8, lemma 2.6} Soe/Im h/#0, a con-

tradiction. Thus f = g.

1.5. Lemma. There is a radical r in T-mod such that T, #

0 and r is not stable.
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Proof., Let I

(]

TnC and let r be the corresponding I-
radical {i.e. r/N/ = I.N for all N¢ T-mod). Put & = rad /T/
and let O $#a cA., Since t.A = 0, we have aZJ = 0 for each J =
=1,...,n. Further, let O+ c¢I. By 1.4, Ann/ / is a maximal
left annihilator idesl in T. By 1.2, there is some Oi:ac A
with Ann/a/ = Ann/c/. Let b be a nonzero column of the mat-
rix a. Then b = c.d for some nonzero d¢ D, by 1.4, In parti-
cular, ¢, = 0 and consequently O#r/C/ ¥ C and r is not stab-
le. Further, suppose 12 = 0. Then IS rad/T/ and I.t = 0, a
contradiction. Hence there is some c¢ I with x = cll*=0. Let
M be the T-submodule of C generated by the matrices c.xi, i
being an integer. Since c.xi = cz.xi-l, we have I.M = M and

¢r#m

Now we can finish the proof of 1.3. Let r be a radical
from 1.5. Using L8, lemma 2.6] we see that (Fr is the class
of completely reducible projective T-modulcs. Hence :fr =0,

a contradiction.

1.6. Propogsition. Let R be an E-ring with Soc/R/ = 0.
Then R is a simple left hereditary regular ring.

Proof. By 1.1, 1.3 and by [8, corollary 2.7, lemma 2.3]
R is a simple regular ring and all simpl:. R-modules are iso-
morphic. In particular, if e is a nonzero idempotent in R,
then S = eRe is Morita equivalent to R and hence R contains
an infinite direct sum of projective left ideals. By [8, lem-
ma 2.4), R is left hereditary.

Recall that an E-ring is called of type 2 iff £(R) =0
and Soc/R/ is a direct summand in R (see [8]).
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1.7. Corollary. Let R be an E-ring of type 2. Then R =
=S ® T, where S is a completely reducible ring and T is a
simple regular left hereditary E-ring.

1.8, Theorem. Let R be an associative ring with identi-
ty such that R is not completely reducible. Then the follow-
ing two conditions are equivalent:

(1) R is a left noetherian E-ring with £(R) =0

(11 R =S®A T, where S is a completely reducible ring and
there exists g division ring D such that T is Morita equiva-
lent to the ring of upper triangular matrices of degree two

over D.

Proof. Use 1.7 and [8, theorem 7.11.

1.9._Remgrk. It follows from 1.7 and [8, theorem 7.17]
that if R is an E-ring of type 2 or 3, then every factor ring
of R is again an E-ring. It is an open problem whether this re-

mains true for any E-ring.

2. Differential polynomiaglg over univergal fields, In
this section, let k be a universal differential field of cha-~

racteristic zero with the differentiation D and let R = k[y,D]
be the ring of differential polynomials of one variable y over

the field k (see e.g. L4 andl6l).

2.1. Proposition. Let M be a finitely generated nonpro-
jective R-module and N be a noninjective R-module. Then
Ext/M,N/# 0.,

Proof. It is well-known (see e.g. [4]) that R is a simp-
le left noetherian left and right PIR such that R is an inte-
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gral domain with one injective representative of simple R-mo-
dules A. Hence each cyclic R-module is either semisimple or
isomorphic to R and consequently there are two representati-
ves of irreducible injective R-modules: A and Q, where Q is
the quotient division ring of R. Hence M = Soc/M/i—Ml, where
M1 is g finitely generated torsionfree R-module and this Ml
is free and Soc/M/3=0. Therefore the abelian group Ext/M,N/
has a direct summand isomorphic to Ext/A,N/. Finally, since
Soc(E(N(/N) = E(N)/N, we have Ext/A,N/=Hom(A,E(N)/N)+ 0,

qeeode

Denoting by rD/M/ the reduced rank of the R-module M
(i.e. ro/M/ is the cardinality of any maximal R-independent
subset of M', where M = I/W+ M’ and I/M/ is the divisible
part of M) we get the following partial improvement of 2.1

for small univergal fields.

2.2, Proposition. Let k be a universal differential
field of characteristie zero such that card k< 244‘0 (see [6,
chapter 3, section 7]). Let M be a nonprojective R-module
such that ro/M/-< #o and N be a noninjectite R-module such

B R
that r /N/<2 ®, Then Ext/M,N/#0.

Proof. We can assume that M and N are reduced and the
rest is analogous to the proof that every Whitehead group of
finite rank is free (see [5, vol. 2, § 991).

2.3. Remark. In the case of k [y,D]-modules the proof
of 1.1 saya exactly that there is a noninjective module N
such that Ext/Q,N/ = O, Using the terminology familiar in abe-
lian groups (see L5, vol. 1, § 38 and § 54)), N is a nonin-
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Jective cotorsion module. In fact, N is also algebraically
compact, since, as it is easy to show, cotorsion and algebra—

ically compact k Ly,D]-modules merge.

The author wishes to thank Professors O.L. Gorbaduk, T.
Kepka and L. Prochézka for valuable advice.
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