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PELCZYNSKI'S PROPERTY V FOR BANACH SPACES
J. HOWARD

Abstract: A continuous linear operator T which maps &
Banach space X into a Banach space Y is said to be uncondi-
tionally conver§ing (ue) if T maps weakly unconditionally
converging (wuc) series into undconditionally converging (uc)
series. X is said to have property V if for every Banach spa-
ce Y, every uc operagtor T:X—> Y is weakly compact. We show
that the space C_(S) and A(K) (with restricted conditions on
K) have property®. (A(K) is the partially ordered Banach
space of all continuous real-valued affine functions on K, a
compact Choquet simplex.

Key wordg: Banach space, unconditionally converging o-
perator, weakly ocompact operator.

Classification: Primary 46Bl0
Secondary 47839

N(X) is to denote JX (J is the natural map) plus all
6(x",X") limits of wuc series in X. N(X) is a subset of X"
and JX = N(X) if and only if every wuc series in X is uc.
The 6 (X,N(X)) topology on X' is generated by polars of fi-
nite sets of N(X). Let S be separated locally compéot space.
CO(S) is the space of continuous functions x on $ such that
given € > 0, the set {se S:\x(8)l = ¢¢ 4is conditionally
compact in S. Co(S) is a Banach space with norm lixll =
= gup {1x(8)) :s¢c S3. M(S) i1s to denote the Banach space of
bounded Radon measures on S, the norm being lwll = [ dlwl.
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Recall that the dual of co(s) may be identified with M(S)
by associating with each “e M(S) the linear form x —>
—>[4% du on C(S). If S is compact then C,(S) is the
space C(S). A proof that C(S) has property V is given in L4l].

Theorem 1. For any separated locally compact space S,
CO(S) has property V.

Proof. Let T:CO(S) —> Y be a uc operator for an arbit-
rary Banach space Y. Grothendieck (Theorem 6 of [1]) proved
that T is weakly compact if and only if T transforms any
bounded monotone increasing sequence in CO(S) into a sequen-
ce converging weakly in Y. If {xn} is a bounded monotone in-
creasing sequence in CO(S), it suffices to show x = G(M(S)’,
M(S))-1im x;, is in N(C (8)) (Theorem 1.1 of [2]). Since then
T be:lngna uc operator would imply T"(x)e JY and, hence, T(xn)
converges weakly to some ye Y. Define Z) =Xy, Zp = X5 -
= XygeeesZy =Xp = Xp_gyeee o Then =z, is a series in
c,(s). "

If @ e M(S), then w(x, -i§4 z4) = w(0) = 0; hence,

mn
{xn - %?4 21} converges weakly to O. Since Xn is a weak Cau-

chy sequence, lim .« (x;) <oo for each @ e M(S). To show
n
= 2z, is a wuc series, it suffices to only consider positive
Radon measures, so let a be an arbitrary positive Radon
measure. Since x,(s) - x,_,(8)= 0 for all seS, lum(z)! =
= @(z,) and, thus,
n ki m,
Lin 2l actzydl= lim iZyelzg) = Lo > Ss (xymxyy)de=
= lim w(x,) < oo .
n

n
Hence =z, is indeed a wuc series. Now since {xn -.2'.1 21?

1 =
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converges weakly to O, the weak limii point of 'ixn7s is in
N(c (s)).

We now generalize Theorem 1, for if S is a compact Haus-
dorff space, then C(S) = A(K) where K is the compact convex
set of probability measures on § in the weak* topology [31.

Theorem 2. If the set of extreme points of X is a coun-
table union of compact sets, then A(K) has property V.
Proof. By [2), it suffices to show that any equiconti-

nuous, convex, balanced, and & (A(K) , NCA(K)))-compact set
D in A(K) " is also €(A(K)‘, A(K)")-compact. If iwyl is a net
in D, then there is a subnet {ua} that converges to some w
in D. Let the elements of B be the point-wise limits of seri-
es of the form = | fn(&x)|< o0 for x€ K, the fn's being con-
tinuoug functions on K. For each bounded Borel function f on
K let (Pf) (x) = [ £ dw,, where for each xeK, w, is the uni-
que maximal probability measure which represents x. Then for
£ in B, P(f) is in N(A(K)) and since K is maximally supported
and Pf = £ on the extreme points of K, /[ f du = /' Pfdu for
each ue¢ A(K) . Thus uE(Pf) —> w(Pf) implies ua(f)—> w(f)
and {ua} ‘converges to w relative to the &(C(K)°, B) topolo-
gy. Since C(K) has property V, D is compact in the &(C(K)°,
c(X)") topology and hence in the &(A(K)”, A(K)") topology.

Recently the Radon-Nikodym property (RNP) has been stu-
died for Banach spaces. (Every separable subspace of X is iso-
morphic to a subspace of a separable dugl - is one among se-
veral equivalents for RNP.) It is natural to ask if there is
a relation between property ¥ and RNP. By using results of
[4] and [5], we have the following.
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Propogition 3. Let X be a closed subspace of a Banach
space with an unconditional basis. Then X* has RNP if and
only if X has property V.

Corollary 4. Let X be a closed subspace of a Banach
space with an unconditional basis. If X is a dual space and

X’ has RNP, then X is reflexive.
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