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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,4 (1981) 

PELCZYNSKIS PROPERTY V FOR BANACH SPACES 
] . HOWARD 

Abs tract: A continuous l inear operator T which maps sr 
Banach space X into a Banach space Y i s sa id to be uncondi­
t iona l ly converging (uc) i f T maps weakly unconditionally 
converging (wucT ser i e s into undcond it ionally converging (uc) 
s e r i e s . X i s said to have property V i f for every Banach spa­
ce Y, every uc operator T:X—> Y i s weakly compact. We show 
that the space C (S) and A(K) (with r e s t r i c t e d cond it ions on 
K) have propertynf. (A(K) i s the par t ia l l y ordered Banach 
space of a l l continuous real-valued aff ine functions on K, a 
compact Choquet simplex.) 

Kev words: Banach space, uncond i t ionally converging o -
perator, weakly oompact operator. 

C l a s s i f i ca t ion: Primary 46B10 
Secondary 47839 

N(X) is to denote JX (J is the natural map) plus all 

e(X%x') limits of wuc series in X. N(X) is a subset of X* 

and JX * N(X) if and only if every wuc series in X is uc. 

The 6'(X,'N(X)) topology on x' is generated by polars of fi­

nite sets of N(X). Let S be separated locally compact space. 

C (S) is the space of continuous functions x on S such that 

given e >• 0, the set -tseS;\x(s)l 3: ei is conditionally 

compact in S. C CS) is a Banach space with norm II x II * 

= sup{lx(s). :ac S]. M(S) is to denote the Banach space of 

bounded Radon measures on 3, the norm being l|̂ c)l -* f dip,!. 
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Recall that the dual of CQ(S) may be identified with M(S> 

by associating with each (Ct e M(s) the linear form x — > 

— > / x d<u, on C (S). If S is compact then CQ(s) is the 

space C(S). A proof that C(S) has property V is given in L4J. 

Theorem 1. For any separated locally compact space S, 

C (S) has property V. 

ErjopjC. Let T:CQ(S) — > Y be a uc operator for an arbit­

rary Banach space Y. Grothendieck (Theorem 6 of [1]) proved 

that T is weakly compact if and only if T transforms any 

bounded monotone increasing sequence in C (S) into a sequen­

ce converging weakly in Y. If 4-*nl ia a bounded monotone in­

creasing seqpuence in C (S)f it suffices to show x » £(M(S) ', 

M(S))-lim xn is in N(CQ(S)) (Theorem 1.1 of 121). Since then 

T being a uc operator would imply Tw(x)e JY andf hence, T(xn) 

converges weakly to some ye Y. Define ẑ  =. x^, z2 =- x? -

- x^t«..f25n =5- xft -
 x
n.T>»»» • Then 2£ zn is a series in 

C Cs). 
0 rrv 

If ^ e M l S ) , then ft(xn - . S. z±) ~ fc(0) » 0; hence, 

*̂ xn " \1z?i zl) converges weakly to 0. Since xR is a weak Cau-
chy sequence, lim /it(xn)<oo for each (ae M(S). To show 

n ( 

-2 zn is a wuc series, it suffices to only consider positive 

Radon measures, so let (u. be an arbitrary positive Radon 

measure. Since xR(s) - ^ - l ^
8 ' 2 7 0 f o r a 1 1 a e S > '(^^zn^ ~ 

~ &*^ZT? and> tnusf 

lim J^I^t^)!-* lim J > ( 2 i ) «
 l**£>ifs Cxrxi-l)d^ = 

* lim (U.(xn) «< co . 
n n, 

Hence 2 z n i s indeed a wuc aeries. Now since 4x„ -* -£ , zA n n -v a 7 1 
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converges weakly to 0, the weak limit point of ^x^ is in 

N(CQCS)). 

We now generalize Theorem 1, for if S is a compact Haus-

dorff space, then C(S) = A(K) where K is the compact convex 

set of probability measures on S" in the weak* topology [33. 

Theorem 2. If the set of extreme points of K is a coun­

table union of compact sets, then A(K) has property V. 

Proof. By [23, it suffices to show that any equiconti-

nuou9, convex, balanced, and €T(ACK)', NCA(K)))-compact aet 

D in A(K)' is al90 ffUfK)', A(K)
w)-compact. If iw^} is a net 

in D, then there is a subnet 4uJ that converges to some w 

in D. Let the elements of B be the point-wise limits of seri­

es of the form -S I fnCx) I -< <x> for xe K, the fn's being con­

tinuous, functions on K. For each bounded Borel function f on 

K let (Pf) (x) - f t dwx, where for each xeK, wx ia the uni­

que maximal probability measure which represents x. Then for 

f in B, PCf) is in N(A(K)) and since K is maximally supported 

and Pf * f on the extreme points of K, / f du * f Ft dw for 

each ucA(K)'. Thus u (Pf) -» w(Pf) implies u (f)-»- w(f) 
o a 

and -lu^i 'converges to w relative to the tf(C(K)', B) topolo-a 

gym Since C(K) has property V, D i s compact in the £(C(K)' f 

C(K)M) topology and hence in the 6TUCK)', A(K)M) topology* 

Recently the Radon-Nikodym property (RNP) has been s tu­

died for Banach spaces. (Every separable subspace of X i s iso­

morphic to a subspace of a separable dual - ia one among se ­

veral equivalents for RNP.) It ia natural to ask i f there ia 

a relation between property ¥ and RNP. By uaing re3ult3 of 

[43 and [53 , we have the following. 
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Propos i t ion j . Let X be a closed subspace of a Banach 

space with an unconditional b a s i s . Then X has RNP i f and 

only i f X has property V. 

Corollary 4* Let X be a closed subspace of a Banach 

space with an uncondit ional b a s i s . I f X i s a dual space and 

x ' has RNP, then X i s r e f l e x i v e . 
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